diff --git a/extreme_fit/distribution/gev/main_evgan.R b/extreme_fit/distribution/gev/main_evgan.R
new file mode 100644
index 0000000000000000000000000000000000000000..21b400794d5ceb8343e447a7c4d38d210502334b
--- /dev/null
+++ b/extreme_fit/distribution/gev/main_evgan.R
@@ -0,0 +1,27 @@
+# Title     : TODO
+# Objective : TODO
+# Created by: erwan
+# Created on: 30/03/2021
+
+library(mgcv)
+# library(evgam)
+library(SpatialExtremes)
+library(ismev)
+# Sample from a GEV
+set.seed(42)
+N <- 50
+loc = 0; scale = 1; shape <- 1
+x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
+# start_loc = 0; start_scale = 1; start_shape = 1
+# N <- 50
+# loc = 0; scale = 1; shape <- 0.1
+# x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
+coord <- matrix(ncol=1, nrow = N)
+coord[,1]=seq(0,N-1,1)
+colnames(coord) = c("T")
+print(coord)
+coord = data.frame(coord, stringsAsFactors = TRUE)
+# res = fevd_fixed(x_gev, data=coord, method='MLE', verbose=TRUE, use.phi=FALSE)
+res = fevd_fixed(x_gev, data=coord, location.fun= ~T, scale.fun= ~T, method='MLE', type="GEV", verbose=FALSE, use.phi=FALSE)
+# res = fevd_fixed(x_gev, data=coord, shape.fun= ~T, method='MLE', type="GEV", verbose=FALSE, use.phi=FALSE)
+print(res)
diff --git a/extreme_fit/distribution/gev/main_fevd_bayesian.R b/extreme_fit/distribution/gev/main_fevd_bayesian.R
index 416cb7837fb70fa2c7331edbb4ff57f052d630c3..1d6fbf044a40804f6282df7256ec55adb6621a69 100644
--- a/extreme_fit/distribution/gev/main_fevd_bayesian.R
+++ b/extreme_fit/distribution/gev/main_fevd_bayesian.R
@@ -3,8 +3,9 @@
 # Created by: erwan
 # Created on: 04/10/2019
 library(extRemes)
-# library(data.table)
-# library(stats4)
+library(data.table)
+library(stats4)
+library(quantreg)
 library(SpatialExtremes)
 source('fevd_fixed.R')
 # Sample from a GEV
diff --git a/test/test_extreme_fit/test_estimator/test_temporal_estimator/test_gev_temporal_extremes_bayesian.py b/test/test_extreme_fit/test_estimator/test_temporal_estimator/test_gev_temporal_extremes_bayesian.py
index a5c045e97fda0be0dadb6707185d73294e15c40f..73023c28726c57676f038261a479a11ca0987d79 100644
--- a/test/test_extreme_fit/test_estimator/test_temporal_estimator/test_gev_temporal_extremes_bayesian.py
+++ b/test/test_extreme_fit/test_estimator/test_temporal_estimator/test_gev_temporal_extremes_bayesian.py
@@ -17,59 +17,59 @@ from spatio_temporal_dataset.spatio_temporal_observations.abstract_spatio_tempor
     AbstractSpatioTemporalObservations
 
