diff --git a/extreme_fit/distribution/abstract_extreme_params.py b/extreme_fit/distribution/abstract_extreme_params.py
new file mode 100644
index 0000000000000000000000000000000000000000..53cd11470456213eddf59fd28f4d369d3a4739b6
--- /dev/null
+++ b/extreme_fit/distribution/abstract_extreme_params.py
@@ -0,0 +1,20 @@
+from extreme_fit.distribution.abstract_params import AbstractParams
+
+
+class AbstractExtremeParams(AbstractParams):
+    pass
+
+    # Extreme parameters
+    SCALE = 'scale'
+    LOC = 'loc'
+    SHAPE = 'shape'
+
+    def __init__(self, loc: float, scale: float, shape: float):
+        self.location = loc
+        self.scale = scale
+        self.shape = shape
+        # By default, scale cannot be negative
+        # (sometimes it happens, when we want to find a quantile for every point of a 2D map
+        # then it can happen that a corner point that was not used for fitting correspond to a negative scale,
+        # in the case we set all the parameters as equal to np.nan, and we will not display those points)
+        self.has_undefined_parameters = self.scale <= 0
\ No newline at end of file
diff --git a/extreme_fit/distribution/abstract_params.py b/extreme_fit/distribution/abstract_params.py
index f367a820a945c2007533fc08ad865f248540fa91..631f86562d2b0c36b0dc98d50cab366bbc5c3339 100644
--- a/extreme_fit/distribution/abstract_params.py
+++ b/extreme_fit/distribution/abstract_params.py
@@ -17,21 +17,14 @@ class AbstractParams(object):
     QUANTILE_COLORS = ['orange', 'red', 'darkviolet']
     # Summary
     SUMMARY_NAMES = PARAM_NAMES + QUANTILE_NAMES
+
+    # Simple parameters
+    RATE = 'rate'
     # Extreme parameters
     SCALE = 'scale'
     LOC = 'loc'
     SHAPE = 'shape'
 
-    def __init__(self, loc: float, scale: float, shape: float):
-        self.location = loc
-        self.scale = scale
-        self.shape = shape
-        # By default, scale cannot be negative
-        # (sometimes it happens, when we want to find a quantile for every point of a 2D map
-        # then it can happen that a corner point that was not used for fitting correspond to a negative scale,
-        # in the case we set all the parameters as equal to np.nan, and we will not display those points)
-        self.has_undefined_parameters = self.scale <= 0
-
     @classmethod
     def from_dict(cls, params: dict):
         return cls(**params)
diff --git a/extreme_fit/distribution/exp_params.py b/extreme_fit/distribution/exp_params.py
index 6a003ee2dc47a68ba556bb7eabeec447fef5b8df..5ffb82f96ca53c58876174711bb4b8249e62dc15 100644
--- a/extreme_fit/distribution/exp_params.py
+++ b/extreme_fit/distribution/exp_params.py
@@ -1,9 +1,18 @@
+import numpy as np
+
 from extreme_fit.distribution.abstract_params import AbstractParams
 
 
-class ExpParams(object):
-    PARAM_NAMES = [AbstractParams.SCALE]
+class ExpParams(AbstractParams):
+    PARAM_NAMES = [AbstractParams.RATE]
 
-    def __init__(self, scale: float):
-        self.scale = scale
+    def __init__(self, rate) -> None:
+        self.rate = rate
+        self.has_undefined_parameters = self.rate < 0
 
+    @property
+    def param_values(self):
+        if self.has_undefined_parameters:
+            return [np.nan for _ in range(1)]
+        else:
+            return [self.rate]
diff --git a/extreme_fit/distribution/gev/gev_params.py b/extreme_fit/distribution/gev/gev_params.py
index db84b87864f8dff871c61a1463121a06bac0043b..a116f245148bdddd6c87438144b2a1901dba955f 100644
--- a/extreme_fit/distribution/gev/gev_params.py
+++ b/extreme_fit/distribution/gev/gev_params.py
@@ -5,13 +5,14 @@ from typing import List
 from cached_property import cached_property
 from mpmath import euler, pi
 
+from extreme_fit.distribution.abstract_extreme_params import AbstractExtremeParams
 from extreme_fit.distribution.abstract_params import AbstractParams
 from extreme_fit.model.utils import r
 import numpy as np
 from scipy.special import gamma
 
