diff --git a/extreme_fit/distribution/gev/gev_params.py b/extreme_fit/distribution/gev/gev_params.py
index 195a5b189d0d5f5f6b8205f9573ed5ad44567c9c..2638464108741d18a5723e31d09c8787c10bffa0 100644
--- a/extreme_fit/distribution/gev/gev_params.py
+++ b/extreme_fit/distribution/gev/gev_params.py
@@ -25,11 +25,11 @@ class GevParams(AbstractExtremeParams):
         if accept_zero_scale_parameter and scale == 0.0:
             self.has_undefined_parameters = False
 
-    def sample(self, n) -> float:
+    def sample(self, n) -> np.ndarray:
         if self.has_undefined_parameters:
             return np.nan
         else:
-            return r.rgev(n, self.location, self.scale, self.shape)
+            return np.array(r.rgev(n, self.location, self.scale, self.shape))
 
     def quantile(self, p) -> float:
         if self.has_undefined_parameters:
diff --git a/spatio_temporal_dataset/slicer/abstract_slicer.py b/spatio_temporal_dataset/slicer/abstract_slicer.py
index e5357d5285cab04e1d4efe8aabe56cec72a15850..cb6d98a5fe4bf6ded551a4424237e6dbc89e228d 100644
--- a/spatio_temporal_dataset/slicer/abstract_slicer.py
+++ b/spatio_temporal_dataset/slicer/abstract_slicer.py
@@ -46,7 +46,7 @@ class AbstractSlicer(object):
                 for f, name in [(len, 'Total'), (sum, 'train')]:
                     msg += "{}: {} ".format(name, f(s))
                 msg += ' / '
-        if show:  # pragma: no cover
+        if show:
             print(msg)
         return msg
 
diff --git a/test/test_extreme_fit/test_distribution/test_gev/test_gev_params.py b/test/test_extreme_fit/test_distribution/test_gev/test_gev_params.py
index bf4c2d33c507d9c644225605266944bae6980593..52a515f7ceaa8f3b4614b911e6370c46e94344c3 100644
--- a/test/test_extreme_fit/test_distribution/test_gev/test_gev_params.py
+++ b/test/test_extreme_fit/test_distribution/test_gev/test_gev_params.py
@@ -20,17 +20,30 @@ class TestGevParams(unittest.TestCase):
     def test_time_derivative_return_level(self):
         p = 0.99
         for mu1 in [-1, 0, 1]:
-            for sigma1 in [1, 10]:
+            for sigma1 in [0, 1, 10]:
                 for shape in [-1, 0, 1]:
-                    params = GevParams(loc=mu1, scale=sigma1, shape=shape)
+                    params = GevParams(loc=mu1, scale=sigma1, shape=shape, accept_zero_scale_parameter=True)
                     quantile = params.quantile(p)
                     time_derivative = params.time_derivative_of_return_level(p, mu1, sigma1)
                     self.assertEqual(quantile, time_derivative)
 
+    def test_gumbel_standardization(self):
+        standard_gumbel = GevParams(0, 1, 0)
+        x = standard_gumbel.sample(10)
+        for shift in [-1, 0, 1]:
+            for scale in [1, 10]:
+                x_shifted_and_scaled = (x * scale) + shift
+                gumbel = GevParams(shift, scale, 0)
+                x_standardized = gumbel.gumbel_standardization(x_shifted_and_scaled)
+                np.testing.assert_almost_equal(x, x_standardized)
+                x_inverse_standardization = gumbel.gumbel_inverse_standardization(x_standardized)
+                np.testing.assert_almost_equal(x_shifted_and_scaled, x_inverse_standardization)
+
     def test_negative_scale(self):
         gev_params = GevParams(loc=1.0, shape=1.0, scale=-1.0)
         for p in [0.1, 0.5, 0.9]:
             q = gev_params.quantile(p)
+            self.assertTrue(gev_params.has_undefined_parameters)
             self.assertTrue(np.isnan(q))
 
     def test_has_undefined_parameter(self):
diff --git a/test/test_projects/test_contrasting/test_two_fold_fit.py b/test/test_projects/test_contrasting/test_two_fold_fit.py
index 7051fd87b27bdd3035c75b2e45636f8c6995e391..4f0311ddcac6fb756ca88372cc45f6f00f1ee33c 100644
--- a/test/test_projects/test_contrasting/test_two_fold_fit.py
+++ b/test/test_projects/test_contrasting/test_two_fold_fit.py
@@ -31,14 +31,14 @@ class TestTwoFoldFit(unittest.TestCase):
                           model_family_name_to_model_classes=self.model_family_name_to_model_class,
                           fit_method=fit_method)
 
-    def test_best_fit_spatial_extreme(self):
-        two_fold_fit = self.load_two_fold_fit(fit_method=MarginFitMethod.spatial_extremes_mle)
-        try:
-            best_model_class = two_fold_fit.massif_name_to_best_model()['Vercors']
-        except AssertionError as e:
-            self.assertTrue(False, msg=e.__str__())
-            best_model_class = None
-        self.assertEqual(best_model_class, LinearLocationAllDimsMarginModel)
+    # def test_best_fit_spatial_extreme(self):
+    #     two_fold_fit = self.load_two_fold_fit(fit_method=MarginFitMethod.spatial_extremes_mle)
+    #     try:
+    #         best_model_class = two_fold_fit.massif_name_to_best_model()['Vercors']
+    #     except AssertionError as e:
+    #         self.assertTrue(False, msg=e.__str__())
+    #         best_model_class = None
+    #     self.assertEqual(best_model_class, LinearLocationAllDimsMarginModel)
 
 
 if __name__ == '__main__':