diff --git a/experiment/regression_margin/regression_margin.py b/experiment/regression_margin/regression_margin.py index 86fb73f22b0ba1ba33dfad41231e509fbe5a2a86..e4f0e6eae8d654b5424087ab98e2f00ee9fabcdf 100644 --- a/experiment/regression_margin/regression_margin.py +++ b/experiment/regression_margin/regression_margin.py @@ -5,7 +5,7 @@ from extreme_estimator.extreme_models.margin_model.margin_function.linear_margin from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearAllParametersAllDimsMarginModel, \ ConstantMarginModel from extreme_estimator.extreme_models.max_stable_model.max_stable_models import Smith -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.spatial_coordinates.coordinates_1D import LinSpaceSpatialCoordinates import matplotlib.pyplot as plt @@ -23,9 +23,9 @@ coordinates = LinSpaceSpatialCoordinates.from_nb_points(nb_points=nb_points) # MarginModel Linear with respect to the shape (from 0.01 to 0.02) params_sample = { # (GevParams.GEV_SHAPE, 0): 0.2, - (GevParams.GEV_LOC, 0): 10, - (GevParams.GEV_SHAPE, 0): 1.0, - (GevParams.GEV_SCALE, 0): 1.0, + (GevParams.LOC, 0): 10, + (GevParams.SHAPE, 0): 1.0, + (GevParams.SCALE, 0): 1.0, } margin_model = ConstantMarginModel(coordinates=coordinates, params_sample=params_sample) margin_model_for_estimator_class = [LinearAllParametersAllDimsMarginModel, ConstantMarginModel][-1] @@ -44,7 +44,7 @@ for i in range(nb_estimator): max_stable_model=max_stable_model) if show and i == 0: - # Plot a realization from the maxima gev (i.e the maxima obtained just by simulating the marginal law) + # Plot a realization from the maxima margin_fits (i.e the maxima obtained just by simulating the marginal law) for maxima in np.transpose(dataset.maxima_frech()): plt.plot(coordinates.coordinates_values(), maxima, 'o') plt.show() diff --git a/experiment/simulation/abstract_simulation.py b/experiment/simulation/abstract_simulation.py index ecdc90113570956c651f4ca284f54d9c0ee933b7..49973ae56631d93a1335d438dd9a574c6ed20220 100644 --- a/experiment/simulation/abstract_simulation.py +++ b/experiment/simulation/abstract_simulation.py @@ -2,10 +2,8 @@ import os from typing import List import matplotlib -import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cmx -import numpy as np import os.path as op import pickle @@ -21,7 +19,7 @@ from extreme_estimator.extreme_models.margin_model.margin_function.abstract_marg from extreme_estimator.extreme_models.margin_model.margin_function.combined_margin_function import \ CombinedMarginFunction from extreme_estimator.extreme_models.margin_model.margin_function.utils import error_dict_between_margin_functions -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.dataset.abstract_dataset import get_subset_dataset from spatio_temporal_dataset.dataset.simulation_dataset import SimulatedDataset from spatio_temporal_dataset.slicer.split import split_to_display_kwargs @@ -129,14 +127,14 @@ class AbstractSimulation(object): @staticmethod def load_fig_and_axes(): - fig, axes = plt.subplots(len(GevParams.GEV_VALUE_NAMES), 2) + fig, axes = plt.subplots(len(GevParams.SUMMARY_NAMES), 2) fig.subplots_adjust(hspace=0.4, wspace=0.4) return fig, axes def visualize(self, fig=None, axes=None, show=True): if fig is None or axes is None: fig, axes = self.load_fig_and_axes() - for i, gev_value_name in enumerate(GevParams.GEV_VALUE_NAMES): + for i, gev_value_name in enumerate(GevParams.SUMMARY_NAMES): self.margin_graph(axes[i, 0], gev_value_name) self.score_graph(axes[i, 1], gev_value_name) if show: diff --git a/experiment/simulation/lin_space2_simulation.py b/experiment/simulation/lin_space2_simulation.py index d4c0a01141b5be0f96c07a7ac86cc26317262a45..b3ab8757d6c84fb7165e063f61a903d5746f383c 100644 --- a/experiment/simulation/lin_space2_simulation.py +++ b/experiment/simulation/lin_space2_simulation.py @@ -4,7 +4,7 @@ from extreme_estimator.estimator.margin_estimator.margin_estimator_for_simulatio MARGIN_ESTIMATORS_FOR_SIMULATION from extreme_estimator.extreme_models.margin_model.smooth_margin_model import ConstantMarginModel from extreme_estimator.extreme_models.max_stable_model.max_stable_models import Smith -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.spatial_coordinates.coordinates_1D import LinSpaceSpatialCoordinates from spatio_temporal_dataset.dataset.simulation_dataset import FullSimulatedDataset @@ -22,9 +22,9 @@ class LinSpace5Simulation(AbstractSimulation): train_split_ratio=0.75) # MarginModel Constant for simulation params_sample = { - (GevParams.GEV_LOC, 0): 1.0, - (GevParams.GEV_SHAPE, 0): 1.0, - (GevParams.GEV_SCALE, 0): 1.0, + (GevParams.LOC, 0): 1.0, + (GevParams.SHAPE, 0): 1.0, + (GevParams.SCALE, 0): 1.0, } self.margin_model = ConstantMarginModel(coordinates=self.coordinates, params_sample=params_sample) diff --git a/experiment/simulation/lin_space_simulation.py b/experiment/simulation/lin_space_simulation.py index 3d11e2dd9b6c1f48487291129de322507266c735..96e3618c4198895bfe32323868bc1dc6dd8b93bf 