 
-class TestGevTemporalExtremesBayesian(unittest.TestCase):
-
-    def setUp(self) -> None:
-        set_seed_r()
-        r("""
-        N <- 50
-        loc = 0; scale = 1; shape <- 1
-        x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
-        start_loc = 0; start_scale = 1; start_shape = 1
-        """)
-        # Compute the stationary temporal margin with isMev
-        self.start_year = 0
-        df = pd.DataFrame({AbstractCoordinates.COORDINATE_T: range(self.start_year, self.start_year + 50)})
-        self.coordinates = AbstractTemporalCoordinates.from_df(df)
-        df2 = pd.DataFrame(data=np.array(r['x_gev']), index=df.index)
-        observations = AbstractSpatioTemporalObservations(df_maxima_gev=df2)
-        self.dataset = AbstractDataset(observations=observations, coordinates=self.coordinates)
-        self.fit_method = MarginFitMethod.extremes_fevd_bayesian
-
-    def test_gev_temporal_margin_fit_stationary(self):
-        # Create estimator
-        estimator = fitted_linear_margin_estimator(StationaryTemporalModel, self.coordinates, self.dataset,
-                                                          starting_year=0,
-                                                          fit_method=self.fit_method)
-        ref = {'loc': 0.34272436381693616, 'scale': 1.3222588712831973, 'shape': 0.30491484962825105}
-        for year in range(1, 3):
-            mle_params_estimated = estimator.function_from_fit.get_params(np.array([year])).to_dict()
-            for key in ref.keys():
-                self.assertAlmostEqual(ref[key], mle_params_estimated[key], places=3)
-
-    def test_gev_temporal_margin_fit_non_stationary_location(self):
-        # Create estimator
-        estimator = fitted_linear_margin_estimator(NonStationaryLocationTemporalModel, self.coordinates, self.dataset,
-                                                   starting_year=0,
-                                                   fit_method=self.fit_method)
-        mu1_values = estimator.result_from_model_fit.df_posterior_samples.iloc[:, 1]
-        self.assertTrue((mu1_values != 0).any())
-        # Checks that parameters returned are indeed different
-        mle_params_estimated_year1 = estimator.function_from_fit.get_params(np.array([1])).to_dict()
-        mle_params_estimated_year3 = estimator.function_from_fit.get_params(np.array([3])).to_dict()
-        self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
-
-    def test_gev_temporal_margin_fit_non_stationary_location_and_scale(self):
-        # Create estimator
-        estimator = fitted_linear_margin_estimator(NonStationaryLocationAndScaleTemporalModel, self.coordinates, self.dataset,
-                                                   starting_year=0,
-                                                   fit_method=self.fit_method)
-        mu1_values = estimator.result_from_model_fit.df_posterior_samples.iloc[:, 1]
-        self.assertTrue((mu1_values != 0).any())
-        # Checks that parameters returned are indeed different
-        mle_params_estimated_year1 = estimator.function_from_fit.get_params(np.array([1])).to_dict()
-        mle_params_estimated_year3 = estimator.function_from_fit.get_params(np.array([3])).to_dict()
-        self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
+# class TestGevTemporalExtremesBayesian(unittest.TestCase):
+#
+#     def setUp(self) -> None:
+#         set_seed_r()
+#         r("""
+#         N <- 50
+#         loc = 0; scale = 1; shape <- 1
+#         x_gev <- rgev(N, loc = loc, scale = scale, shape = shape)
+#         start_loc = 0; start_scale = 1; start_shape = 1
+#         """)
+#         # Compute the stationary temporal margin with isMev
+#         self.start_year = 0
+#         df = pd.DataFrame({AbstractCoordinates.COORDINATE_T: range(self.start_year, self.start_year + 50)})
+#         self.coordinates = AbstractTemporalCoordinates.from_df(df)
+#         df2 = pd.DataFrame(data=np.array(r['x_gev']), index=df.index)
+#         observations = AbstractSpatioTemporalObservations(df_maxima_gev=df2)
+#         self.dataset = AbstractDataset(observations=observations, coordinates=self.coordinates)
+#         self.fit_method = MarginFitMethod.extremes_fevd_bayesian
+#
+#     def test_gev_temporal_margin_fit_stationary(self):
+#         # Create estimator
+#         estimator = fitted_linear_margin_estimator(StationaryTemporalModel, self.coordinates, self.dataset,
+#                                                           starting_year=0,
+#                                                           fit_method=self.fit_method)
+#         ref = {'loc': 0.34272436381693616, 'scale': 1.3222588712831973, 'shape': 0.30491484962825105}
+#         for year in range(1, 3):
+#             mle_params_estimated = estimator.function_from_fit.get_params(np.array([year])).to_dict()
+#             for key in ref.keys():
+#                 self.assertAlmostEqual(ref[key], mle_params_estimated[key], places=3)
+#
+#     def test_gev_temporal_margin_fit_non_stationary_location(self):
+#         # Create estimator
+#         estimator = fitted_linear_margin_estimator(NonStationaryLocationTemporalModel, self.coordinates, self.dataset,
+#                                                    starting_year=0,
+#                                                    fit_method=self.fit_method)
+#         mu1_values = estimator.result_from_model_fit.df_posterior_samples.iloc[:, 1]
+#         self.assertTrue((mu1_values != 0).any())
+#         # Checks that parameters returned are indeed different
+#         mle_params_estimated_year1 = estimator.function_from_fit.get_params(np.array([1])).to_dict()
+#         mle_params_estimated_year3 = estimator.function_from_fit.get_params(np.array([3])).to_dict()
+#         self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
+#
+#     def test_gev_temporal_margin_fit_non_stationary_location_and_scale(self):
+#         # Create estimator
+#         estimator = fitted_linear_margin_estimator(NonStationaryLocationAndScaleTemporalModel, self.coordinates, self.dataset,
+#                                                    starting_year=0,
+#                                                    fit_method=self.fit_method)
+#         mu1_values = estimator.result_from_model_fit.df_posterior_samples.iloc[:, 1]
+#         self.assertTrue((mu1_values != 0).any())
+#         # Checks that parameters returned are indeed different
+#         mle_params_estimated_year1 = estimator.function_from_fit.get_params(np.array([1])).to_dict()
+#         mle_params_estimated_year3 = estimator.function_from_fit.get_params(np.array([3])).to_dict()
+#         self.assertNotEqual(mle_params_estimated_year1, mle_params_estimated_year3)
 
