diff --git a/projects/quantile_regression_vs_evt/AbstractSimulation.py b/projects/quantile_regression_vs_evt/AbstractSimulation.py
index 2ffd48512da95d32ded048e90e254a733bced122..76dd87f9d4f4258169c23ee5f5e7309154df9238 100644
--- a/projects/quantile_regression_vs_evt/AbstractSimulation.py
+++ b/projects/quantile_regression_vs_evt/AbstractSimulation.py
@@ -1,3 +1,4 @@
+from multiprocessing.dummy import Pool
 from typing import Dict, List
 import matplotlib.pyplot as plt
 from collections import OrderedDict
@@ -11,7 +12,7 @@ from extreme_fit.estimator.quantile_estimator.quantile_estimator_from_regression
 from extreme_fit.model.margin_model.linear_margin_model.abstract_temporal_linear_margin_model import \
     AbstractTemporalLinearMarginModel
 from extreme_fit.model.quantile_model.quantile_regression_model import AbstractQuantileRegressionModel
-from root_utils import get_display_name_from_object_type
+from root_utils import get_display_name_from_object_type, NB_CORES
 from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
 from spatio_temporal_dataset.coordinates.temporal_coordinates.generated_temporal_coordinates import \
     ConsecutiveTemporalCoordinates
@@ -64,14 +65,26 @@ class AbstractSimulation(object):
     @cached_property
     def model_class_to_time_series_length_to_estimators(self):
         d = OrderedDict()
-        for model_class in self.models_classes:
+        for i, model_class in enumerate(self.models_classes, 1):
             d_sub = OrderedDict()
             for time_series_length, observation_list in self.time_series_length_to_observation_list.items():
+                print(model_class, '{}/{}'.format(i, len(self.models_classes)), time_series_length)
                 coordinates = self.time_series_length_to_coordinates[time_series_length]
-                estimators = []
-                for observations in observation_list:
-                    estimators.append(self.get_fitted_quantile_estimator(model_class, observations, coordinates,
-                                                                         self.quantile_estimator))
+
+                arguments = [
+                    [model_class, observations, coordinates, self.quantile_estimator]
+                    for observations in observation_list
+                ]
+                if self.multiprocessing:
+                    raise NotImplementedError('The multiprocessing seems slow compared to the other,'
+                                              'maybe it would be best to call an external function rather than'
+                                              'a method, but this methods is override in other classes...')
+                    # with Pool(NB_CORES) as p:
+                    #     estimators = p.starmap(self.get_fitted_quantile_estimator, arguments)
+                else:
+                    estimators = []
+                    for argument in arguments:
+                        estimators.append(self.get_fitted_quantile_estimator(*argument))
                 d_sub[time_series_length] = estimators
             d[model_class] = d_sub
         return d
diff --git a/projects/quantile_regression_vs_evt/main_non_stationary_quantile_regression.py b/projects/quantile_regression_vs_evt/main_non_stationary_quantile_regression.py
index c9a812969ce9f7cec8d1db5d36210f16e84cd8d1..c0339e37b198530cd3eb8daae1b06138a687e1c4 100644
--- a/projects/quantile_regression_vs_evt/main_non_stationary_quantile_regression.py
+++ b/projects/quantile_regression_vs_evt/main_non_stationary_quantile_regression.py
@@ -12,7 +12,7 @@ from spatio_temporal_dataset.coordinates.transformed_coordinates.transformation.
 nb_time_series = 10
 quantile = 0.98
 time_series_lengths = [50, 100, 200]
-transformation_class = [IdentityTransformation, CenteredScaledNormalization][1]
+transformation_class = [IdentityTransformation, CenteredScaledNormalization][0]
 model_classes = [
     NonStationaryLocationTemporalModel,
     TemporalCoordinatesQuantileRegressionModel,
@@ -27,5 +27,6 @@ simulation = simulation_class(nb_time_series=nb_time_series,
                               quantile=quantile,
                               time_series_lengths=time_series_lengths,
                               model_classes=model_classes,
-                              transformation_class=transformation_class)
+                              transformation_class=transformation_class,
+                              multiprocessing=False)
 simulation.plot_error_for_last_year_quantile()
diff --git a/test/test_projects/test_quantile_regression/test_annual_maxima_simulations.py b/test/test_projects/test_quantile_regression/test_annual_maxima_simulations.py
index 1998818dd36d432158486e7eb3f50818e24f5140..c7d6f7da97cbb50f4856b3cee30e7eaf4a7abbab 100644
--- a/test/test_projects/test_quantile_regression/test_annual_maxima_simulations.py
+++ b/test/test_projects/test_quantile_regression/test_annual_maxima_simulations.py
@@ -47,6 +47,7 @@ class TestExpSimulations(unittest.TestCase):
 class TestExpSimulationsDailyDataModels(unittest.TestCase):
     DISPLAY = False
 
+    # Warning this method is quite long...
     def test_stationary_run_daily_data_quantile_regression_model(self):
         simulation = StationaryExpSimulation(nb_time_series=1, quantile=0.5, time_series_lengths=[50, 60],
                                              model_classes=[ConstantQuantileRegressionModelOnDailyData])