import io import os import os.path as op from collections import OrderedDict from contextlib import redirect_stdout from typing import List, Dict, Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image from PIL import ImageDraw from netCDF4 import Dataset from experiment.meteo_france_SCM_study.abstract_variable import AbstractVariable from experiment.meteo_france_SCM_study.altitude import ALTITUDES, ZS_INT_23, ZS_INT_MASK from experiment.meteo_france_SCM_study.visualization.utils import get_km_formatter from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ AbstractMarginFunction from extreme_estimator.margin_fits.plot.create_shifted_cmap import get_color_rbga_shifted from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \ AbstractSpatialCoordinates from spatio_temporal_dataset.spatio_temporal_observations.annual_maxima_observations import AnnualMaxima from utils import get_full_path, cached_property f = io.StringIO() with redirect_stdout(f): from simpledbf import Dbf5 class AbstractStudy(object): """ Les fichiers netcdf de SAFRAN et CROCUS sont autodocumentés (on peut les comprendre avec ncdump -h notamment). """ REANALYSIS_FOLDER = 'alp_flat/reanalysis' def __init__(self, variable_class: type, altitude: int = 1800, year_min=1000, year_max=3000): assert altitude in ALTITUDES, altitude self.altitude = altitude self.model_name = None self.variable_class = variable_class self.year_min = year_min self.year_max = year_max def write_to_file(self, df: pd.DataFrame): if not op.exists(self.result_full_path): os.makedirs(self.result_full_path, exist_ok=True) df.to_csv(op.join(self.result_full_path, 'merged_array_{}_altitude.csv'.format(self.altitude))) """ Data """ @property def df_all_daily_time_series_concatenated(self) -> pd.DataFrame: df_list = [pd.DataFrame(time_serie, columns=self.study_massif_names) for time_serie in self.year_to_daily_time_serie_array.values()] df_concatenated = pd.concat(df_list) return df_concatenated @property def observations_annual_maxima(self) -> AnnualMaxima: return AnnualMaxima(df_maxima_gev=pd.DataFrame(self.year_to_annual_maxima, index=self.study_massif_names)) @property def df_annual_total(self) -> pd.DataFrame: return pd.DataFrame(self.year_to_annual_total, index=self.study_massif_names).transpose() def annual_aggregation_function(self, *args, **kwargs): raise NotImplementedError() """ Load some attributes only once """ @cached_property def year_to_dataset_ordered_dict(self) -> OrderedDict: # Map each year to the correspond netCDF4 Dataset year_to_dataset = OrderedDict() nc_files = [(int(f.split('_')[-2][:4]), f) for f in os.listdir(self.study_full_path) if f.endswith('.nc')] for year, nc_file in sorted(nc_files, key=lambda t: t[0]): if self.year_min <= year < self.year_max: year_to_dataset[year] = Dataset(op.join(self.study_full_path, nc_file)) return year_to_dataset @property def start_year_and_stop_year(self) -> Tuple[int, int]: ordered_years = list(self.year_to_dataset_ordered_dict.keys()) return ordered_years[0], ordered_years[-1] @cached_property def year_to_daily_time_serie_array(self) -> OrderedDict: return self._year_to_daily_time_serie_array @cached_property def year_to_annual_maxima(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_maxima = OrderedDict() for year, time_serie in self._year_to_max_daily_time_serie.items(): year_to_annual_maxima[year] = time_serie.max(axis=0) return year_to_annual_maxima @cached_property def year_to_annual_total(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_mean = OrderedDict() for year, time_serie in self._year_to_daily_time_serie_array.items(): year_to_annual_mean[year] = self.apply_annual_aggregation(time_serie) return year_to_annual_mean def apply_annual_aggregation(self, time_serie): return self.annual_aggregation_function(time_serie, axis=0) def instantiate_variable_object(self, dataset) -> AbstractVariable: return self.variable_class(dataset, self.altitude) """ Private methods to be overwritten """ @property def _year_to_daily_time_serie_array(self) -> OrderedDict: # Map each year to a matrix of size 365-nb_days_consecutive+1 x nb_massifs year_to_variable = {year: