From 9de91e03d5da204c2847e7c409595cb15df6aec4 Mon Sep 17 00:00:00 2001
From: Le Roux Erwan <erwan.le-roux@irstea.fr>
Date: Tue, 2 Mar 2021 15:51:03 +0100
Subject: [PATCH] [projection swe] add non-stationary weight computer. refactor
 code for the weights.

---
 .../adamont_data/adamont_scenario.py          |   4 +
 .../visualizer_for_projection_ensemble.py     |   7 ++
 .../projected_swe/abstract_weight_computer.py |  94 +++++++++++++++
 .../projected_swe/main_weight_computation.py  | 112 ++++--------------
 .../non_stationary_weight_computer.py         |  41 +++++++
 projects/projected_swe/utils.py               |  73 ++++++++++++
 6 files changed, 242 insertions(+), 89 deletions(-)
 create mode 100644 projects/projected_swe/abstract_weight_computer.py
 create mode 100644 projects/projected_swe/non_stationary_weight_computer.py
 create mode 100644 projects/projected_swe/utils.py

diff --git a/extreme_data/meteo_france_data/adamont_data/adamont_scenario.py b/extreme_data/meteo_france_data/adamont_data/adamont_scenario.py
index e9003913..1cbdead3 100644
--- a/extreme_data/meteo_france_data/adamont_data/adamont_scenario.py
+++ b/extreme_data/meteo_france_data/adamont_data/adamont_scenario.py
@@ -139,3 +139,7 @@ def scenario_to_real_scenarios(adamont_scenario):
 
 def gcm_rcm_couple_to_str(gcm_rcm_couple):
     return SEPARATOR_STR.join(gcm_rcm_couple)
+
+
+def str_to_gcm_rcm_couple(str):
+    return tuple(str.split(SEPARATOR_STR))
diff --git a/extreme_trend/ensemble_fit/visualizer_for_projection_ensemble.py b/extreme_trend/ensemble_fit/visualizer_for_projection_ensemble.py
index 9d441551..4dfb2e52 100644
--- a/extreme_trend/ensemble_fit/visualizer_for_projection_ensemble.py
+++ b/extreme_trend/ensemble_fit/visualizer_for_projection_ensemble.py
@@ -26,10 +26,17 @@ class VisualizerForProjectionEnsemble(object):
                  gcm_to_year_min_and_year_max=None,
                  ):
         self.altitudes_list = altitudes_list
+        self.scenario = scenario
         self.gcm_rcm_couples = gcm_rcm_couples
         self.massif_names = massif_names
         self.ensemble_fit_classes = ensemble_fit_classes
 
+        # Some checks
+        if gcm_to_year_min_and_year_max is not None:
+            for gcm, years in gcm_to_year_min_and_year_max.items():
+                assert isinstance(gcm, str), gcm
+                assert len(years) == 2, years
+
         # Load all studies
         altitude_class_to_gcm_couple_to_studies = OrderedDict()
         for altitudes in altitudes_list:
diff --git a/projects/projected_swe/abstract_weight_computer.py b/projects/projected_swe/abstract_weight_computer.py
new file mode 100644
index 00000000..dbff2a20
--- /dev/null
+++ b/projects/projected_swe/abstract_weight_computer.py
@@ -0,0 +1,94 @@
+from collections import OrderedDict
+import pandas as pd
+
+import numpy as np
+from scipy.special import softmax
+
+from extreme_data.meteo_france_data.adamont_data.adamont_scenario import gcm_rcm_couple_to_str
+from extreme_data.meteo_france_data.scm_models_data.altitudes_studies import AltitudesStudies
+from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import compute_nllh
+from extreme_trend.ensemble_fit.independent_ensemble_fit.independent_ensemble_fit import IndependentEnsembleFit
+from extreme_trend.ensemble_fit.visualizer_for_projection_ensemble import VisualizerForProjectionEnsemble
+from projects.projected_swe.utils import WEIGHT_COLUMN_NAME, get_csv_filepath, save_to_filepath
+from spatio_temporal_dataset.coordinates.temporal_coordinates.abstract_temporal_covariate_for_fit import \
+    TimeTemporalCovariate
+from collections import OrderedDict
+
+import numpy as np
+from scipy.special import softmax
+
+from extreme_data.meteo_france_data.scm_models_data.altitudes_studies import AltitudesStudies
+from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import compute_nllh
