diff --git a/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py b/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py
index 2aed224f01156565b6cf1ebdda7e2415bb12b302..8d4fde6076b468fb6a5f053596115fbc83a06adb 100644
--- a/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py
+++ b/experiment/trend_analysis/univariate_test/extreme_trend_test/abstract_gev_trend_test.py
@@ -209,7 +209,7 @@ class AbstractGevTrendTest(AbstractUnivariateTest):
 
     # Some display function
 
-    def qqplot_wrt_standard_gumbel(self, marker, color=None):
+    def qqplot_wrt_standard_gumbel(self, massif_name, altitude):
         ax = plt.gca()
         size = 15
         # Standard Gumbel quantiles
@@ -222,13 +222,25 @@ class AbstractGevTrendTest(AbstractUnivariateTest):
         epsilon = 0.5
         ax_lim = [min(all_quantiles) - epsilon, max(all_quantiles) + epsilon]
         ax.plot(standard_gumbel_quantiles, standard_gumbel_quantiles, color='k')
-        ax.plot(standard_gumbel_quantiles, constrained_empirical_quantiles, 'x',
-                label='Stationary Gumbel model $\mathcal{M}_0$')
+        # ax.plot(standard_gumbel_quantiles, constrained_empirical_quantiles, 'x',
+        #         label='Stationary Gumbel model $\mathcal{M}_0$')
+
+        massif_name = massif_name.replace('_', ' ')
+        label_generic = '{} massif \nat {} m '.format(massif_name, altitude)
         ax.plot(standard_gumbel_quantiles, unconstrained_empirical_quantiles, linestyle='None',
-                label='Selected model $\mathcal{M}_N$', **marker)
+                label=label_generic + '(selected model is ${}$)'.format(self.label), marker='o')
+        if 'Verdon' in massif_name and altitude == 300:
+            q = [-1.4541688117485054, -1.2811308174310914, -1.216589300814509, -0.7635793791201918, -0.6298883422064275, -0.5275954855697504, -0.4577268043676126, -0.4497570331795861, -0.1647955002136654, -0.14492222503785876, -0.139173823298689, -0.11945617994263039, -0.07303100174657867, -5.497308509286266e-05, 0.13906416388625908, 0.15274793441408543, 0.1717763342727519, 0.17712605315013535, 0.17900143646245203, 0.371986176207554, 0.51640780422156, 0.7380550963951035, 0.7783015252180445, 0.887836077295502, 0.917853338231094, 0.9832396811506262, 1.0359396416309927, 1.1892663813729711, 1.2053261113817888, 1.5695111391491652, 2.3223652143938476, 2.674882764437432, 2.6955728524900406, 2.8155882785356896, 3.282838470153471, 3.2885313947906765]
+            print(len(q), len(standard_gumbel_quantiles))
+            ax.plot(standard_gumbel_quantiles, q, linestyle='None',
+                    label=label_generic
+                          + '(discarded model is ${}$\n'.format('\mathcal{M}_{\zeta_0, \sigma_1}')
+                          + 'with $\zeta_0=0.84$)',
+                    marker='o')
+
         ax.set_xlabel("Standard Gumbel quantile", fontsize=size)
         ax.set_ylabel("Standard Empirical quantile", fontsize=size)
-        ax.legend(loc='upper left', prop={'size': 10})
+        ax.legend(loc='lower right', prop={'size': 10})
         ax.set_xlim(ax_lim)
         ax.set_ylim(ax_lim)
         ticks = [i for i in range(ceil(ax_lim[0]), floor(ax_lim[1]) + 1)]
@@ -242,7 +254,7 @@ class AbstractGevTrendTest(AbstractUnivariateTest):
     def compute_empirical_quantiles(self, estimator):
         empirical_quantiles = []
         for year, maximum in sorted(zip(self.years, self.maxima), key=lambda t: t[1]):
-            gev_param = estimator.margin_function_from_fit.get_gev_params_with_big_shape_and_correct_shape(
+            gev_param = estimator.margin_function_from_fit.get_gev_params(