 
-class GevParams(AbstractParams):
+class GevParams(AbstractExtremeParams):
     # Parameters
     PARAM_NAMES = [AbstractParams.LOC, AbstractParams.SCALE, AbstractParams.SHAPE]
     # Summary
diff --git a/extreme_fit/distribution/gpd/gpd_params.py b/extreme_fit/distribution/gpd/gpd_params.py
index c440415f39c1d8b69e5960ccb7c2ad5b32fcf421..ed6b1ac90130c94fd0ce37cae05bf26ef11001b7 100644
--- a/extreme_fit/distribution/gpd/gpd_params.py
+++ b/extreme_fit/distribution/gpd/gpd_params.py
@@ -1,8 +1,9 @@
+from extreme_fit.distribution.abstract_extreme_params import AbstractExtremeParams
 from extreme_fit.distribution.abstract_params import AbstractParams
 from extreme_fit.model.utils import r
 
 
-class GpdParams(AbstractParams):
+class GpdParams(AbstractExtremeParams):
     # TODO: understand better why the gpdfit return 2 parameters, alors que d'un autre cote d autres definitions de la distribution parlent d un parametre location
 
     # Parameters
diff --git a/extreme_fit/function/margin_function/abstract_margin_function.py b/extreme_fit/function/margin_function/abstract_margin_function.py
index df30892b7b2a4e8012e5dce0e7f5efaca29ea2de..860d25c59238e1b19865116135cf4713f1fa20bd 100644
--- a/extreme_fit/function/margin_function/abstract_margin_function.py
+++ b/extreme_fit/function/margin_function/abstract_margin_function.py
@@ -20,8 +20,9 @@ class AbstractMarginFunction(AbstractFunction):
     VISUALIZATION_RESOLUTION = 100
     VISUALIZATION_TEMPORAL_STEPS = 2
 
-    def __init__(self, coordinates: AbstractCoordinates):
+    def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams):
         super().__init__(coordinates)
+        self.params_class = params_class
         self.mask_2D = None
 
         # Visualization parameters
diff --git a/extreme_fit/function/margin_function/combined_margin_function.py b/extreme_fit/function/margin_function/combined_margin_function.py
index 08737bc16e61bd0ef81bb528c01e51e18b1c72b7..20b5e474edb1d86efaa3aa4a4744451b78cfdb56 100644
--- a/extreme_fit/function/margin_function/combined_margin_function.py
+++ b/extreme_fit/function/margin_function/combined_margin_function.py
@@ -18,7 +18,7 @@ class CombinedMarginFunction(AbstractMarginFunction):
     def get_gev_params(self, coordinate: np.ndarray) -> GevParams:
         gev_params_list = [margin_function.get_gev_params(coordinate) for margin_function in self.margin_functions]
         mean_gev_params = np.mean(np.array([gev_param.to_array() for gev_param in gev_params_list]), axis=0)
-        gev_param = GevParams(*mean_gev_params)
+        gev_param = self.params_class(*mean_gev_params)
         return gev_param
 
     @classmethod
diff --git a/extreme_fit/function/margin_function/independent_margin_function.py b/extreme_fit/function/margin_function/independent_margin_function.py
index ccb6dba83812a9265443acce3c0e90e49c72ab7a..43169d713b885f0059ffe394ceae7497e6bc27a6 100644
--- a/extreme_fit/function/margin_function/independent_margin_function.py
+++ b/extreme_fit/function/margin_function/independent_margin_function.py
@@ -14,9 +14,9 @@ class IndependentMarginFunction(AbstractMarginFunction):
         IndependentMarginFunction: each parameter of the GEV are modeled independently
     """
 