+from extreme_trend.ensemble_fit.independent_ensemble_fit.independent_ensemble_fit import IndependentEnsembleFit
+from extreme_trend.ensemble_fit.visualizer_for_projection_ensemble import VisualizerForProjectionEnsemble
+from spatio_temporal_dataset.coordinates.temporal_coordinates.abstract_temporal_covariate_for_fit import \
+    TimeTemporalCovariate
+
+
+class AbstractWeightComputer(object):
+
+    def __init__(self, visualizer: VisualizerForProjectionEnsemble, scm_study_class, year_min, year_max):
+        self.scm_study_class = scm_study_class
+        self.year_max = year_max
+        self.year_min = year_min
+        self.visualizer = visualizer
+
+    def compute_weights_and_save_them(self):
+        column_names = [WEIGHT_COLUMN_NAME] + self.visualizer.gcm_rcm_couples
+        df = pd.DataFrame(index=self.visualizer.gcm_rcm_couples, columns=column_names)
+        for i, column_name in enumerate(column_names):
+            if i == 0:
+                gcm_rcm_couples_subset = self.visualizer.gcm_rcm_couples
+                gcm_rcm_couple_missing = None
+            else:
+                index_missing = i - 1
+                gcm_rcm_couple_missing = self.visualizer.gcm_rcm_couples[index_missing]
+                gcm_rcm_couples_subset = self.visualizer.gcm_rcm_couples[:]
+                gcm_rcm_couples_subset.remove(gcm_rcm_couple_missing)
+            # Compute weights
+            gcm_rcm_couple_to_weight = self.compute_weight(gcm_rcm_couples_subset, gcm_rcm_couple_missing)
+            column_values = [gcm_rcm_couple_to_weight[c] for c in df.index]
+            df[column_name] = column_values
+
+        # Save csv
+        save_to_filepath(df, self.visualizer.gcm_rcm_couples, self.visualizer.altitudes_list,
+                         self.year_min, self.year_max,
+                         self.visualizer.scenario)
+
+    def compute_weight(self, gcm_rcm_couples_subset, gcm_rcm_couple_missing):
+        # Initial the dictionary
+        gcm_rcm_couple_to_nllh = OrderedDict()
+        for gcm_rcm_couple in gcm_rcm_couples_subset:
+            gcm_rcm_couple_to_nllh[gcm_rcm_couple] = 0
+        for ensemble_fit in self.visualizer.ensemble_fits(ensemble_class=IndependentEnsembleFit):
+            # Load the AltitudeStudies
+            if gcm_rcm_couple_missing is None:
+                reference_studies = AltitudesStudies(self.scm_study_class, ensemble_fit.altitudes,
+                                                     year_min=self.year_min,
+                                                     year_max=self.year_max)
+            else:
+                reference_studies = ensemble_fit.gcm_rcm_couple_to_visualizer[gcm_rcm_couple_missing].studies
+            # Computer the nllh for each "station", i.e. each altitude and massif_name
+            for altitude, reference_study in reference_studies.altitude_to_study.items():
+                for massif_name, maxima in reference_study.massif_name_to_annual_maxima.items():
+                    assert all([self.year_min <= year <= self.year_max for year in reference_study.ordered_years])
+                    gcm_rcm_couple_to_local_nllh = self.compute_gcm_rcm_couple_to_local_nllh(ensemble_fit,
+                                                                                             gcm_rcm_couples_subset,
+                                                                                             massif_name,
+                                                                                             maxima,
+                                                                                             altitude,
+                                                                                             reference_study)
+                    if gcm_rcm_couple_to_local_nllh is not None:
+                        for c, nllh in gcm_rcm_couple_to_local_nllh.items():