self.instantiate_variable_object(dataset) for year, dataset in self.year_to_dataset_ordered_dict.items()} year_to_daily_time_serie_array = OrderedDict() for year in self.year_to_dataset_ordered_dict.keys(): # Check daily data daily_time_serie = year_to_variable[year].daily_time_serie_array assert daily_time_serie.shape[0] in [365, 366] assert daily_time_serie.shape[1] == len(ZS_INT_MASK) # Filter only the data corresponding to the altitude of interest daily_time_serie = daily_time_serie[:, self.altitude_mask] year_to_daily_time_serie_array[year] = daily_time_serie return year_to_daily_time_serie_array @property def _year_to_max_daily_time_serie(self) -> OrderedDict: return self._year_to_daily_time_serie_array ########## @property def study_massif_names(self) -> List[str]: return self.altitude_to_massif_names[self.altitude] @cached_property def all_massif_names(self) -> List[str]: """ Pour l'identification des massifs, le numéro de la variable massif_num correspond à celui de l'attribut num_opp """ metadata_path = op.join(self.full_path, self.REANALYSIS_FOLDER, 'metadata') dbf = Dbf5(op.join(metadata_path, 'massifs_alpes.dbf')) df = dbf.to_dataframe().copy() # type: pd.DataFrame dbf.f.close() df.sort_values(by='num_opp', inplace=True) all_massif_names = list(df['nom']) # Correct a massif name all_massif_names[all_massif_names.index('Beaufortin')] = 'Beaufortain' return all_massif_names @property def original_safran_massif_id_to_massif_name(self) -> Dict[int, str]: return {massif_id: massif_name for massif_id, massif_name in enumerate(self.all_massif_names)} @cached_property def massifs_coordinates(self) -> AbstractSpatialCoordinates: # Build coordinate object from df_centroid return AbstractSpatialCoordinates.from_df(self.df_spatial()) def df_spatial(self): # Coordinate object that represents the massif coordinates in Lambert extended df_centroid = self.load_df_centroid() for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]: df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float) # Filter, keep massifs present at the altitude of interest df_centroid = df_centroid.loc[self.study_massif_names] return df_centroid def load_df_centroid(self) -> pd.DataFrame: # Load df_centroid containing all the massif names df_centroid = pd.read_csv(op.join(self.map_full_path, 'coordonnees_massifs_alpes.csv')) df_centroid.set_index('NOM', inplace=True) # Check that the names of massifs are the same symmetric_difference = set(df_centroid.index).symmetric_difference(self.all_massif_names) assert len(symmetric_difference) == 0, symmetric_difference # Sort the column in the order of the SAFRAN dataset df_centroid = df_centroid.reindex(self.all_massif_names, axis=0) return df_centroid @property def coordinate_id_to_massif_name(self) -> Dict[int, str]: df_centroid = self.load_df_centroid() return dict(zip(df_centroid['id'], df_centroid.index)) """ Visualization methods """ def visualize_study(self, ax=None, massif_name_to_value=None, show=True, fill=True, replace_blue_by_white=True, label=None, add_text=False): if massif_name_to_value is None: massif_name_to_fill_kwargs = None else: massif_names, values = list(zip(*massif_name_to_value.items())) colors = get_color_rbga_shifted(ax, replace_blue_by_white, values, label=label) massif_name_to_fill_kwargs = {massif_name: {'color': color} for massif_name, color in zip(massif_names, colors)} if ax is None: ax = plt.gca() for coordinate_id, coords_list in self.idx_to_coords_list.items(): # Retrieve the list of coords (x,y) that define the contour of the massif of id coordinate_id # if j == 0: # mask_outside_polygon(poly_verts=l, ax=ax) # Plot the contour of the massif coords_list = list(zip(*coords_list)) ax.plot(*coords_list, color='black') # Potentially, fill the inside of the polygon with some color if fill and coordinate_id in self.coordinate_id_to_massif_name: massif_name = self.coordinate_id_to_massif_name[coordinate_id] fill_kwargs = massif_name_to_fill_kwargs[massif_name] if massif_name_to_fill_kwargs is not None else {} ax.fill(*coords_list, **fill_kwargs) # x , y = list(self.massifs_coordinates.df_all_coordinates.loc[massif_name]) # x , y= coords_list[0][0], coords_list[0][1] # print(x, y) # print(massif_name) # ax.scatter(x, y) # ax.text(x, y, massif_name) # Display the center of the massif ax.scatter(self.massifs_coordinates.x_coordinates, self.massifs_coordinates.y_coordinates, s=1) # Improve some explanation on the X axis and on the Y axis ax.set_xlabel('Longitude (km)') ax.xaxis.set_major_formatter(get_km_formatter()) ax.set_ylabel('Latitude (km)') ax.yaxis.set_major_formatter(get_km_formatter()) # Display the name or value of the massif if add_text: for _, row in self.massifs_coordinates.df_all_coordinates.iterrows(): x, y = list(row) massif_name = row.name value = massif_name_to_value[massif_name] ax.text(x, y, str(round(value, 1))) if show: plt.show() @property def idx_to_coords_list(self): df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv')) coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X], row_massif[AbstractCoordinates.COORDINATE_Y]) for _, row_massif in df_massif.iterrows()] all_idxs = set([t[0] for t in coord_tuples]) return {idx: [coords for idx_loop, *coords in coord_tuples if idx == idx_loop] for idx in all_idxs} @property def all_coords_list(self): all_values = [] for e in self.idx_to_coords_list.values(): all_values.extend(e) return list(zip(*all_values)) @property def visualization_x_limits(self): return min(self.all_coords_list[0]), max(self.all_coords_list[0]) @property def visualization_y_limits(self): return min(self.all_coords_list[1]), max(self.all_coords_list[1]) @cached_property def mask_french_alps(self): resolution = AbstractMarginFunction.VISUALIZATION_RESOLUTION mask_french_alps = np.zeros([resolution, resolution]) for polygon in self.idx_to_coords_list.values(): xy_values = list(zip(*polygon)) normalized_polygon = [] for values, (minlim, max_lim) in zip(xy_values, [self.visualization_x_limits, self.visualization_y_limits]): values -= minlim values *= resolution / (max_lim - minlim) normalized_polygon.append(values) normalized_polygon = list(zip(*normalized_polygon)) img = Image.new('L', (resolution, resolution), 0) ImageDraw.Draw(img).polygon(normalized_polygon, outline=1, fill=1) mask_massif = np.array(img) mask_french_alps += mask_massif return ~np.array(mask_french_alps, dtype=bool) """ Some properties """ @cached_property def massif_name_to_altitudes(self) -> Dict[str, List[int]]: s = ZS_INT_23 + [0] zs_list = [] zs_all_list = [] for a, b in zip(s[:-1], s[1:]): zs_list.append(a) if a > b: zs_all_list.append(zs_list) zs_list = [] return dict(zip(self.all_massif_names, zs_all_list)) @cached_property def altitude_to_massif_names(self) -> Dict[int, List[str]]: altitude_to_massif_names = {altitude: [] for altitude in ALTITUDES} for massif_name in self.massif_name_to_altitudes.keys(): for altitude in self.massif_name_to_altitudes[massif_name]: altitude_to_massif_names[altitude].append(massif_name) return altitude_to_massif_names @property def missing_massif_name(self): return set(self.all_massif_names) - set(self.altitude_to_massif_names[self.altitude]) @cached_property def altitude_mask(self): altitude_mask = ZS_INT_MASK == self.altitude assert np.sum(altitude_mask) == len(self.altitude_to_massif_names[self.altitude]) return altitude_mask @property def title(self): return "{}/at altitude {}m ({} mountain chains)".format(self.variable_name, self.altitude, len(self.study_massif_names)) @property def variable_name(self): return self.variable_class.NAME + ' (in {})'.format(self.variable_unit) @property def variable_unit(self): return self.variable_class.UNIT """ Some path properties """ @property def relative_path(self) -> str: return r'local/spatio_temporal_datasets' @property def full_path(self) -> str: return get_full_path(relative_path=self.relative_path) @property def map_full_path(self) -> str: return op.join(self.full_path, 'map') @property def result_full_path(self) -> str: return op.join(self.full_path, 'results') @property def study_full_path(self) -> str: assert self.model_name in ['Safran', 'Crocus'] study_folder = 'meteo' if self.model_name is 'Safran' else 'pro' return op.join(self.full_path, self.REANALYSIS_FOLDER, study_folder)