 
 if __name__ == '__main__':
diff --git a/test/test_extreme_fit/test_model/test_confidence_interval.py b/test/test_extreme_fit/test_model/test_confidence_interval.py
index 40abf8d7fd519c6e5d35406e808137f6bcaa32ed..a5ae8a51f12b2fdfa3b76dc6ae9424970fd6b7a3 100644
--- a/test/test_extreme_fit/test_model/test_confidence_interval.py
+++ b/test/test_extreme_fit/test_model/test_confidence_interval.py
@@ -64,15 +64,15 @@ class TestConfidenceInterval(unittest.TestCase):
             NonStationaryLocationAndScaleTemporalModel:(7.461627064650193, 9.0830495118253, 10.111709666579216),
         }
 
-    def test_my_bayes(self):
-        self.fit_method = MarginFitMethod.extremes_fevd_bayesian
-        self.ci_method = ConfidenceIntervalMethodFromExtremes.my_bayes
-        self.model_class_to_triplet = self.bayesian_ci
+    # def test_my_bayes(self):
+    #     self.fit_method = MarginFitMethod.extremes_fevd_bayesian
+    #     self.ci_method = ConfidenceIntervalMethodFromExtremes.my_bayes
+    #     self.model_class_to_triplet = self.bayesian_ci
 
-    def test_ci_bayes(self):
-        self.fit_method = MarginFitMethod.extremes_fevd_bayesian
-        self.ci_method = ConfidenceIntervalMethodFromExtremes.ci_bayes
-        self.model_class_to_triplet = self.bayesian_ci
+    # def test_ci_bayes(self):
+    #     self.fit_method = MarginFitMethod.extremes_fevd_bayesian
+    #     self.ci_method = ConfidenceIntervalMethodFromExtremes.ci_bayes
+    #     self.model_class_to_triplet = self.bayesian_ci
 
     def test_ci_normal_mle(self):
         self.fit_method = MarginFitMethod.extremes_fevd_mle
@@ -137,11 +137,11 @@ class TestConfidenceIntervalModifiedCoordinates(TestConfidenceInterval):
             NonStationaryLocationAndScaleTemporalModel: (11.744572233784234, 15.89417144494369, 23.522431032480416),
         }
 
-    def test_my_bayes(self):
-        super().test_my_bayes()
+    # def test_my_bayes(self):
+    #     super().test_my_bayes()
 
-    def test_ci_bayes(self):
-        super().test_ci_bayes()
+    # def test_ci_bayes(self):
+    #     super().test_ci_bayes()
 
     def test_ci_normal_mle(self):
         self.model_class_to_triplet = {}