+                            gcm_rcm_couple_to_nllh[c] += nllh
+        # Compute weights
+        weights = softmax(-np.array(list(gcm_rcm_couple_to_nllh.values())))
+        weights = [w[0] if isinstance(w, np.ndarray) else w for w in weights]
+        gcm_rcm_couple_to_weight = dict(zip(gcm_rcm_couples_subset, weights))
+        # Add missing weight
+        gcm_rcm_couple_to_weight[gcm_rcm_couple_missing] = np.nan
+        return gcm_rcm_couple_to_weight
+
+    def compute_gcm_rcm_couple_to_local_nllh(self, ensemble_fit, gcm_rcm_couples_subset, massif_name, maxima,
+                                             altitude, reference_study):
+        raise NotImplementedError
diff --git a/projects/projected_swe/main_weight_computation.py b/projects/projected_swe/main_weight_computation.py
index f43222ec..579346bf 100644
--- a/projects/projected_swe/main_weight_computation.py
+++ b/projects/projected_swe/main_weight_computation.py
@@ -11,97 +11,28 @@ from scipy.special import softmax
 
 from extreme_data.meteo_france_data.adamont_data.adamont.adamont_safran import AdamontSnowfall
 from extreme_data.meteo_france_data.adamont_data.adamont_scenario import AdamontScenario, get_gcm_rcm_couples, \
-    gcm_rcm_couple_to_str, SEPARATOR_STR
+    gcm_rcm_couple_to_str, SEPARATOR_STR, scenario_to_str
 from extreme_data.meteo_france_data.scm_models_data.altitudes_studies import AltitudesStudies
 from extreme_data.meteo_france_data.scm_models_data.safran.safran import SafranSnowfall1Day
 from extreme_data.meteo_france_data.scm_models_data.utils import Season
 from extreme_data.utils import DATA_PATH
 from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import compute_nllh
+from extreme_fit.model.margin_model.polynomial_margin_model.gev_altitudinal_models import StationaryAltitudinal
+from extreme_fit.model.margin_model.polynomial_margin_model.models_based_on_pariwise_analysis.gev_with_linear_shape_wrt_altitude import \
+    AltitudinalShapeLinearTimeStationary
 from extreme_fit.model.margin_model.polynomial_margin_model.utils import \
     ALTITUDINAL_GEV_MODELS_BASED_ON_POINTWISE_ANALYSIS
 from extreme_trend.ensemble_fit.independent_ensemble_fit.independent_ensemble_fit import IndependentEnsembleFit
 from extreme_trend.ensemble_fit.visualizer_for_projection_ensemble import VisualizerForProjectionEnsemble
 from extreme_trend.one_fold_fit.altitude_group import altitudes_for_groups
+from projects.projected_swe.abstract_weight_computer import AbstractWeightComputer
+from projects.projected_swe.non_stationary_weight_computer import NllhWeightComputer
+from projects.projected_swe.utils import load_gcm_rcm_couple_to_weight
 from spatio_temporal_dataset.coordinates.temporal_coordinates.abstract_temporal_covariate_for_fit import \
     TimeTemporalCovariate
 from spatio_temporal_dataset.coordinates.temporal_coordinates.temperature_covariate import \
     AnomalyTemperatureWithSplineTemporalCovariate
 
-WEIGHT_COLUMN_NAME = "weight"
-
-WEIGHT_FOLDER = "ensemble weight"
-
-
-def get_csv_filepath(gcm_rcm_couples, altitudes_list, year_min, year_max):
-    nb_gcm_rcm_couples = len(gcm_rcm_couples)
-    nb_altitudes_list = len(altitudes_list)
-    ensemble_folder_path = op.join(DATA_PATH, WEIGHT_FOLDER)
-    if not op.exists(ensemble_folder_path):
-        os.makedirs(ensemble_folder_path, exist_ok=True)
-    csv_filename = "weights_{}_{}_{}_{}.csv".format(nb_gcm_rcm_couples, nb_altitudes_list, year_min, year_max)
-    weight_csv_filepath = op.join(ensemble_folder_path, csv_filename)
-    return weight_csv_filepath
-
-
-def load_gcm_rcm_couple_to_weight(gcm_rcm_couples, altitudes_list, year_min, year_max):
-    filepath = get_csv_filepath(gcm_rcm_couples, altitudes_list, year_min, year_max)
-    df = pd.read_csv(filepath, index_col=0)
-    d = df[WEIGHT_COLUMN_NAME].to_dict()
-    d = {tuple(k.split(SEPARATOR_STR)): v for k, v in d.items()}