100644 --- a/experiment/simulation/lin_space_simulation.py +++ b/experiment/simulation/lin_space_simulation.py @@ -1,10 +1,7 @@ from experiment.simulation.abstract_simulation import AbstractSimulation -from extreme_estimator.estimator.full_estimator.full_estimator_for_simulation import FULL_ESTIMATORS_FOR_SIMULATION -from extreme_estimator.estimator.margin_estimator.margin_estimator_for_simulation import \ - MARGIN_ESTIMATORS_FOR_SIMULATION from extreme_estimator.extreme_models.margin_model.smooth_margin_model import ConstantMarginModel from extreme_estimator.extreme_models.max_stable_model.max_stable_models import Smith -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.spatial_coordinates.coordinates_1D import LinSpaceSpatialCoordinates from spatio_temporal_dataset.dataset.simulation_dataset import FullSimulatedDataset @@ -19,9 +16,9 @@ class LinSpaceSimulation(AbstractSimulation): self.coordinates = LinSpaceSpatialCoordinates.from_nb_points(nb_points=21, train_split_ratio=0.75) # MarginModel Linear with respect to the shape (from 0.01 to 0.02) params_sample = { - (GevParams.GEV_LOC, 0): 10, - (GevParams.GEV_SHAPE, 0): 1.0, - (GevParams.GEV_SCALE, 0): 1.0, + (GevParams.LOC, 0): 10, + (GevParams.SHAPE, 0): 1.0, + (GevParams.SCALE, 0): 1.0, } self.margin_model = ConstantMarginModel(coordinates=self.coordinates, params_sample=params_sample) self.max_stable_model = Smith() diff --git a/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py b/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py index ab8742b9ee0ebf6a24daaccad6f69c3576a4acde..df51314ac37f5765a73a2c4b0269dbcb63512b71 100644 --- a/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py +++ b/extreme_estimator/extreme_models/margin_model/abstract_margin_model.py @@ -5,7 +5,7 @@ from extreme_estimator.extreme_models.abstract_model import AbstractModel from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function \ import AbstractMarginFunction from extreme_estimator.extreme_models.utils import r -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py index be5104374aa5fb0b31e3e4aafe2f06bd4a8d06bf..85f1e7dbdcce0a4225d079ffad23f017ff249576 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/abstract_margin_function.py @@ -5,7 +5,7 @@ import matplotlib.pyplot as plt import numpy as np import pandas as pd -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates from spatio_temporal_dataset.slicer.split import Split @@ -36,10 +36,10 @@ class AbstractMarginFunction(object): def gev_value_name_to_serie(self) -> Dict[str, pd.Series]: # Load the gev_params gev_params = [self.get_gev_params(coordinate) for coordinate in self.coordinates.coordinates_values()] - # Load the dictionary of values (gev parameters + the quantiles) - value_dicts = [gev_param.value_dict for gev_param in gev_params] + # Load the dictionary of values (margin_fits parameters + the quantiles) + value_dicts = [gev_param.summary_dict for gev_param in gev_params] gev_value_name_to_serie = {} - for value_name in GevParams.GEV_VALUE_NAMES: + for value_name in GevParams.SUMMARY_NAMES: s = pd.Series(data=[d[value_name] for d in value_dicts], index=self.coordinates.index) gev_value_name_to_serie[value_name] = s return gev_value_name_to_serie @@ -58,10 +58,10 @@ class AbstractMarginFunction(object): def visualize(self, axes=None, show=True, dot_display=False): self.datapoint_display = dot_display if axes is None: - fig, axes = plt.subplots(1, len(GevParams.GEV_VALUE_NAMES)) + fig, axes = plt.subplots(1, len(GevParams.SUMMARY_NAMES)) fig.subplots_adjust(hspace=1.0, wspace=1.0) self.visualization_axes = axes - for i, gev_value_name in enumerate(GevParams.GEV_VALUE_NAMES): + for i, gev_value_name in enumerate(GevParams.SUMMARY_NAMES): ax = axes[i] self.visualize_single_param(gev_value_name, ax, show=False) title_str = gev_value_name @@ -69,8 +69,8 @@ class AbstractMarginFunction(object): if show: plt.show() - def visualize_single_param(self, gev_value_name=GevParams.GEV_LOC, ax=None, show=True): - assert gev_value_name in GevParams.GEV_VALUE_NAMES + def visualize_single_param(self, gev_value_name=GevParams.LOC, ax=None, show=True): + assert gev_value_name in GevParams.SUMMARY_NAMES if self.coordinates.nb_coordinates_spatial == 1: self.visualize_1D(gev_value_name, ax, show) elif self.coordinates.nb_coordinates_spatial == 2: @@ -80,7 +80,7 @@ class AbstractMarginFunction(object): # Visualization 1D - def visualize_1D(self, gev_value_name=GevParams.GEV_LOC, ax=None, show=True): + def visualize_1D(self, gev_value_name=GevParams.LOC, ax=None, show=True): x = self.coordinates.x_coordinates grid, linspace = self.grid_1D(x) if ax is None: @@ -118,13 +118,13 @@ class AbstractMarginFunction(object): grid = [] for i, xi in enumerate(linspace): gev_param = self.get_gev_params(np.array([xi])) - grid.append(gev_param.value_dict) - grid = {gev_param: [g[gev_param] for g in grid] for gev_param in GevParams.GEV_VALUE_NAMES} + grid.append(gev_param.summary_dict) + grid = {gev_param: [g[gev_param] for g in grid] for gev_param in GevParams.SUMMARY_NAMES} return grid, linspace # Visualization 2D - def visualize_2D(self, gev_value_name=GevParams.GEV_LOC, ax=None, show=True): + def visualize_2D(self, gev_value_name=GevParams.LOC, ax=None, show=True): x = self.coordinates.x_coordinates y = self.coordinates.y_coordinates grid = self.grid_2D(x, y) @@ -155,7 +155,7 @@ class AbstractMarginFunction(object): grid = [] for i, xi in enumerate(np.linspace(x.min(), x.max(), resolution)): for j, yj in enumerate(np.linspace(y.min(), y.max(), resolution)): - grid.append(self.get_gev_params(np.array([xi, yj])).value_dict) + grid.append(self.get_gev_params(np.array([xi, yj])).summary_dict) grid = {value_name: np.array([g[value_name] for g in grid]).reshape([resolution, resolution]) - for value_name in GevParams.GEV_VALUE_NAMES} + for value_name in GevParams.SUMMARY_NAMES} return grid diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/combined_margin_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/combined_margin_function.py index 17a8cfcddbc15193cc5ff272785900c5c198c7b4..59019ccacba4296b71719d66209564a86d408ca8 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/combined_margin_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/combined_margin_function.py @@ -5,7 +5,7 @@ import numpy as np from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ AbstractMarginFunction -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py index 0f87191e5392b7c3e25bd5488e66420a628cecff..bc97b77b85ef197e361255b3ccd6bffc151bcaf1 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/independent_margin_function.py @@ -3,7 +3,7 @@ from typing import Dict import numpy as np from extreme_estimator.extreme_models.margin_model.param_function.param_function import ParamFunction -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ AbstractMarginFunction from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates @@ -22,7 +22,7 @@ class IndependentMarginFunction(AbstractMarginFunction): assert self.gev_param_name_to_param_function is not None assert len(self.gev_param_name_to_param_function) == 3 gev_params = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: param_function = self.gev_param_name_to_param_function[gev_param_name] gev_params[gev_param_name] = param_function.get_gev_param_value(coordinate) return GevParams.from_dict(gev_params) diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/linear_margin_function.py b/extreme_estimator/extreme_models/margin_model/margin_function/linear_margin_function.py index 42f875241db7174ce90641482b9f37d12a2581a3..65749ca67407fd87f7b5b77e28baf4528f686a92 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/linear_margin_function.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/linear_margin_function.py @@ -5,7 +5,7 @@ from extreme_estimator.extreme_models.margin_model.margin_function.independent_m from extreme_estimator.extreme_models.margin_model.param_function.linear_coef import LinearCoef from extreme_estimator.extreme_models.margin_model.param_function.param_function import ConstantParamFunction, \ ParamFunction, LinearParamFunction -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates @@ -40,7 +40,7 @@ class LinearMarginFunction(IndependentMarginFunction): assert 0 < dim <= coordinates.nb_coordinates, "dim={}, nb_columns={}".format(dim, coordinates.nb_coordinates) # Map each gev_param_name to its corresponding param_function - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: linear_coef = self.gev_param_name_to_linear_coef[gev_param_name] # By default, if linear_dims are not specified, a constantParamFunction is chosen if gev_param_name not in self.gev_param_name_to_linear_dims.keys(): @@ -57,7 +57,7 @@ class LinearMarginFunction(IndependentMarginFunction): def from_coef_dict(cls, coordinates: AbstractCoordinates, gev_param_name_to_linear_dims: Dict[str, List[int]], coef_dict: Dict[str, float]): gev_param_name_to_linear_coef = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: linear_dims = gev_param_name_to_linear_dims.get(gev_param_name, []) linear_coef = LinearCoef.from_coef_dict(coef_dict=coef_dict, gev_param_name=gev_param_name, linear_dims=linear_dims) @@ -67,7 +67,7 @@ class LinearMarginFunction(IndependentMarginFunction): @property def form_dict(self) -> Dict[str, str]: form_dict = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: linear_dims = self.gev_param_name_to_linear_dims.get(gev_param_name, []) form_dict.update(self.gev_param_name_to_linear_coef[gev_param_name].form_dict(linear_dims=linear_dims)) return form_dict @@ -75,7 +75,7 @@ class LinearMarginFunction(IndependentMarginFunction): @property def coef_dict(self) -> Dict[str, float]: coef_dict = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: linear_dims = self.gev_param_name_to_linear_dims.get(gev_param_name, []) coef_dict.update(self.gev_param_name_to_linear_coef[gev_param_name].coef_dict(linear_dims=linear_dims)) return