diff --git a/test/test_extreme_estimator/test_extreme_models/test_margin_temporal.py b/test/test_extreme_estimator/test_extreme_models/test_margin_temporal.py
index 236770425e7a63d95174a020d35d81de82b7bcdf..4107e4b9234de11fcdeb4262e32aee34e4f450b1 100644
--- a/test/test_extreme_estimator/test_extreme_models/test_margin_temporal.py
+++ b/test/test_extreme_estimator/test_extreme_models/test_margin_temporal.py
@@ -27,16 +27,14 @@ class TestMarginTemporal(unittest.TestCase):
     def setUp(self) -> None:
         set_seed_for_test(seed=42)
         self.nb_points = 2
-        self.nb_steps = 5
+        self.nb_steps = 50
         self.nb_obs = 1
         # Load some 2D spatial coordinates
         self.coordinates = load_test_spatiotemporal_coordinates(nb_steps=self.nb_steps, nb_points=self.nb_points)[1]
-        self.start_year = 2
-        smooth_margin_models = LinearNonStationaryLocationMarginModel(coordinates=self.coordinates,
-                                                                      starting_point=self.start_year)
-
+        smooth_margin_model = LinearNonStationaryLocationMarginModel(coordinates=self.coordinates,
+                                                                      starting_point=2)
         self.dataset = MarginDataset.from_sampling(nb_obs=self.nb_obs,
-                                                   margin_model=smooth_margin_models,
+                                                   margin_model=smooth_margin_model,
                                                    coordinates=self.coordinates)
 
     def test_margin_fit_stationary(self):
@@ -44,52 +42,56 @@ class TestMarginTemporal(unittest.TestCase):
         margin_model = LinearStationaryMarginModel(self.coordinates)
         estimator = LinearMarginEstimator(self.dataset, margin_model)
         estimator.fit()
-        ref = {'loc': 2.2985600257321295, 'scale': 8.937484202730161, 'shape': 5.744352285758161}
+        ref = {'loc': 1.3403346591679877, 'scale': 1.054867229157924, 'shape': 0.713700960727747}
         for year in range(1, 3):
             coordinate = np.array([0.0, 0.0, year])
             mle_params_estimated = estimator.margin_function_fitted.get_gev_params(coordinate).to_dict()
-            print(mle_params_estimated)
             for key in ref.keys():
                 self.assertAlmostEqual(ref[key], mle_params_estimated[key], places=3)
-    #
-    # def test_gev_temporal_margin_fit_nonstationary(self):
-    #     # Create estimator
-    #     margin_model = NonStationaryStationModel(self.coordinates)
-    #     estimator = LinearMarginEstimator(self.dataset, margin_model)
-    #     estimator.fit()
-    #     self.assertNotEqual(estimator.margin_function_fitted.mu1_temporal_trend, 0.0)
-    #     # Checks that parameters returned are indeed different
-    #     mle_params_estimated_year1 = estimator.margin_function_fitted.get_gev_params(np.array([1])).to_dict()
-    #     mle_params_estimated_year3 = estimator.margin_function_fitted.get_gev_params(np.array([3])).to_dict()
-    #     self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
-    #
-    # def test_gev_temporal_margin_fit_nonstationary_with_start_point(self):
-    #     # Create estimator
-    #     estimator = self.fit_non_stationary_estimator(starting_point=3)
-    #     self.assertNotEqual(estimator.margin_function_fitted.mu1_temporal_trend, 0.0)
-    #     # Checks starting point parameter are well passed
-    #     self.assertEqual(3, estimator.margin_function_fitted.starting_point)
-    #     # Checks that parameters returned are indeed different
-    #     mle_params_estimated_year1 = estimator.margin_function_fitted.get_gev_params(np.array([1])).to_dict()
-    #     mle_params_estimated_year3 = estimator.margin_function_fitted.get_gev_params(np.array([3])).to_dict()