-    return d
-
-
-def save_gcm_rcm_couple_to_weight(visualizer: VisualizerForProjectionEnsemble, scm_study_class,
-                                  year_min, year_max):
-    gcm_rcm_couple_to_nllh_sum = OrderedDict()
-    for c in visualizer.gcm_rcm_couples:
-        gcm_rcm_couple_to_nllh_sum[c] = 0
-    for ensemble_fit in visualizer.ensemble_fits(ensemble_class=IndependentEnsembleFit):
-        # Load the AltitudeStudies
-        scm_studies = AltitudesStudies(scm_study_class, ensemble_fit.altitudes, year_min=year_min,year_max=year_max)
-        for altitude, study in scm_studies.altitude_to_study.items():
-            for massif_name, maxima in study.massif_name_to_annual_maxima.items():
-                # Check that all the gcm_rcm_couple have a model for this massif_name
-                if condition_to_compute_nllh(ensemble_fit, massif_name, visualizer):
-                    print(ensemble_fit.altitudes, massif_name)
-                    coordinates = [np.array([altitude, year]) for year in study.ordered_years]
-                    nllh_list = []
-                    for gcm_rcm_couple in visualizer.gcm_rcm_couples:
-                        best_function_from_fit = get_function_from_fit(ensemble_fit, massif_name, gcm_rcm_couple)
-                        # It is normal that it could crash, because some models where fitted with data smaller than
-                        # the data used to compute the nllh
-                        nllh = compute_nllh(coordinates, maxima, best_function_from_fit,
-                                            maximum_from_obs=False, assertion_for_inf=False)
-                        nllh_list.append(nllh)
-                    if all([not np.isinf(nllh) for nllh in nllh_list]):
-                        for nllh, gcm_rcm_couple in zip(nllh_list, visualizer.gcm_rcm_couples):
-                            gcm_rcm_couple_to_nllh_sum[gcm_rcm_couple] += nllh
-
-    # Compute the final weight
-    print(gcm_rcm_couple_to_nllh_sum)
-    llh_list = -np.array(list(gcm_rcm_couple_to_nllh_sum.values()))
-    weights = softmax(llh_list)
-    couple_names = [gcm_rcm_couple_to_str(c) for c in visualizer.gcm_rcm_couples]
-    gcm_rcm_couple_to_normalized_weights = dict(zip(couple_names, weights))
-    print(gcm_rcm_couple_to_normalized_weights)
-    # Save to csv
-    filepath = get_csv_filepath(visualizer.gcm_rcm_couples, visualizer.altitudes_list, year_min, year_max)
-    df = pd.DataFrame({WEIGHT_COLUMN_NAME: weights}, index=couple_names)
-    print(df)
-    df.to_csv(filepath)
-
-
-def condition_to_compute_nllh(ensemble_fit, massif_name, visualizer):
-    return all(
-        [massif_name in ensemble_fit.gcm_rcm_couple_to_visualizer[c].massif_name_to_one_fold_fit for c in
-         visualizer.gcm_rcm_couples])
-
-
-def get_function_from_fit(ensemble_fit, massif_name, gcm_rcm_couple):
-    visualizer = ensemble_fit.gcm_rcm_couple_to_visualizer[gcm_rcm_couple]
-    one_fold_fit = visualizer.massif_name_to_one_fold_fit[massif_name]
-    return one_fold_fit.best_function_from_fit
-
 
 def main_weight_computation():
     start = time.time()
@@ -111,23 +42,24 @@ def main_weight_computation():
     }[study_class]
     ensemble_fit_classes = [IndependentEnsembleFit]
     temporal_covariate_for_fit = TimeTemporalCovariate
-    model_classes = ALTITUDINAL_GEV_MODELS_BASED_ON_POINTWISE_ANALYSIS
+    # model_classes = ALTITUDINAL_GEV_MODELS_BASED_ON_POINTWISE_ANALYSIS
+    model_classes = [StationaryAltitudinal, AltitudinalShapeLinearTimeStationary]
     remove_physically_implausible_models = True
-    scenario = AdamontScenario.histo
+    scenario = AdamontScenario.rcp85_extended
     gcm_rcm_couples = get_gcm_rcm_couples(scenario)
     year_min = 1982
-    year_max = 2005
-    # todo: maybe i should also limit the years for the fit of the model for each ensemble ?