coef_dict diff --git a/extreme_estimator/extreme_models/margin_model/margin_function/utils.py b/extreme_estimator/extreme_models/margin_model/margin_function/utils.py index 458628dda0920ce246da513a6adece0f74cd5726..d2e0e1c2bf718a1862e7c1218ca01dff1c5802a3 100644 --- a/extreme_estimator/extreme_models/margin_model/margin_function/utils.py +++ b/extreme_estimator/extreme_models/margin_model/margin_function/utils.py @@ -1,8 +1,6 @@ -import numpy as np - from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ AbstractMarginFunction -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams def relative_abs_error(reference_value, fitted_value): @@ -23,7 +21,7 @@ def error_dict_between_margin_functions(reference: AbstractMarginFunction, fitte reference_values = reference.gev_value_name_to_serie fitted_values = fitted.gev_value_name_to_serie gev_param_name_to_error_serie = {} - for gev_value_name in GevParams.GEV_VALUE_NAMES: + for gev_value_name in GevParams.SUMMARY_NAMES: error = 100 * relative_abs_error(reference_values[gev_value_name], fitted_values[gev_value_name]) gev_param_name_to_error_serie[gev_value_name] = error return gev_param_name_to_error_serie diff --git a/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py b/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py index b2089aa11935f80ea45d832cfa37052dadcc4ff9..57d4254ba138a9fa533758f1772927f6581c6bf5 100644 --- a/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py +++ b/extreme_estimator/extreme_models/margin_model/smooth_margin_model.py @@ -3,14 +3,12 @@ from typing import Dict import numpy as np import pandas as pd -from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ - AbstractMarginFunction from extreme_estimator.extreme_models.margin_model.abstract_margin_model import AbstractMarginModel from extreme_estimator.extreme_models.margin_model.margin_function.linear_margin_function import LinearMarginFunction from extreme_estimator.extreme_models.margin_model.param_function.linear_coef import LinearCoef from extreme_estimator.extreme_models.utils import safe_run_r_estimator, r, retrieve_fitted_values, get_coord, \ get_margin_formula -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams class LinearMarginModel(AbstractMarginModel): @@ -37,7 +35,7 @@ class LinearMarginModel(AbstractMarginModel): default_intercept = 1 default_slope = 0.01 gev_param_name_and_dim_to_coef = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: gev_param_name_and_dim_to_coef[(gev_param_name, 0)] = default_intercept for dim in [1, 2, 3]: gev_param_name_and_dim_to_coef[(gev_param_name, dim)] = default_slope @@ -46,7 +44,7 @@ class LinearMarginModel(AbstractMarginModel): @staticmethod def gev_param_name_to_linear_coef(param_name_and_dim_to_coef): gev_param_name_to_linear_coef = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: dim_to_coef = {dim: param_name_and_dim_to_coef[(gev_param_name, dim)] for dim in [0, 1, 2, 3]} linear_coef = LinearCoef(gev_param_name=gev_param_name, dim_to_coef=dim_to_coef) gev_param_name_to_linear_coef[gev_param_name] = linear_coef @@ -55,7 +53,7 @@ class LinearMarginModel(AbstractMarginModel): @classmethod def from_coef_list(cls, coordinates, gev_param_name_to_coef_list): params = {} - for gev_param_name in GevParams.GEV_PARAM_NAMES: + for gev_param_name in GevParams.PARAM_NAMES: for dim, coef in enumerate(gev_param_name_to_coef_list[gev_param_name]): params[(gev_param_name, dim)] = coef return cls(coordinates, params_sample=params, params_start_fit=params) @@ -79,41 +77,41 @@ class ConstantMarginModel(LinearMarginModel): class LinearShapeDim1MarginModel(LinearMarginModel): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None): - super().load_margin_functions({GevParams.GEV_SHAPE: [1]}) + super().load_margin_functions({GevParams.SHAPE: [1]}) class LinearScaleDim1MarginModel(LinearMarginModel): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None): - super().load_margin_functions({GevParams.GEV_SCALE: [1]}) + super().load_margin_functions({GevParams.SCALE: [1]}) class LinearShapeDim1and2MarginModel(LinearMarginModel): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None): - super().load_margin_functions({GevParams.GEV_SHAPE: [1, 2]}) + super().load_margin_functions({GevParams.SHAPE: [1, 2]}) class LinearAllParametersDim1MarginModel(LinearMarginModel): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None): - super().load_margin_functions({GevParams.GEV_SHAPE: [1], - GevParams.GEV_LOC: [1], - GevParams.GEV_SCALE: [1]}) + super().load_margin_functions({GevParams.SHAPE: [1], + GevParams.LOC: [1], + GevParams.SCALE: [1]}) class LinearMarginModelExample(LinearMarginModel): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None): - super().load_margin_functions({GevParams.GEV_SHAPE: [1], - GevParams.GEV_LOC: [2], - GevParams.GEV_SCALE: [1]}) + super().load_margin_functions({GevParams.SHAPE: [1], + GevParams.LOC: [2], + GevParams.SCALE: [1]}) class