-    #     self.assertEqual(mle_params_estimated_year1, mle_params_estimated_year3)
-    #     mle_params_estimated_year5 = estimator.margin_function_fitted.get_gev_params(np.array([5])).to_dict()
-    #     self.assertNotEqual(mle_params_estimated_year5, mle_params_estimated_year3)
-    #
-    # def fit_non_stationary_estimator(self, starting_point):
-    #     margin_model = NonStationaryStationModel(self.coordinates, starting_point=starting_point + self.start_year)
-    #     estimator = LinearMarginEstimator(self.dataset, margin_model)
-    #     estimator.fit()
-    #     return estimator
-    #
-    # def test_two_different_starting_points(self):
-    #     # Create two different estimators
-    #     estimator1 = self.fit_non_stationary_estimator(starting_point=3)
-    #     estimator2 = self.fit_non_stationary_estimator(starting_point=28)
-    #     mu1_estimator1 = estimator1.margin_function_fitted.mu1_temporal_trend
-    #     mu1_estimator2 = estimator2.margin_function_fitted.mu1_temporal_trend
-    #     print(mu1_estimator1, mu1_estimator2)
-    #     self.assertNotEqual(mu1_estimator1, mu1_estimator2)
+
+    def test_margin_fit_nonstationary(self):
+        # Create estimator
+        margin_model = LinearNonStationaryLocationMarginModel(self.coordinates)
+        estimator = LinearMarginEstimator(self.dataset, margin_model)
+        estimator.fit()
+        self.assertNotEqual(estimator.margin_function_fitted.mu1_temporal_trend, 0.0)
+        # Checks that parameters returned are indeed different
+        coordinate1 = np.array([0.0, 0.0, 1])
+        mle_params_estimated_year1 = estimator.margin_function_fitted.get_gev_params(coordinate1).to_dict()
+        coordinate3 = np.array([0.0, 0.0, 3])
+        mle_params_estimated_year3 = estimator.margin_function_fitted.get_gev_params(coordinate3).to_dict()
+        self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
+
+    def test_margin_fit_nonstationary_with_start_point(self):
+        # Create estimator
+        estimator = self.fit_non_stationary_estimator(starting_point=2)
+        print(estimator.margin_function_fitted.mu1_temporal_trend)
+        self.assertNotEqual(estimator.margin_function_fitted.mu1_temporal_trend, 0.0)
+        # Checks starting point parameter are well passed
+        self.assertEqual(2, estimator.margin_function_fitted.starting_point)
+        # Checks that parameters returned are indeed different
+        coordinate1 = np.array([0.0, 0.0, 1])
+        mle_params_estimated_year1 = estimator.margin_function_fitted.get_gev_params(coordinate1).to_dict()
+        coordinate2 = np.array([0.0, 0.0, 2])
+        mle_params_estimated_year2 = estimator.margin_function_fitted.get_gev_params(coordinate2).to_dict()
+        self.assertEqual(mle_params_estimated_year1, mle_params_estimated_year2)
+        coordinate5 = np.array([0.0, 0.0, 5])
+        mle_params_estimated_year5 = estimator.margin_function_fitted.get_gev_params(coordinate5).to_dict()
+        self.assertNotEqual(mle_params_estimated_year5, mle_params_estimated_year2)
+
+    def fit_non_stationary_estimator(self, starting_point):
+        margin_model = LinearNonStationaryLocationMarginModel(self.coordinates, starting_point=starting_point)
+        estimator = LinearMarginEstimator(self.dataset, margin_model)
+        estimator.fit()
+        return estimator
+
+    def test_two_different_starting_points(self):
+        # Create two different estimators
+        estimator1 = self.fit_non_stationary_estimator(starting_point=3)
+        estimator2 = self.fit_non_stationary_estimator(starting_point=20)
+        mu1_estimator1 = estimator1.margin_function_fitted.mu1_temporal_trend
+        mu1_estimator2 = estimator2.margin_function_fitted.mu1_temporal_trend
+        self.assertNotEqual(mu1_estimator1, mu1_estimator2)
 
 
 if __name__ == '__main__':