-    def __init__(self, coordinates: AbstractCoordinates):
+    def __init__(self, coordinates: AbstractCoordinates, params_class: type = GevParams):
         """Attribute 'gev_param_name_to_param_function' maps each GEV parameter to its corresponding function"""
-        super().__init__(coordinates)
+        super().__init__(coordinates, params_class)
         self.gev_param_name_to_param_function = None  # type: Union[None, Dict[str, AbstractParamFunction]]
 
     def get_gev_params(self, coordinate: np.ndarray, is_transformed: bool = True) -> GevParams:
@@ -24,13 +24,11 @@ class IndependentMarginFunction(AbstractMarginFunction):
         # Since all the coordinates are usually transformed by default
         # then we assume that the input coordinate are transformed by default
         assert self.gev_param_name_to_param_function is not None
-        assert len(self.gev_param_name_to_param_function) == 3
+        assert len(self.gev_param_name_to_param_function) == len(self.params_class.PARAM_NAMES)
         transformed_coordinate = coordinate if is_transformed else self.transform(coordinate)
-        gev_params = {}
-        for gev_param_name in GevParams.PARAM_NAMES:
-            param_function = self.gev_param_name_to_param_function[gev_param_name]
-            gev_params[gev_param_name] = param_function.get_param_value(transformed_coordinate)
-        return GevParams.from_dict(gev_params)
+        params = {param_name: param_function.get_param_value(transformed_coordinate)
+                  for param_name, param_function in self.gev_param_name_to_param_function.items()}
+        return self.params_class.from_dict(params)
 
 
 
diff --git a/extreme_fit/function/margin_function/linear_margin_function.py b/extreme_fit/function/margin_function/linear_margin_function.py
index d89a7a59c3275b90271e1168fb269e11c0628543..3cdc1f8423b6dfdd932ee46ac481a477af1c9c13 100644
--- a/extreme_fit/function/margin_function/linear_margin_function.py
+++ b/extreme_fit/function/margin_function/linear_margin_function.py
@@ -28,9 +28,11 @@ class LinearMarginFunction(ParametricMarginFunction):
     COEF_CLASS = LinearCoef
 
     def __init__(self, coordinates: AbstractCoordinates, gev_param_name_to_dims: Dict[str, List[int]],
-                 gev_param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None):
+                 gev_param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
+                 params_class: type = GevParams):
         self.gev_param_name_to_coef = None  # type: Union[None, Dict[str, LinearCoef]]
-        super().__init__(coordinates, gev_param_name_to_dims, gev_param_name_to_coef, starting_point)
+        super().__init__(coordinates, gev_param_name_to_dims, gev_param_name_to_coef, starting_point,
+                         params_class)
 
     def load_specific_param_function(self, gev_param_name) -> AbstractParamFunction:
         return LinearParamFunction(dims=self.gev_param_name_to_dims[gev_param_name],
diff --git a/extreme_fit/function/margin_function/parametric_margin_function.py b/extreme_fit/function/margin_function/parametric_margin_function.py
index 5703721665ef34f1613346383c1bec4751336894..60a1bbb880cbd2ed28127320a5aae1731753255f 100644
--- a/extreme_fit/function/margin_function/parametric_margin_function.py
+++ b/extreme_fit/function/margin_function/parametric_margin_function.py
@@ -31,10 +31,11 @@ class ParametricMarginFunction(IndependentMarginFunction):
     COEF_CLASS = None
 
     def __init__(self, coordinates: AbstractCoordinates, gev_param_name_to_dims: Dict[str, List[int]],
-                 gev_param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None):
+                 gev_param_name_to_coef: Dict[str, AbstractCoef], starting_point: Union[None, int] = None,
+                 params_class: type = GevParams):
         # Starting point for the trend is the same for all the parameters
         self.starting_point = starting_point
-        super().__init__(coordinates)
+        super().__init__(coordinates, params_class)
         self.gev_param_name_to_dims = gev_param_name_to_dims  # type: Dict[str, List[int]]
 
         # Check the dimension are well-defined with respect to the coordinates
@@ -48,7 +49,7 @@ class ParametricMarginFunction(IndependentMarginFunction):
         # Build gev_parameter_to_param_function dictionary
         self.gev_param_name_to_param_function = {}  # type: Dict[str, AbstractParamFunction]
         # Map each gev_param_name to its corresponding param_function
-        for gev_param_name in GevParams.PARAM_NAMES:
+        for gev_param_name in self.params_class.PARAM_NAMES:
             # By default, if dims are not specified, a constantParamFunction is chosen
             if self.gev_param_name_to_dims.get(gev_param_name) is None:
                 param_function = ConstantParamFunction(constant=self.gev_param_name_to_coef[gev_param_name].intercept)
diff --git a/extreme_fit/model/margin_model/abstract_margin_model.py b/extreme_fit/model/margin_model/abstract_margin_model.py
index b4ac6918fa1496e3ae751586a7666697d8b35702..79638873091fc7bb7db1266dcef37e82f4c60de7 100644
--- a/extreme_fit/model/margin_model/abstract_margin_model.py
+++ b/extreme_fit/model/margin_model/abstract_margin_model.py
@@ -20,12 +20,14 @@ class AbstractMarginModel(AbstractModel, ABC):
     """
 