LinearAllParametersAllDimsMarginModel(LinearMarginModel): def load_margin_functions(self, margin_function_class: type = None, gev_param_name_to_linear_dims=None): all_dims = list(range(1, self.coordinates.nb_coordinates + 1)) - super().load_margin_functions({GevParams.GEV_SHAPE: all_dims.copy(), - GevParams.GEV_LOC: all_dims.copy(), - GevParams.GEV_SCALE: all_dims.copy()}) + super().load_margin_functions({GevParams.SHAPE: all_dims.copy(), + GevParams.LOC: all_dims.copy(), + GevParams.SCALE: all_dims.copy()}) diff --git a/extreme_estimator/gev/gevmle_fit.py b/extreme_estimator/gev/gevmle_fit.py deleted file mode 100644 index c63732eb578a72b1e581a9b2b2117613a735cdbf..0000000000000000000000000000000000000000 --- a/extreme_estimator/gev/gevmle_fit.py +++ /dev/null @@ -1,42 +0,0 @@ -import rpy2.robjects as ro -import numpy as np -import rpy2.robjects.numpy2ri as rpyn -import os.path as op - -# Defining some constants -from extreme_estimator.gev_params import GevParams -from extreme_estimator.extreme_models.utils import get_associated_r_file - -from extreme_estimator.extreme_models.utils import r - - -# def gev_mle_fit(x_gev: np.ndarray, start_loc=0.0, start_scale=1.0, start_shape=1.0): -# assert np.ndim(x_gev) == 1 -# assert start_scale > 0 -# r = ro.r -# x_gev = rpyn.numpy2ri(x_gev) -# r.assign('x_gev', x_gev) -# r.assign('python_wrapping', True) -# r.source(file=get_associated_r_file(python_filepath=op.abspath(__file__))) -# print(start_loc, start_scale, start_shape) -# res = r.mle_gev(loc=start_loc, scale=start_scale, shape=start_shape) -# mle_params = dict(r.attr(res, 'coef').items()) -# print('mle params', mle_params) -# return mle_params - -def spatial_extreme_gevmle_fit(x_gev): - res = r.gevmle(x_gev, method="Nelder") - return dict(zip(res.names, res)) - - -class GevMleFit(object): - - def __init__(self, x_gev: np.ndarray): - assert np.ndim(x_gev) == 1 - assert len(x_gev) > 1 - self.x_gev = x_gev - self.mle_params = spatial_extreme_gevmle_fit(x_gev) - self.gev_params = GevParams.from_dict(self.mle_params) - self.shape = self.mle_params[GevParams.GEV_SHAPE] - self.scale = self.mle_params[GevParams.GEV_SCALE] - self.loc = self.mle_params[GevParams.GEV_LOC] diff --git a/extreme_estimator/gev_params.py b/extreme_estimator/gev_params.py deleted file mode 100644 index 2f69e55ae9c663eb0947f16a7fa79a926e294717..0000000000000000000000000000000000000000 --- a/extreme_estimator/gev_params.py +++ /dev/null @@ -1,71 +0,0 @@ -import numpy as np -import pandas as pd - -from extreme_estimator.extreme_models.utils import r - - -class GevParams(object): - # GEV parameters - GEV_SCALE = 'scale' - GEV_LOC = 'loc' - GEV_SHAPE = 'shape' - GEV_PARAM_NAMES = [GEV_LOC, GEV_SCALE, GEV_SHAPE] - # GEV quantiles - GEV_QUANTILE_10 = 'quantile 10' - GEV_QUANTILE_100 = 'quantile 100' - GEV_QUANTILE_1000 = 'quantile 1000' - GEV_QUANTILE_NAMES = [GEV_QUANTILE_10, GEV_QUANTILE_100, GEV_QUANTILE_1000] - GEV_QUANTILE_P_VALUES = [0.9, 0.99, 0.999] - # GEV values - GEV_VALUE_NAMES = GEV_PARAM_NAMES + GEV_QUANTILE_NAMES[:-1] - - # GEV parameters - - def __init__(self, loc: float, scale: float, shape: float): - self.location = loc - self.scale = scale - self.shape = shape - # self.scale = max(self.scale, 1e-4) - assert self.scale > 0 - - @classmethod - def from_dict(cls, params: dict): - return cls(**params) - - def to_dict(self) -> dict: - return { - self.GEV_LOC: self.location, - self.GEV_SCALE: self.scale, - self.GEV_SHAPE: self.shape, - } - - def to_array(self) -> np.ndarray: - return self.to_serie().values - - def to_serie(self) -> pd.Series: - return pd.Series(self.to_dict(), index=self.GEV_PARAM_NAMES) - - # GEV quantiles - - def qgev(self, p) -> float: - return r.qgev(p, self.location, self.scale, self.shape)[0] - - @property - def quantile_name_to_p(self) -> dict: - return dict(zip(self.GEV_QUANTILE_NAMES, self.GEV_QUANTILE_P_VALUES)) - - @property - def quantile_dict(self) -> dict: - return {quantile_name: self.qgev(p) for quantile_name, p in self.quantile_name_to_p.items()} - - # GEV values - - @property - def value_dict(self) -> dict: - return {**self.to_dict(), **self.quantile_dict} - - @property - def value_serie(self) -> pd.Series: - return pd.Series(self.value_dict, index=self.GEV_VALUE_NAMES) - - diff --git a/extreme_estimator/gev/__init__.py b/extreme_estimator/margin_fits/__init__.py similarity index 100% rename from extreme_estimator/gev/__init__.py rename to extreme_estimator/margin_fits/__init__.py diff --git a/extreme_estimator/margin_fits/abstract_params.py b/extreme_estimator/margin_fits/abstract_params.py new file mode 100644 index 0000000000000000000000000000000000000000..9f180d180e1ebd12690404a089935dc5673c080e --- /dev/null +++ b/extreme_estimator/margin_fits/abstract_params.py @@ -0,0 +1,62 @@ +from typing import List + +import numpy as np +import pandas as pd + +from extreme_estimator.extreme_models.utils import r + + +class AbstractParams(object): + # Parameters + PARAM_NAMES = [] + # Quantile + QUANTILE_10 = 