+    year_max = 2019
+    weight_computer_class = NllhWeightComputer
 
-    fast = None
+    fast = True
     if fast is None:
         massif_names = None
         altitudes_list = altitudes_for_groups[2:3]
-        gcm_rcm_couples = gcm_rcm_couples[:10]
+        gcm_rcm_couples = gcm_rcm_couples[:]
     elif fast:
-        massif_names = ['Pelvoux'][:1]
-        altitudes_list = altitudes_for_groups[2:3]
-        gcm_rcm_couples = gcm_rcm_couples[:2]
+        massif_names = ['Vanoise', 'Pelvoux', 'Chartreuse'][:1]
+        altitudes_list = altitudes_for_groups[1:2]
+        gcm_rcm_couples = gcm_rcm_couples[:3]
     else:
         massif_names = None
         altitudes_list = altitudes_for_groups[:]
@@ -139,9 +71,11 @@ def main_weight_computation():
         massif_names=massif_names,
         temporal_covariate_for_fit=temporal_covariate_for_fit,
         remove_physically_implausible_models=remove_physically_implausible_models,
-        gcm_to_year_min_and_year_max=None,
+        gcm_to_year_min_and_year_max={c[0]: (year_min, year_max) for c in gcm_rcm_couples},
     )
-    save_gcm_rcm_couple_to_weight(visualizer, scm_study_class, year_min, year_max)
+
+    weight_computer = weight_computer_class(visualizer, scm_study_class, year_min, year_max) # type:AbstractWeightComputer
+    weight_computer.compute_weights_and_save_them()
 
     end = time.time()
     duration = str(datetime.timedelta(seconds=end - start))
@@ -150,5 +84,5 @@ def main_weight_computation():
 
 if __name__ == '__main__':
     main_weight_computation()
-    # d = load_gcm_rcm_couple_to_weight(['sd', 'sdf'], [23])
-    # print(d)
+    d = load_gcm_rcm_couple_to_weight(['sd', 'sdf'], [23], 1982, 2019, AdamontScenario.rcp85_extended)
+    print(d)
diff --git a/projects/projected_swe/non_stationary_weight_computer.py b/projects/projected_swe/non_stationary_weight_computer.py
new file mode 100644
index 00000000..c7ffaec6
--- /dev/null
+++ b/projects/projected_swe/non_stationary_weight_computer.py
@@ -0,0 +1,41 @@
+import numpy as np
+
+from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import compute_nllh
+from projects.projected_swe.abstract_weight_computer import AbstractWeightComputer
+from spatio_temporal_dataset.coordinates.temporal_coordinates.abstract_temporal_covariate_for_fit import \
+    TimeTemporalCovariate
+
+
+class NllhWeightComputer(AbstractWeightComputer):
+
+    def compute_gcm_rcm_couple_to_local_nllh(self, ensemble_fit, gcm_rcm_couples_subset, massif_name, maxima,
+                                             altitude, reference_study):
+        assert ensemble_fit.temporal_covariate_for_fit is TimeTemporalCovariate, \
+            'for temperature covariate you should transform the coordinates'
+        gcm_rcm_couple_to_local_nllh = {}
+        # Check that all the gcm_rcm_couple have a model for this massif_name
+        if self.condition_to_compute_nllh(ensemble_fit, massif_name, self.visualizer):
+            print(ensemble_fit.altitudes, massif_name)
+            coordinates = [np.array([altitude, year]) for year in reference_study.ordered_years]
+            nllh_list = []
+            for gcm_rcm_couple in gcm_rcm_couples_subset:
+                best_function_from_fit = self.get_function_from_fit(ensemble_fit, massif_name, gcm_rcm_couple)
+                # It is normal that it could crash, because some models where fitted with data smaller than
+                # the data used to compute the nllh
+
+                nllh = compute_nllh(coordinates, maxima, best_function_from_fit,
+                                    maximum_from_obs=False, assertion_for_inf=False)
+                nllh_list.append(nllh)
+
+            if all([not np.isinf(nllh) for nllh in nllh_list]):
+                return dict(zip(gcm_rcm_couples_subset, nllh_list))
+
+    def condition_to_compute_nllh(self, ensemble_fit, massif_name, visualizer):
+        return all(
+            [massif_name in ensemble_fit.gcm_rcm_couple_to_visualizer[c].massif_name_to_one_fold_fit for c in
+             visualizer.gcm_rcm_couples])
+