                 coordinate=np.array([year]),
                 is_transformed=False)
             maximum_standardized = gev_param.gumbel_standardization(maximum)
diff --git a/papers/exceeding_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py b/papers/exceeding_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py
index f45034e1eac5daa491874009c5b1c9070cbbecc8..48e1b66324bad24ed7821facca9699bf4031e0fe 100644
--- a/papers/exceeding_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py
+++ b/papers/exceeding_snow_loads/check_mle_convergence_for_trends/qqplot/plot_qqplot.py
@@ -102,9 +102,10 @@ if __name__ == '__main__':
     # altitudes = [900, 1800, 2700]
     altitude_to_visualizer = {altitude: StudyVisualizerForNonStationaryTrends(CrocusSnowLoadTotal(altitude=altitude),
                                                                               select_only_acceptable_shape_parameter=True,
-                                                                              fit_method=TemporalMarginFitMethod.extremes_fevd_bayesian,
+                                                                              fit_method=TemporalMarginFitMethod.extremes_fevd_mle,
                                                                               multiprocessing=True)
                               for altitude in altitudes}
+
     # plot_qqplot_wrt_standard_gumbel(altitude_to_visualizer)
     # plot_hist_psnow(altitude_to_visualizer)
     # plot_qqplot_for_time_series_examples(altitude_to_visualizer)
diff --git a/papers/exceeding_snow_loads/check_mle_convergence_for_trends/without_maximum/main_fit_without_maximum.py b/papers/exceeding_snow_loads/check_mle_convergence_for_trends/without_maximum/main_fit_without_maximum.py
index 3326bcbc91048d4ba479c7ec45c6878bf8242c77..22faaf45b72933fea0c3460a10f72d557ef17980 100644
--- a/papers/exceeding_snow_loads/check_mle_convergence_for_trends/without_maximum/main_fit_without_maximum.py
+++ b/papers/exceeding_snow_loads/check_mle_convergence_for_trends/without_maximum/main_fit_without_maximum.py
@@ -3,7 +3,7 @@ from typing import Dict
 from experiment.meteo_france_data.scm_models_data.crocus.crocus import CrocusSnowLoadTotal
 from experiment.meteo_france_data.scm_models_data.visualization.study_visualization.main_study_visualizer import \
     ALL_ALTITUDES_WITHOUT_NAN
-from experiment.exceeding_snow_loads.check_mle_convergence_for_trends.without_maximum.study_visualizer_for_fit_witout_maximum import \
+from papers.exceeding_snow_loads.check_mle_convergence_for_trends.without_maximum.study_visualizer_for_fit_witout_maximum import \
     StudyVisualizerForFitWithoutMaximum
 
 
diff --git a/papers/exceeding_snow_loads/study_visualizer_for_non_stationary_trends.py b/papers/exceeding_snow_loads/study_visualizer_for_non_stationary_trends.py
index 9410781997878dc8d5da72f07825eece5bd68102..ef742b5301c46ac6f1aae6a5e1c45601203c1e5b 100644
--- a/papers/exceeding_snow_loads/study_visualizer_for_non_stationary_trends.py
+++ b/papers/exceeding_snow_loads/study_visualizer_for_non_stationary_trends.py
@@ -394,8 +394,7 @@ class StudyVisualizerForNonStationaryTrends(StudyVisualizer):
 
     def qqplot(self, massif_name, color=None):
         trend_test = self.massif_name_to_trend_test_that_minimized_aic[massif_name]
-        marker = self.massif_name_to_marker_style[massif_name]
-        trend_test.qqplot_wrt_standard_gumbel(marker, color)
+        trend_test.qqplot_wrt_standard_gumbel(massif_name, self.altitude)
 
     def return_level_plot(self, ax, ax2, massif_name, color=None):
         trend_test = self.massif_name_to_trend_test_that_minimized_aic[massif_name]