import numpy as np from experiment.meteo_france_SCM_study.abstract_extended_study import AbstractExtendedStudy from experiment.meteo_france_SCM_study.abstract_study import AbstractStudy from experiment.meteo_france_SCM_study.crocus.crocus_variables import CrocusSweVariable, CrocusDepthVariable class Crocus(AbstractStudy): """ In the Crocus data, there is no 'massifsList' variable, thus we assume massifs are ordered just like Safran data """ def __init__(self, variable_class, *args, **kwargs): assert variable_class in [CrocusSweVariable, CrocusDepthVariable] super().__init__(variable_class, *args, **kwargs) self.model_name = 'Crocus' @property def variable_name(self): suffix = '' if self.altitude == 2400 else ' sampled every 24 hours' return super().variable_name + suffix def annual_aggregation_function(self, *args, **kwargs): return np.mean(*args, **kwargs) def winter_annual_aggregation(self, time_serie): # In the Durand paper, we only want the data from November to April # 91 = 30 + 31 + 30 first days of the time serie correspond to the month of August + September + October # 92 = 31 + 30 + 31 last days correspond to the month of May + June + JUly return super().apply_annual_aggregation(time_serie[91:-92, ...]) class CrocusSwe(Crocus): def __init__(self, *args, **kwargs): super().__init__(CrocusSweVariable, *args, **kwargs) def apply_annual_aggregation(self, time_serie): return self.winter_annual_aggregation(time_serie) class ExtendedCrocusSwe(AbstractExtendedStudy, CrocusSwe): pass class CrocusDepth(Crocus): def __init__(self, *args, **kwargs): super().__init__(CrocusDepthVariable, *args, **kwargs) def apply_annual_aggregation(self, time_serie): return self.winter_annual_aggregation(time_serie) class ExtendedCrocusDepth(AbstractExtendedStudy, CrocusDepth): pass class CrocusDaysWithSnowOnGround(Crocus): """Having snow on the ground is equivalent to snow depth > 0""" def __init__(self, *args, **kwargs): super().__init__(CrocusDepthVariable, *args, **kwargs) def annual_aggregation_function(self, *args, **kwargs): return np.count_nonzero(*args, **kwargs) if __name__ == '__main__': for variable_class in [CrocusSweVariable, CrocusDepthVariable]: study = Crocus(variable_class=variable_class, altitude=2400) d = study.year_to_dataset_ordered_dict[1960] time_arr = np.array(d.variables['time']) print(time_arr) # print(d) a = study.year_to_daily_time_serie_array[1960] print(a.shape)