'quantile 10' + QUANTILE_100 = 'quantile 100' + QUANTILE_1000 = 'quantile 1000' + QUANTILE_NAMES = [QUANTILE_10, QUANTILE_100, QUANTILE_1000][:-1] + QUANTILE_P_VALUES = [0.9, 0.99, 0.999] + # Summary + SUMMARY_NAMES = PARAM_NAMES + QUANTILE_NAMES + + @classmethod + def from_dict(cls, params: dict): + return cls(**params) + + # Parameters + + @property + def param_values(self) -> List[float]: + raise NotImplementedError + + def to_dict(self) -> dict: + return dict(zip(self.PARAM_NAMES, self.param_values)) + + def to_serie(self) -> pd.Series: + return pd.Series(self.to_dict(), index=self.PARAM_NAMES) + + def to_array(self) -> np.ndarray: + return self.to_serie().values + + # Quantile + + def quantile(self, p) -> float: + raise NotImplementedError + + @property + def quantile_name_to_p(self) -> dict: + return dict(zip(self.QUANTILE_NAMES, self.QUANTILE_P_VALUES)) + + @property + def quantile_name_to_value(self) -> dict: + return {quantile_name: self.quantile(p) for quantile_name, p in self.quantile_name_to_p.items()} + + # Summary (i.e. parameters & quantiles) + + @property + def summary_dict(self) -> dict: + return {**self.to_dict(), **self.quantile_name_to_value} + + @property + def summary_serie(self) -> pd.Series: + return pd.Series(self.summary_dict, index=self.SUMMARY_NAMES) + diff --git a/extreme_estimator/margin_fits/extreme_params.py b/extreme_estimator/margin_fits/extreme_params.py new file mode 100644 index 0000000000000000000000000000000000000000..60bbeca3e5dfebbc04cb6a037b3269c244090d30 --- /dev/null +++ b/extreme_estimator/margin_fits/extreme_params.py @@ -0,0 +1,20 @@ +from extreme_estimator.margin_fits.abstract_params import AbstractParams + + +class ExtremeParams(AbstractParams): + + # Extreme parameters + SCALE = 'scale' + LOC = 'loc' + SHAPE = 'shape' + PARAM_NAMES = [LOC, SCALE, SHAPE] + + def __init__(self, loc: float, scale: float, shape: float): + self.location = loc + self.scale = scale + self.shape = shape + assert self.scale > 0 + + @property + def param_values(self): + return [self.location, self.scale, self.shape] \ No newline at end of file diff --git a/test/test_extreme_estimator/test_gev/__init__.py b/extreme_estimator/margin_fits/gev/__init__.py similarity index 100% rename from test/test_extreme_estimator/test_gev/__init__.py rename to extreme_estimator/margin_fits/gev/__init__.py diff --git a/extreme_estimator/margin_fits/gev/gev_params.py b/extreme_estimator/margin_fits/gev/gev_params.py new file mode 100644 index 0000000000000000000000000000000000000000..ba743f8ad641e67ea41ce6f72e175e596d75b066 --- /dev/null +++ b/extreme_estimator/margin_fits/gev/gev_params.py @@ -0,0 +1,12 @@ +from extreme_estimator.extreme_models.utils import r +from extreme_estimator.margin_fits.extreme_params import ExtremeParams + + +class GevParams(ExtremeParams): + + def __init__(self, loc: float, scale: float, shape: float, block_size: int = None): + super().__init__(loc, scale, shape) + self.block_size = block_size + + def quantile(self, p) -> float: + return r.qgev(p, self.location, self.scale, self.shape)[0] diff --git a/extreme_estimator/gev/gevmle_fit.R b/extreme_estimator/margin_fits/gev/gevmle_fit.R similarity index 100% rename from extreme_estimator/gev/gevmle_fit.R rename to extreme_estimator/margin_fits/gev/gevmle_fit.R diff --git a/extreme_estimator/margin_fits/gev/gevmle_fit.py b/extreme_estimator/margin_fits/gev/gevmle_fit.py new file mode 100644 index 0000000000000000000000000000000000000000..8ad75d186c47271b6b11b6555b582ea5a0660979 --- /dev/null +++ b/extreme_estimator/margin_fits/gev/gevmle_fit.py @@ -0,0 +1,14 @@ +import numpy as np + +from extreme_estimator.margin_fits.gev.gev_params import GevParams +from extreme_estimator.margin_fits.margin_fits_utils import spatial_extreme_gevmle_fit + + +class GevMleFit(object): + + def __init__(self, x_gev: np.ndarray, block_size=None): + assert np.ndim(x_gev) == 1 + assert len(x_gev) > 1 + self.x_gev = x_gev + self.mle_params = spatial_extreme_gevmle_fit(x_gev) + self.gev_params = GevParams.from_dict({**self.mle_params, 'block_size': block_size}) diff --git a/extreme_estimator/margin_fits/gpd/__init__.py b/extreme_estimator/margin_fits/gpd/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/extreme_estimator/margin_fits/gpd/gpd_params.py b/extreme_estimator/margin_fits/gpd/gpd_params.py new file mode 100644 index 0000000000000000000000000000000000000000..3eb4233161e4c18e1e7ef6675822cb2a0544d32e --- /dev/null +++ b/extreme_estimator/margin_fits/gpd/gpd_params.py @@ -0,0 +1,12 @@ +from extreme_estimator.extreme_models.utils import r +from extreme_estimator.margin_fits.extreme_params import ExtremeParams + + +class GpdParams(ExtremeParams): + + def __init__(self, loc: float, scale: float, shape: float, threshold: float = None): + super().