import math import os import os.path as op import numpy as np import matplotlib.pyplot as plt import pandas as pd from experiment.meteo_france_SCM_study.abstract_study import AbstractStudy from extreme_estimator.estimator.full_estimator.abstract_full_estimator import \ FullEstimatorInASingleStepWithSmoothMargin from extreme_estimator.estimator.margin_estimator.abstract_margin_estimator import SmoothMarginEstimator from extreme_estimator.extreme_models.margin_model.smooth_margin_model import LinearAllParametersAllDimsMarginModel from extreme_estimator.extreme_models.max_stable_model.max_stable_models import Smith from extreme_estimator.margin_fits.gev.gev_params import GevParams from extreme_estimator.margin_fits.gev.gevmle_fit import GevMleFit from extreme_estimator.margin_fits.gpd.gpd_params import GpdParams from extreme_estimator.margin_fits.gpd.gpdmle_fit import GpdMleFit from extreme_estimator.margin_fits.plot.create_shifted_cmap import get_color_rbga_shifted from spatio_temporal_dataset.dataset.abstract_dataset import AbstractDataset from test.test_utils import load_test_max_stable_models from utils import get_display_name_from_object_type, VERSION, VERSION_TIME class StudyVisualizer(object): def __init__(self, study: AbstractStudy, show=True, save_to_file=False): self.save_to_file = save_to_file self.study = study self.show = False if self.save_to_file else show self.window_size_for_smoothing = 21 self.figsize=(16.0, 10.0) @property def observations(self): return self.study.observations_annual_maxima @property def coordinates(self): return self.study.massifs_coordinates @property def dataset(self): return AbstractDataset(self.observations, self.coordinates) def visualize_all_kde_graphs(self): massif_names = self.study.safran_massif_names nb_columns = 5 nb_rows = math.ceil(len(massif_names) / nb_columns) fig, axes = plt.subplots(nb_rows, nb_columns, figsize=self.figsize) fig.subplots_adjust(hspace=1.0, wspace=1.0) for i, massif_name in enumerate(massif_names): row_id, column_id = i // nb_columns, i % nb_columns ax = axes[row_id, column_id] self.visualize_kde_graph(ax, i, massif_name) plot_name = ' mean with sliding window of size {}'.format(self.window_size_for_smoothing) self.show_or_save_to_file(plot_name) def visualize_kde_graph(self, ax, i, massif_name): self.maxima_plot(ax, i) self.mean_plot(ax, i) ax.set_xlabel('year') ax.set_title(massif_name) def mean_plot(self, ax, i): # Display the mean graph # Counting the sum of 3-consecutive days of snowfall does not have any physical meaning, # as we are counting twice some days color_mean = 'g' tuples_x_y = [(year, np.mean(data[:, i])) for year, data in self.study.year_to_daily_time_serie.items()] x, y = list(zip(*tuples_x_y)) x, y = self.smooth(x, y) ax.plot(x, y, color=color_mean) ax.set_ylabel('mean', color=color_mean) def maxima_plot(self, ax, i): # Display the graph of the max on top color_maxima = 'r' tuples_x_y = [(year, annual_maxima[i]) for year, annual_maxima in self.study.year_to_annual_maxima.items()] x, y = list(zip(*tuples_x_y)) ax2 = ax.twinx() ax2.plot(x, y, color=color_maxima) ax2.set_ylabel('maxima', color=color_maxima) def smooth(self, x, y): # Average on windows of size 2*M+1 (M elements on each side) filter = np.ones(self.window_size_for_smoothing) / self.window_size_for_smoothing y = np.convolve(y, filter, mode='valid') assert self.window_size_for_smoothing % 2 == 1 nb_to_delete = int(self.window_size_for_smoothing // 2) x = np.array(x)[nb_to_delete:-nb_to_delete] assert len(x) == len(y) return x, y def visualize_linear_margin_fit(self): plot_name = 'Full Likelihood with Linear marginals and max stable dependency structure' max_stable_models = load_test_max_stable_models(only_one_covariance_function=True)[:1] fig, axes = plt.subplots(len(max_stable_models) + 1, len(GevParams.SUMMARY_NAMES), figsize=self.figsize) fig.subplots_adjust(hspace=1.0, wspace=1.0) margin_class = LinearAllParametersAllDimsMarginModel # Plot the smooth margin only margin_model = margin_class(coordinates=self.coordinates) estimator = SmoothMarginEstimator(dataset=self.dataset, margin_model=margin_model) self.fit_and_visualize_estimator(estimator, axes[0], title='without max stable') # Plot the smooth margin fitted with a max stable for i, max_stable_model in enumerate(max_stable_models, 1): margin_model = margin_class(coordinates=self.coordinates) estimator = FullEstimatorInASingleStepWithSmoothMargin(self.dataset, margin_model, max_stable_model) title = get_display_name_from_object_type(type(max_stable_model)) self.fit_and_visualize_estimator(estimator, axes[i], title=title) self.show_or_save_to_file(plot_name) def fit_and_visualize_estimator(self, estimator, axes=None, title=None): estimator.fit() axes = estimator.margin_function_fitted.visualize_function(show=False, axes=axes, title=title) for ax in axes: self.study.visualize(ax, fill=False, show=False) def show_or_save_to_file(self, plot_name): title = self.study.title title += '\n' + plot_name plt.suptitle(title) if self.show: plt.show() if self.save_to_file: filename = "{}/{}/{}".format(VERSION_TIME, '_'.join(self.study.title.split()), '_'.join(plot_name.split())) filepath = op.join(self.study.result_full_path, filename + '.png') dir = op.dirname(filepath) if not op.exists(dir): os.makedirs(dir, exist_ok=True) plt.savefig(filepath) def visualize_independent_margin_fits(self, threshold=None, axes=None): if threshold is None: params_names = GevParams.SUMMARY_NAMES df = self.df_gev_mle_each_massif # todo: understand how Maurienne could be negative # print(df.head()) else: params_names = GpdParams.SUMMARY_NAMES df = self.df_gpd_mle_each_massif(threshold) if axes is None: fig, axes = plt.subplots(1, len(params_names)) fig.subplots_adjust(hspace=1.0, wspace=1.0) for i, gev_param_name in enumerate(params_names): ax = axes[i] massif_name_to_value = df.loc[gev_param_name, :].to_dict() # Compute the middle point of the values for the color map values = list(massif_name_to_value.values()) colors = get_color_rbga_shifted(ax, gev_param_name, values) massif_name_to_fill_kwargs = {massif_name: {'color': color} for massif_name, color in zip(self.study.safran_massif_names, colors)} self.study.visualize(ax=ax, massif_name_to_fill_kwargs=massif_name_to_fill_kwargs, show=False) if self.show: plt.show() def visualize_cmap(self, massif_name_to_value): orig_cmap = plt.cm.coolwarm # shifted_cmap = shiftedColorMap(orig_cmap, midpoint=0.75, name='shifted') massif_name_to_fill_kwargs = {massif_name: {'color': orig_cmap(value)} for massif_name, value in massif_name_to_value.items()} self.study.visualize(massif_name_to_fill_kwargs=massif_name_to_fill_kwargs) """ Statistics methods """ @property def df_gev_mle_each_massif(self): # Fit a margin_fits on each massif massif_to_gev_mle = { massif_name: GevMleFit(self.study.observations_annual_maxima.loc[massif_name]).gev_params.summary_serie for massif_name in self.study.safran_massif_names} return pd.DataFrame(massif_to_gev_mle, columns=self.study.safran_massif_names) def df_gpd_mle_each_massif(self, threshold): # Fit a margin fit on each massif massif_to_gev_mle = {massif_name: GpdMleFit(self.study.df_all_snowfall_concatenated[massif_name], threshold=threshold).gpd_params.summary_serie for massif_name in self.study.safran_massif_names} return pd.DataFrame(massif_to_gev_mle, columns=self.study.safran_massif_names)