     def __init__(self, coordinates: AbstractCoordinates, use_start_value=False,
-                 params_start_fit=None, params_sample=None):
+                 params_start_fit=None, params_sample=None,
+                 params_class=GevParams):
         super().__init__(use_start_value, params_start_fit, params_sample)
         assert isinstance(coordinates, AbstractCoordinates), type(coordinates)
         self.coordinates = coordinates
         self.margin_function_sample = None  # type: AbstractMarginFunction
         self.margin_function_start_fit = None  # type: AbstractMarginFunction
+        self.params_class = params_class
         self.load_margin_functions()
 
     def load_margin_functions(self):
@@ -34,9 +36,9 @@ class AbstractMarginModel(AbstractModel, ABC):
     def default_load_margin_functions(self, margin_function_class):
         # todo: check it i could remove these attributes
         self.margin_function_sample = margin_function_class(coordinates=self.coordinates,
-                                                            default_params=GevParams.from_dict(self.params_sample))
+                                                            default_params=self.params_class.from_dict(self.params_sample))
         self.margin_function_start_fit = margin_function_class(coordinates=self.coordinates,
-                                                               default_params=GevParams.from_dict(
+                                                               default_params=self.params_class.from_dict(
                                                                    self.params_start_fit))
 
     # Conversion class methods
diff --git a/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py b/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py
index e5e2ee45685f7352a78784d145e2b51c74be9d61..69f6531e24ff6132d9f38624e1d9189a2821aa93 100644
--- a/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py
+++ b/extreme_fit/model/margin_model/linear_margin_model/abstract_temporal_linear_margin_model.py
@@ -29,8 +29,10 @@ class AbstractTemporalLinearMarginModel(LinearMarginModel):
                  fit_method=TemporalMarginFitMethod.is_mev_gev_fit,
                  nb_iterations_for_bayesian_fit=5000,
                  params_start_fit_bayesian=None,
-                 type_for_MLE="GEV"):
-        super().__init__(coordinates, use_start_value, params_start_fit, params_sample, starting_point)
+                 type_for_MLE="GEV",
+                 params_class=GevParams):
+        super().__init__(coordinates, use_start_value, params_start_fit, params_sample, starting_point,
+                         params_class)
         self.type_for_mle = type_for_MLE
         self.params_start_fit_bayesian = params_start_fit_bayesian
         self.nb_iterations_for_bayesian_fit = nb_iterations_for_bayesian_fit
diff --git a/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py b/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py
index 08ac9900978dcd4ff333dfeb2ddd8515c05ec8ec..422bb806ea57f8a83e60cf32d98cf87d35c8898a 100644
--- a/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py
+++ b/extreme_fit/model/margin_model/linear_margin_model/linear_margin_model.py
@@ -7,12 +7,12 @@ from extreme_fit.distribution.gev.gev_params import GevParams
 class LinearMarginModel(ParametricMarginModel):
 
     @classmethod
-    def from_coef_list(cls, coordinates, gev_param_name_to_coef_list, **kwargs):
+    def from_coef_list(cls, coordinates, gev_param_name_to_coef_list, params_class=GevParams, **kwargs):
         params = {}
         for param_name, coef_list in gev_param_name_to_coef_list.items():
             for idx, coef in enumerate(coef_list, -1):
                 params[(param_name, idx)] = coef
-        return cls(coordinates, params_sample=params, params_start_fit=params, **kwargs)
+        return cls(coordinates, params_sample=params, params_start_fit=params, params_class=params_class, **kwargs)
 
     def load_margin_functions(self, gev_param_name_to_dims=None):
         assert gev_param_name_to_dims is not None, 'LinearMarginModel cannot be used for sampling/fitting \n' \
@@ -27,34 +27,37 @@ class LinearMarginModel(ParametricMarginModel):
         self.margin_function_sample = LinearMarginFunction(coordinates=self.coordinates,
                                                            gev_param_name_to_coef=coef_sample,
                                                            gev_param_name_to_dims=gev_param_name_to_dims,
-                                                           starting_point=self.starting_point)
+                                                           starting_point=self.starting_point,
+                                                           params_class=self.params_class)
 