__init__(loc, scale, shape) + self.threshold = threshold + + def quantile(self, p) -> float: + return r.qgpd(p, self.location, self.scale, self.shape)[0] diff --git a/extreme_estimator/margin_fits/gpd/gpdmle_fit.py b/extreme_estimator/margin_fits/gpd/gpdmle_fit.py new file mode 100644 index 0000000000000000000000000000000000000000..da57af36852d8480a4474eb6807402afac893752 --- /dev/null +++ b/extreme_estimator/margin_fits/gpd/gpdmle_fit.py @@ -0,0 +1,15 @@ +import numpy as np + +from extreme_estimator.margin_fits.gpd.gpd_params import GpdParams +from extreme_estimator.margin_fits.margin_fits_utils import spatial_extreme_gpdmle_fit + + +class GpdMleFit(object): + + def __init__(self, x_gev: np.ndarray, threshold): + assert np.ndim(x_gev) == 1 + assert len(x_gev) > 1 + self.x_gev = x_gev + self.threshold = threshold + self.mle_params = spatial_extreme_gpdmle_fit(x_gev, threshold) + self.gev_params = GpdParams.from_dict({**self.mle_params, 'threshold': threshold}) \ No newline at end of file diff --git a/extreme_estimator/margin_fits/margin_fits_utils.py b/extreme_estimator/margin_fits/margin_fits_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c630955c67c97d937247cf8c51847cd9e99b9368 --- /dev/null +++ b/extreme_estimator/margin_fits/margin_fits_utils.py @@ -0,0 +1,20 @@ +from extreme_estimator.extreme_models.utils import r + +""" +These two functions are “extremely light†functions to fit the GEV/GPD. These functions are mainlyuseful +to compute starting values for the Schlather and Smith mode +If more refined (univariate) analysis have to be performed, users should use more specialised pack-ages + - e.g. POT, evd, ismev, . . . . +""" + + +def spatial_extreme_gevmle_fit(x_gev): + res = r.gevmle(x_gev, method="Nelder") + return dict(zip(res.names, res)) + + +def spatial_extreme_gpdmle_fit(x_gev, threshold): + res = r.gpdmle(x_gev, threshold, method="Nelder") + return dict(zip(res.names, res)) + +# todo: define more robust function gevmle_fit/gpdmle_fit diff --git a/safran_study/safran.py b/safran_study/safran.py index 8e37cd3bd45f602dc40e8d2c6a3bcdb4900f7e0d..2009ac91d6b19003e16e4e219a6d872aae6d23df 100644 --- a/safran_study/safran.py +++ b/safran_study/safran.py @@ -4,15 +4,14 @@ import matplotlib.colorbar as cbar import os.path as op from collections import OrderedDict -import matplotlib import matplotlib.pyplot as plt import pandas as pd from matplotlib import cm -from mpl_toolkits.axes_grid1 import AxesGrid, make_axes_locatable +from mpl_toolkits.axes_grid1 import make_axes_locatable from netCDF4 import Dataset -from extreme_estimator.gev.gevmle_fit import GevMleFit -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gevmle_fit import GevMleFit +from extreme_estimator.margin_fits.gev.gev_params import GevParams from safran_study.massif import safran_massif_names_from_datasets from safran_study.shifted_color_map import shiftedColorMap from safran_study.snowfall_annual_maxima import SafranSnowfall @@ -58,7 +57,7 @@ class Safran(object): plt.show() def visualize_gev_fit_with_cmap(self, show=True, axes=None): - params_names = GevParams.GEV_VALUE_NAMES + params_names = GevParams.SUMMARY_NAMES if axes is None: fig, axes = plt.subplots(1, len(params_names)) fig.subplots_adjust(hspace=1.0, wspace=1.0) @@ -77,7 +76,7 @@ class Safran(object): # Load the shifted cmap to center on a middle point cmap = [plt.cm.coolwarm, plt.cm.bwr, plt.cm.seismic][1] - if gev_param_name == GevParams.GEV_SHAPE: + if gev_param_name == GevParams.SHAPE: shifted_cmap = shiftedColorMap(cmap, midpoint=midpoint, name='shifted') norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) else: @@ -113,8 +112,8 @@ class Safran(object): @property def df_gev_mle_each_massif(self): - # Fit a gev n each massif - massif_to_gev_mle = {massif_name: GevMleFit(self.df_annual_maxima[massif_name]).gev_params.value_serie + # Fit a margin_fits n each massif + massif_to_gev_mle = {massif_name: GevMleFit(self.df_annual_maxima[massif_name]).gev_params.summary_serie for massif_name in self.safran_massif_names} return pd.DataFrame(massif_to_gev_mle, columns=self.safran_massif_names) diff --git a/safran_study/visualize_safran.py b/safran_study/visualize_safran.py index 5937e40d9eeb7078dd3338a57b0d90e915a2f1a6..8fbcdaa67800b992d2a221e90251f67c11011de3 100644 --- a/safran_study/visualize_safran.py +++ b/safran_study/visualize_safran.py @@ -1,9 +1,4 @@ -import pandas as pd - -from extreme_estimator.gev_params import GevParams from safran_study.safran import Safran -from safran_study.safran_extended import ExtendedSafran -from utils import VERSION from itertools import product diff --git a/test/test_extreme_estimator/test_extreme_models/test_margin_model.py b/test/test_extreme_estimator/test_extreme_models/test_margin_model.py index c49a3bd355bf23bb624e6089d84c56cdcd324750..638e321f5509f61cdb52b3234937c2fa94c1c19e 100644 --- a/test/test_extreme_estimator/test_extreme_models/test_margin_model.py +++ b/test/test_extreme_estimator/test_extreme_models/test_margin_model.py @@ -1,6 +1,6 @@ import unittest -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearShapeDim1MarginModel, \ LinearAllParametersAllDimsMarginModel