import numpy as np from experiment.meteo_france_SCM_study.abstract_variable import AbstractVariable class SafranSnowfallVariable(AbstractVariable): """" Safran data is hourly Hypothesis: -How to count how much snowfall in one hour ? I take the average between the rhythm of snowfall per second between the start and the end and multiply that by 60 x 60 which corresponds to the number of seconds in one hour -How do how I define the limit of a day ? From the start, i.e. in August at 4am something like that,then if I add a 24H duration, I arrive to the next day -How do you aggregate several days ? We aggregate all the N consecutive days into a value x_i, then we take the max (but here the problem might be that the x_i are not idnependent, they are highly dependent one from another) """ NAME = 'Snowfall' UNIT = 'kg per m2 or mm' def __init__(self, dataset, altitude, nb_consecutive_days_of_snowfall=1, keyword='Snowf'): super().__init__(dataset, altitude) self.nb_consecutive_days_of_snowfall = nb_consecutive_days_of_snowfall # Compute the daily snowfall in kg/m2 snowfall_rates = np.array(dataset.variables[keyword]) # Compute the mean snowrate, then multiply it by 60 * 60 * 24 # day_duration_in_seconds = 24 * 60 * 60 # nb_days = len(snowfall_rates) // 24 # print(nb_days) # daily_snowrate = [np.mean(snowfall_rates[24 * i:24 * (i + 1) + 1], axis=0) for i in range(nb_days)] # self.daily_snowfall = day_duration_in_seconds * np.array(daily_snowrate) # Compute the hourly snowfall first, then aggregate mean_snowfall_rates = 0.5 * (snowfall_rates[:-1] + snowfall_rates[1:]) hourly_snowfall = 60 * 60 * mean_snowfall_rates # Transform the snowfall amount into a dataframe nb_days = len(hourly_snowfall) // 24 self.daily_snowfall = [sum(hourly_snowfall[24 * i:24 * (i + 1)]) for i in range(nb_days)] @property def daily_time_serie_array(self) -> np.ndarray: # Aggregate the daily snowfall by the number of consecutive days shifted_list = [self.daily_snowfall[i:] for i in range(self.nb_consecutive_days_of_snowfall)] # First element of shifted_list is of length n, Second element of length n-1, Third element n-2.... # The zip is done with respect to the shortest list snowfall_in_consecutive_days = np.array([sum(e) for e in zip(*shifted_list)]) # The returned array is of size n-nb_days+1 x nb_massif return snowfall_in_consecutive_days class SafranRainfallVariable(SafranSnowfallVariable): def __init__(self, dataset, altitude, nb_consecutive_days_of_snowfall=1, keyword='Rainf'): super().__init__(dataset, altitude, nb_consecutive_days_of_snowfall, keyword) class SafranTotalPrecipVariable(AbstractVariable): def __init__(self, dataset, altitude): super().__init__(dataset, altitude) self.snow_precipitation = SafranSnowfallVariable(dataset=dataset, altitude=altitude) self.rain_precipitation = SafranRainfallVariable(dataset=dataset, altitude=altitude) @property def daily_time_serie_array(self) -> np.ndarray: return self.snow_precipitation.daily_time_serie_array + self.rain_precipitation.daily_time_serie_array class SafranTemperatureVariable(AbstractVariable): def __init__(self, dataset, altitude, keyword='Tair'): super().__init__(dataset, altitude) # Temperature are in K, I transform them as celsius self.hourly_temperature = np.array(dataset.variables[keyword]) - 273.15 nb_days = len(self.hourly_temperature) // 24 self.daily_temperature = [np.mean(self.hourly_temperature[24 * i:24 * (i + 1)], axis=0) for i in range(nb_days)] @property def daily_time_serie_array(self): return np.array(self.daily_temperature)