import os import numpy as np import os.path as op import pandas as pd from spatio_temporal_dataset.temporal_observations.abstract_temporal_observations import AbstractTemporalObservations from spatio_temporal_dataset.spatial_coordinates.abstract_spatial_coordinates import AbstractSpatialCoordinates class AbstractDataset(object): def __init__(self, temporal_observations: AbstractTemporalObservations, spatial_coordinates: AbstractSpatialCoordinates): # assert # is_same_index = temporal_observations.index == spatial_coordinates.index # type: pd.Series # assert is_same_index.all() self.temporal_observations = temporal_observations self.spatial_coordinates = spatial_coordinates @classmethod def from_csv(cls, csv_path: str): assert op.exists(csv_path) df = pd.read_csv(csv_path) temporal_maxima = AbstractTemporalObservations.from_df(df) spatial_coordinates = AbstractSpatialCoordinates.from_df(df) return cls(temporal_maxima, spatial_coordinates) def to_csv(self, csv_path: str): dirname = op.dirname(csv_path) if not op.exists(dirname): os.makedirs(dirname) self.df_dataset.to_csv(csv_path) @property def df_dataset(self) -> pd.DataFrame: # Merge dataframes with the maxima and with the coordinates return self.temporal_observations.df_maxima.join(self.spatial_coordinates.df_coord) @property def coord(self): return self.spatial_coordinates.coord @property def maxima(self) -> np.ndarray: return self.temporal_observations.maxima @property def maxima_normalized(self): return self.temporal_observations.maxima_normalized @maxima_normalized.setter def maxima_normalized(self, maxima_normalized_to_set): self.temporal_observations.maxima_normalized = maxima_normalized_to_set