from spatio_temporal_dataset.coordinates.spatial_coordinates.generated_spatial_coordinates import CircleSpatialCoordinates @@ -20,7 +20,7 @@ class VisualizationMarginModel(unittest.TestCase): def test_example_visualization_1D(self): coordinates = LinSpaceSpatialCoordinates.from_nb_points(nb_points=self.nb_points) - margin_model = self.margin_model(coordinates=coordinates, params_sample={(GevParams.GEV_SHAPE, 1): 0.02}) + margin_model = self.margin_model(coordinates=coordinates, params_sample={(GevParams.SHAPE, 1): 0.02}) margin_model.margin_function_sample.visualize(show=self.DISPLAY) self.assertTrue(True) diff --git a/test/test_extreme_estimator/test_margin_fits/__init__.py b/test/test_extreme_estimator/test_margin_fits/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/test/test_extreme_estimator/test_margin_fits/test_gev/__init__.py b/test/test_extreme_estimator/test_margin_fits/test_gev/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/test/test_extreme_estimator/test_gev_params.py b/test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_params.py similarity index 68% rename from test/test_extreme_estimator/test_gev_params.py rename to test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_params.py index 8ebbf28282dad22b2dc478f91a864f0863adb365..dab5ca5508814d9a6269addf2ec02fc24d7ed470 100644 --- a/test/test_extreme_estimator/test_gev_params.py +++ b/test/test_extreme_estimator/test_margin_fits/test_gev/test_gev_params.py @@ -2,9 +2,7 @@ import unittest import numpy as np -from extreme_estimator.extreme_models.utils import r, set_seed_r -from extreme_estimator.gev.gevmle_fit import GevMleFit -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams class TestGevParams(unittest.TestCase): @@ -12,7 +10,7 @@ class TestGevParams(unittest.TestCase): def test_quantile(self): # For GEV(1,1,1), the repartition function is exp(-y^-1) the formula for the quantile p is -1/log(p) gev_params = GevParams(loc=1.0, shape=1.0, scale=1.0) - quantile_dict = gev_params.quantile_dict + quantile_dict = gev_params.quantile_name_to_value for quantile_name, p in gev_params.quantile_name_to_p.items(): self.assertAlmostEqual(- 1 / np.log(p), quantile_dict[quantile_name]) diff --git a/test/test_extreme_estimator/test_gev/test_gevmle_fit.py b/test/test_extreme_estimator/test_margin_fits/test_gev/test_gevmle_fit.py similarity index 93% rename from test/test_extreme_estimator/test_gev/test_gevmle_fit.py rename to test/test_extreme_estimator/test_margin_fits/test_gev/test_gevmle_fit.py index 97b2d8ba0999b712deb62ea7475c0069bb9aea16..99a56cb314b1c8c14c0ea3287f4cc6864a87564d 100644 --- a/test/test_extreme_estimator/test_gev/test_gevmle_fit.py +++ b/test/test_extreme_estimator/test_margin_fits/test_gev/test_gevmle_fit.py @@ -3,7 +3,7 @@ import unittest import numpy as np from extreme_estimator.extreme_models.utils import r, set_seed_r -from extreme_estimator.gev.gevmle_fit import GevMleFit +from extreme_estimator.margin_fits.gev.gevmle_fit import GevMleFit class TestGevMleFit(unittest.TestCase): diff --git a/test/test_unitary/test_rmaxstab/test_rmaxstab_with_margin.py b/test/test_unitary/test_rmaxstab/test_rmaxstab_with_margin.py index 1db26310de084ddf2c1d8f9ad1234eee4951a5e8..0f485e949e363bdd88c02ecb38e1ea760bb76993 100644 --- a/test/test_unitary/test_rmaxstab/test_rmaxstab_with_margin.py +++ b/test/test_unitary/test_rmaxstab/test_rmaxstab_with_margin.py @@ -5,7 +5,7 @@ import numpy as np from extreme_estimator.extreme_models.margin_model.smooth_margin_model import ConstantMarginModel, \ LinearAllParametersAllDimsMarginModel from extreme_estimator.extreme_models.utils import r -from extreme_estimator.gev_params import GevParams +from extreme_estimator.margin_fits.gev.gev_params import GevParams from spatio_temporal_dataset.dataset.simulation_dataset import FullSimulatedDataset from test.test_unitary.test_rmaxstab.test_rmaxstab_without_margin import TestRMaxStab from test.test_unitary.test_unitary_abstract import TestUnitaryAbstract @@ -31,9 +31,9 @@ class TestRMaxStabWithMarginConstant(TestUnitaryAbstract): coordinates, max_stable_model = TestRMaxStab.python_code() # Load margin model gev_param_name_to_coef_list = { - GevParams.GEV_LOC: [0.2], - GevParams.GEV_SHAPE: [0.2], - GevParams.GEV_SCALE: [0.2], + GevParams.LOC: [0.2], + GevParams.SHAPE: [0.2], + GevParams.SCALE: [0.2], } margin_model = ConstantMarginModel.from_coef_list(coordinates, gev_param_name_to_coef_list) # Load dataset @@ -77,9 +77,9 @@ class TestRMaxStabWithLinearMargin(TestUnitaryAbstract): coordinates, max_stable_model = TestRMaxStab.python_code() # Load margin model gev_param_name_to_coef_list = { - GevParams.GEV_LOC: [-10, 0, 2], - GevParams.GEV_SHAPE: [2, -3, 0], - GevParams.GEV_SCALE: [5, 2, 1], + GevParams.LOC: [-10, 0, 2], + GevParams.SHAPE: [2, -3, 0], + GevParams.SCALE: [5, 2, 1], } margin_model = LinearAllParametersAllDimsMarginModel.from_coef_list(coordinates, gev_param_name_to_coef_list) # Load dataset