         # Load start fit coef
         coef_start_fit = self.gev_param_name_to_linear_coef(param_name_and_dim_to_coef=self.params_start_fit)
         self.margin_function_start_fit = LinearMarginFunction(coordinates=self.coordinates,
                                                               gev_param_name_to_coef=coef_start_fit,
                                                               gev_param_name_to_dims=gev_param_name_to_dims,
-                                                              starting_point=self.starting_point)
+                                                              starting_point=self.starting_point,
+                                                              params_class=self.params_class)
 
     @property
     def default_param_name_and_dim_to_coef(self) -> dict:
         default_intercept = 1
         default_slope = 0.01
         gev_param_name_and_dim_to_coef = {}
-        for gev_param_name in GevParams.PARAM_NAMES:
-            gev_param_name_and_dim_to_coef[(gev_param_name, -1)] = default_intercept
+        for param_name in self.params_class.PARAM_NAMES:
+            gev_param_name_and_dim_to_coef[(param_name, -1)] = default_intercept
             for dim in self.coordinates.coordinates_dims:
-                gev_param_name_and_dim_to_coef[(gev_param_name, dim)] = default_slope
+                gev_param_name_and_dim_to_coef[(param_name, dim)] = default_slope
         return gev_param_name_and_dim_to_coef
 
     def gev_param_name_to_linear_coef(self, param_name_and_dim_to_coef):
-        gev_param_name_to_linear_coef = {}
-        for gev_param_name in GevParams.PARAM_NAMES:
-            idx_to_coef = {idx: param_name_and_dim_to_coef[(gev_param_name, idx)] for idx in
+        param_name_to_linear_coef = {}
+        param_names = list(set([e[0] for e in param_name_and_dim_to_coef.keys()]))
+        for param_name in param_names:
+            idx_to_coef = {idx: param_name_and_dim_to_coef[(param_name, idx)] for idx in
                            [-1] + self.coordinates.coordinates_dims}
-            linear_coef = LinearCoef(gev_param_name=gev_param_name, idx_to_coef=idx_to_coef)
-            gev_param_name_to_linear_coef[gev_param_name] = linear_coef
-        return gev_param_name_to_linear_coef
+            linear_coef = LinearCoef(gev_param_name=param_name, idx_to_coef=idx_to_coef)
+            param_name_to_linear_coef[param_name] = linear_coef
+        return param_name_to_linear_coef
 
 
 class ConstantMarginModel(LinearMarginModel):
diff --git a/extreme_fit/model/margin_model/parametric_margin_model.py b/extreme_fit/model/margin_model/parametric_margin_model.py
index 61279f4aad31c70c05b68695a698c2f16b1f20b7..724366c45e5cad1fbdf21abda1256b76be33d234 100644
--- a/extreme_fit/model/margin_model/parametric_margin_model.py
+++ b/extreme_fit/model/margin_model/parametric_margin_model.py
@@ -3,6 +3,7 @@ from abc import ABC
 import numpy as np
 import pandas as pd
 
+from extreme_fit.distribution.gev.gev_params import GevParams
 from extreme_fit.function.margin_function.parametric_margin_function import \
     ParametricMarginFunction
 from extreme_fit.model.result_from_model_fit.result_from_spatial_extreme import ResultFromSpatialExtreme
@@ -15,14 +16,14 @@ from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoo
 class ParametricMarginModel(AbstractMarginModel, ABC):
 