+    def get_function_from_fit(self, ensemble_fit, massif_name, gcm_rcm_couple):
+        visualizer = ensemble_fit.gcm_rcm_couple_to_visualizer[gcm_rcm_couple]
+        one_fold_fit = visualizer.massif_name_to_one_fold_fit[massif_name]
+        return one_fold_fit.best_function_from_fit
diff --git a/projects/projected_swe/utils.py b/projects/projected_swe/utils.py
new file mode 100644
index 00000000..2c04c17d
--- /dev/null
+++ b/projects/projected_swe/utils.py
@@ -0,0 +1,73 @@
+import os
+
+from collections import OrderedDict
+
+import pandas as pd
+import os.path as op
+import datetime
+import time
+import numpy as np
+from scipy.special import softmax
+
+from extreme_data.meteo_france_data.adamont_data.adamont.adamont_safran import AdamontSnowfall
+from extreme_data.meteo_france_data.adamont_data.adamont_scenario import AdamontScenario, get_gcm_rcm_couples, \
+    gcm_rcm_couple_to_str, SEPARATOR_STR, scenario_to_str, str_to_gcm_rcm_couple
+from extreme_data.meteo_france_data.scm_models_data.altitudes_studies import AltitudesStudies
+from extreme_data.meteo_france_data.scm_models_data.safran.safran import SafranSnowfall1Day
+from extreme_data.meteo_france_data.scm_models_data.utils import Season
+from extreme_data.utils import DATA_PATH
+from extreme_fit.estimator.margin_estimator.abstract_margin_estimator import compute_nllh
+from extreme_fit.model.margin_model.polynomial_margin_model.gev_altitudinal_models import StationaryAltitudinal
+from extreme_fit.model.margin_model.polynomial_margin_model.utils import \
+    ALTITUDINAL_GEV_MODELS_BASED_ON_POINTWISE_ANALYSIS
+from extreme_trend.ensemble_fit.independent_ensemble_fit.independent_ensemble_fit import IndependentEnsembleFit
+from extreme_trend.ensemble_fit.visualizer_for_projection_ensemble import VisualizerForProjectionEnsemble
+from extreme_trend.one_fold_fit.altitude_group import altitudes_for_groups
+from spatio_temporal_dataset.coordinates.temporal_coordinates.abstract_temporal_covariate_for_fit import \
+    TimeTemporalCovariate
+from spatio_temporal_dataset.coordinates.temporal_coordinates.temperature_covariate import \
+    AnomalyTemperatureWithSplineTemporalCovariate
+
+WEIGHT_COLUMN_NAME = "all weights"
+
+WEIGHT_FOLDER = "ensemble weight"
+
+
+def get_csv_filepath(gcm_rcm_couples, altitudes_list, year_min, year_max, scenario):
+    nb_gcm_rcm_couples = len(gcm_rcm_couples)
+    nb_altitudes_list = len(altitudes_list)
+    ensemble_folder_path = op.join(DATA_PATH, WEIGHT_FOLDER)
+    if not op.exists(ensemble_folder_path):
+        os.makedirs(ensemble_folder_path, exist_ok=True)
+    scenario_str = scenario_to_str(scenario)
+    csv_filename = "weights_{}_{}_{}_{}_{}.csv" \
+        .format(nb_gcm_rcm_couples, nb_altitudes_list, year_min, year_max, scenario_str)
+    weight_csv_filepath = op.join(ensemble_folder_path, csv_filename)
+    return weight_csv_filepath
+
+
+def save_to_filepath(df, gcm_rcm_couples, altitudes_list,
+                     year_min, year_max,
+                     scenario):
+    filepath = get_csv_filepath(gcm_rcm_couples, altitudes_list, year_min, year_max, scenario)
+    df = df.round(decimals=3)
+    df.index = [gcm_rcm_couple_to_str(i) for i in df.index]
+    df.columns = [gcm_rcm_couple_to_str(i) if j > 0 else i for j, i in enumerate(df.columns)]
+
+    # df.columns = [gcm_rcm_couple_to_str(i) for i in df.index]
+    print(df.head())
+    df.to_csv(filepath)
+
+
+def load_gcm_rcm_couple_to_weight(gcm_rcm_couples, altitudes_list, year_min, year_max, scenario,
+                                  gcm_rcm_couple_missing=None):
+    filepath = get_csv_filepath(gcm_rcm_couples, altitudes_list, year_min, year_max, scenario)
+    df = pd.read_csv(filepath, index_col=0)
+    df.index = [str_to_gcm_rcm_couple(i) for i in df.index]
+    df.columns = [str_to_gcm_rcm_couple(i) if j > 0 else i for j, i in enumerate(df.columns)]
+    if gcm_rcm_couple_missing is None:
+        column_name = WEIGHT_COLUMN_NAME
+    else:
+        column_name = gcm_rcm_couple_missing
+    d = df[column_name].to_dict()
+    return d
-- 
GitLab