     def __init__(self, coordinates: AbstractCoordinates, use_start_value=False, params_start_fit=None,
-                 params_sample=None, starting_point=None):
+                 params_sample=None, starting_point=None, params_class=GevParams):
         """
         :param starting_point: starting coordinate for the temporal trend
         """
         self.starting_point = starting_point
         self.margin_function_sample = None  # type: ParametricMarginFunction
         self.margin_function_start_fit = None  # type: ParametricMarginFunction
-        super().__init__(coordinates, use_start_value, params_start_fit, params_sample)
+        super().__init__(coordinates, use_start_value, params_start_fit, params_sample, params_class)
 
     def fitmargin_from_maxima_gev(self, data: np.ndarray, df_coordinates_spat: pd.DataFrame,
                                   df_coordinates_temp: pd.DataFrame) -> ResultFromSpatialExtreme:
diff --git a/spatio_temporal_dataset/spatio_temporal_observations/daily_observations.py b/spatio_temporal_dataset/spatio_temporal_observations/daily_observations.py
index 9483f3b3d332fffea090b2f6e47e331e3e237391..b0044f334026c00892ba7e0e0b5843cd49684e23 100644
--- a/spatio_temporal_dataset/spatio_temporal_observations/daily_observations.py
+++ b/spatio_temporal_dataset/spatio_temporal_observations/daily_observations.py
@@ -21,6 +21,7 @@ class DailyExp(AbstractSpatioTemporalObservations):
     def from_sampling(cls, nb_obs: int, coordinates: AbstractCoordinates,
                       margin_model: AbstractMarginModel):
         exponential_values = margin_model.rmargin_from_nb_obs(nb_obs=nb_obs,
-                                                              coordinates_values=coordinates.coordinates_values())
+                                                              coordinates_values=coordinates.coordinates_values(),
+                                                              sample_r_function='rexp')
         df_exponential_values = pd.DataFrame(data=exponential_values, index=coordinates.index)
         return cls(df_maxima_gev=df_exponential_values)
diff --git a/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py b/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py
index 716a5856b3080fef594328df3d28319faedae3b6..4786e54c1764354d59b7704d2e19dfc8a4537d91 100644
--- a/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py
+++ b/test/test_spatio_temporal_dataset/test_spatio_temporal_observations.py
@@ -4,6 +4,7 @@ import numpy as np
 import pandas as pd
 
 from extreme_fit.distribution.abstract_params import AbstractParams
+from extreme_fit.distribution.exp_params import ExpParams
 from extreme_fit.model.margin_model.linear_margin_model.temporal_linear_margin_models import StationaryTemporalModel
 from extreme_fit.model.utils import set_seed_for_test
 from spatio_temporal_dataset.coordinates.temporal_coordinates.generated_temporal_coordinates import \
@@ -33,18 +34,24 @@ class TestDailyObservations(unittest.TestCase):
         set_seed_for_test(seed=42)
         self.coordinates = ConsecutiveTemporalCoordinates.from_nb_temporal_steps(nb_temporal_steps=10)
         gev_param_name_to_coef_list = {
-            AbstractParams.SCALE: [1],
+            AbstractParams.RATE: [1],
         }
-        self.margin_model = StationaryTemporalModel.from_coef_list(self.coordinates, gev_param_name_to_coef_list)
+        self.margin_model = StationaryTemporalModel.from_coef_list(self.coordinates, gev_param_name_to_coef_list,
+                                                                   params_class=ExpParams)
+
+    def test_instance_exp_params(self):
+        last_coordinate = self.coordinates.coordinates_values()[-1]
+        params = self.margin_model.margin_function_sample.get_gev_params(last_coordinate)
+        self.assertIsInstance(params, ExpParams)
 
     def test_exponential_observations(self):
         obs = DailyExp.from_sampling(nb_obs=1, coordinates=self.coordinates,
                                      margin_model=self.margin_model)
-        self.assertAlmostEqual(obs.df_maxima_gev.mean()[0], 4.692385276235156)
+        self.assertAlmostEqual(obs.df_maxima_gev.mean()[0], 0.574829320536985)
 
     def test_annual_maxima_observations_from_daily_observations(self):
         obs = DailyExpAnnualMaxima.from_sampling(1, self.coordinates, self.margin_model)
-        self.assertAlmostEqual(obs.df_maxima_gev.mean()[0], 1183.8468374768636)
+        self.assertAlmostEqual(obs.df_maxima_gev.mean()[0], 6.523848726794694)
 
 
 if __name__ == '__main__':