import io import os import os.path as op from collections import OrderedDict from contextlib import redirect_stdout from multiprocessing.pool import Pool from typing import List, Dict, Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image from PIL import ImageDraw from matplotlib import cm from matplotlib.colors import Normalize from netCDF4 import Dataset from experiment.meteo_france_data.scm_models_data.abstract_variable import AbstractVariable from experiment.meteo_france_data.scm_models_data.scm_constants import ALTITUDES, ZS_INT_23, ZS_INT_MASK, LONGITUDES, \ LATITUDES from experiment.meteo_france_data.scm_models_data.visualization.utils import get_km_formatter from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \ AbstractMarginFunction from extreme_estimator.margin_fits.plot.create_shifted_cmap import get_color_rbga_shifted, create_colorbase_axis from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \ AbstractSpatialCoordinates from spatio_temporal_dataset.spatio_temporal_observations.annual_maxima_observations import AnnualMaxima from utils import get_full_path, cached_property, NB_CORES f = io.StringIO() with redirect_stdout(f): from simpledbf import Dbf5 class AbstractStudy(object): """ A Study is defined by: - a variable class that correspond to the meteorogical quantity of interest - an altitude of interest - a start and a end year Les fichiers netcdf de SAFRAN et CROCUS sont autodocumentés (on peut les comprendre avec ncdump -h notamment). """ REANALYSIS_FOLDER = 'alp_flat/reanalysis' def __init__(self, variable_class: type, altitude: int = 1800, year_min=1000, year_max=3000, multiprocessing=True): assert altitude in ALTITUDES, altitude self.altitude = altitude self.model_name = None self.variable_class = variable_class self.year_min = year_min self.year_max = year_max self.multiprocessing = multiprocessing """ Annual maxima """ @property def observations_annual_maxima(self) -> AnnualMaxima: return AnnualMaxima(df_maxima_gev=pd.DataFrame(self.year_to_annual_maxima, index=self.study_massif_names)) @cached_property def year_to_annual_maxima(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_maxima = OrderedDict() for year, time_serie in self._year_to_max_daily_time_serie.items(): year_to_annual_maxima[year] = time_serie.max(axis=0) return year_to_annual_maxima """ Annual total """ @property def df_annual_total(self) -> pd.DataFrame: return pd.DataFrame(self.year_to_annual_total, index=self.study_massif_names).transpose() def annual_aggregation_function(self, *args, **kwargs): raise NotImplementedError() @cached_property def year_to_annual_total(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_mean = OrderedDict() for year, time_serie in self._year_to_daily_time_serie_array.items(): year_to_annual_mean[year] = self.apply_annual_aggregation(time_serie) return year_to_annual_mean def apply_annual_aggregation(self, time_serie): return self.annual_aggregation_function(time_serie, axis=0) """ Load daily observations """ @cached_property def year_to_daily_time_serie_array(self) -> OrderedDict: return self._year_to_daily_time_serie_array @property def _year_to_max_daily_time_serie(self) -> OrderedDict: return self._year_to_daily_time_serie_array @property def _year_to_daily_time_serie_array(self) -> OrderedDict: # Map each year to a matrix of size 365-nb_days_consecutive+1 x nb_massifs year_to_daily_time_serie_array = OrderedDict() for year in self.ordered_years: # Check daily data daily_time_serie = self.year_to_variable_object[year].daily_time_serie_array assert daily_time_serie.shape[0] in [365, 366] assert daily_time_serie.shape[1] == len(ZS_INT_MASK) # Filter only the data corresponding to the altitude of interest daily_time_serie = daily_time_serie[:, self.altitude_mask] year_to_daily_time_serie_array[year] = daily_time_serie return year_to_daily_time_serie_array """ Load Variables and Datasets """ @cached_property def year_to_variable_object(self) -> OrderedDict: # Map each year to the variable array path_files, ordered_years = self.ordered_years_and_path_files if self.multiprocessing: with Pool(NB_CORES) as p: variables = p.map(self.load_variable_object, path_files) else: variables = [self.load_variable_object(path_file) for path_file in path_files] return OrderedDict(zip(ordered_years, variables)) def instantiate_variable_object(self, variable_array) -> AbstractVariable: return self.variable_class(variable_array) def load_variable_array(self, dataset): return np.array(dataset.variables[self.load_keyword()]) def load_variable_object(self, path_file): dataset = Dataset(path_file) variable_array = self.load_variable_array(dataset) return self.instantiate_variable_object(variable_array) def load_keyword(self): return self.variable_class.keyword() @property def year_to_dataset_ordered_dict(self) -> OrderedDict: print('This code is quite long... ' 'You should consider year_to_variable which is way faster when multiprocessing=True') # Map each year to the correspond netCDF4 Dataset path_files, ordered_years = self.ordered_years_and_path_files datasets = [Dataset(path_file) for path_file in path_files] return OrderedDict(zip(ordered_years, datasets)) @cached_property def ordered_years_and_path_files(self): nc_files = [(int(f.split('_')[-2][:4]), f) for f in os.listdir(self.study_full_path) if f.endswith('.nc')] ordered_years, path_files = zip(*[(year, op.join(self.study_full_path, nc_file)) for year, nc_file in sorted(nc_files, key=lambda t: t[0]) if self.year_min <= year < self.year_max]) return path_files, ordered_years """ Temporal properties """ @property def ordered_years(self): return self.ordered_years_and_path_files[1] @property def start_year_and_stop_year(self) -> Tuple[int, int]: ordered_years = self.ordered_years return ordered_years[0], ordered_years[-1] """ Spatial properties """ @property def study_massif_names(self) -> List[str]: return self.altitude_to_massif_names[self.altitude] @property def df_massifs_longitude_and_latitude(self) -> pd.DataFrame: # DataFrame object that represents the massif coordinates in degrees extracted from the SCM data # Another way of getting the latitudes and longitudes could have been the following: # any_ordered_dict = list(self.year_to_dataset_ordered_dict.values())[0] # longitude = np.array(any_ordered_dict.variables['longitude']) # latitude = np.array(any_ordered_dict.variables['latitude']) longitude = np.array(LONGITUDES) latitude = np.array(LATITUDES) columns = [AbstractSpatialCoordinates.COORDINATE_X, AbstractSpatialCoordinates.COORDINATE_Y] data = dict(zip(columns, [longitude[self.altitude_mask], latitude[self.altitude_mask]])) return pd.DataFrame(data=data, index=self.study_massif_names, columns=columns) @property def missing_massif_name(self): return set(self.all_massif_names) - set(self.altitude_to_massif_names[self.altitude]) @cached_property def altitude_mask(self): altitude_mask = ZS_INT_MASK == self.altitude assert np.sum(altitude_mask) == len(self.altitude_to_massif_names[self.altitude]) return altitude_mask """ Path properties """ @property def title(self): return "{}/at altitude {}m ({} mountain chains)".format(self.variable_name, self.altitude, len(self.study_massif_names)) @property def variable_name(self): return self.variable_class.NAME + ' (in {})'.format(self.variable_unit) @property def variable_unit(self): return self.variable_class.UNIT """ Visualization methods """ @cached_property def massifs_coordinates_for_display(self) -> AbstractSpatialCoordinates: # Coordinate object that represents the massif coordinates in Lambert extended # extracted for a csv file, and used only for display purposes df = self.load_df_centroid() # Filter, keep massifs present at the altitude of interest df = df.loc[self.study_massif_names] # Build coordinate object from df_centroid return AbstractSpatialCoordinates.from_df(df) def visualize_study(self, ax=None, massif_name_to_value=None, show=True, fill=True, replace_blue_by_white=True, label=None, add_text=False, cmap=None, vmax=100, vmin=0): if massif_name_to_value is None: massif_name_to_fill_kwargs = None else: massif_names, values = list(zip(*massif_name_to_value.items())) if cmap is None: colors = get_color_rbga_shifted(ax, replace_blue_by_white, values, label=label) else: norm = Normalize(vmin, vmax) create_colorbase_axis(ax, label, cmap, norm) m = cm.ScalarMappable(norm=norm, cmap=cmap) colors = [m.to_rgba(value) if not np.isnan(value) else 'w' for value in values] massif_name_to_fill_kwargs = {massif_name: {'color': color} for massif_name, color in zip(massif_names, colors)} if ax is None: ax = plt.gca() for coordinate_id, coords_list in self.idx_to_coords_list.items(): # Retrieve the list of coords (x,y) that define the contour of the massif of id coordinate_id # if j == 0: # mask_outside_polygon(poly_verts=l, ax=ax) # Plot the contour of the massif coords_list = list(zip(*coords_list)) ax.plot(*coords_list, color='black') # Potentially, fill the inside of the polygon with some color if fill and coordinate_id in self.coordinate_id_to_massif_name: massif_name = self.coordinate_id_to_massif_name[coordinate_id] if massif_name_to_fill_kwargs is not None and massif_name in massif_name_to_fill_kwargs: fill_kwargs = massif_name_to_fill_kwargs[massif_name] ax.fill(*coords_list, **fill_kwargs) # else: # fill_kwargs = {} # x , y = list(self.massifs_coordinates.df_all_coordinates.loc[massif_name]) # x , y= coords_list[0][0], coords_list[0][1] # print(x, y) # print(massif_name) # ax.scatter(x, y) # ax.text(x, y, massif_name) # Display the center of the massif ax.scatter(self.massifs_coordinates_for_display.x_coordinates, self.massifs_coordinates_for_display.y_coordinates, s=1) # Improve some explanation on the X axis and on the Y axis ax.set_xlabel('Longitude (km)') ax.xaxis.set_major_formatter(get_km_formatter()) ax.set_ylabel('Latitude (km)') ax.yaxis.set_major_formatter(get_km_formatter()) # Display the name or value of the massif if add_text: for _, row in self.massifs_coordinates_for_display.df_all_coordinates.iterrows(): x, y = list(row) massif_name = row.name value = massif_name_to_value[massif_name] ax.text(x, y, str(round(value, 1))) if show: plt.show() """ CLASS ATTRIBUTES COMMON TO ALL OBJECTS (written as object attributes/methods for simplicity) """ """ Path properties """ @property def relative_path(self) -> str: return r'local/spatio_temporal_datasets' @property def full_path(self) -> str: return get_full_path(relative_path=self.relative_path) @property def map_full_path(self) -> str: return op.join(self.full_path, 'map') @property def result_full_path(self) -> str: return op.join(self.full_path, 'results') @property def study_full_path(self) -> str: assert self.model_name in ['Safran', 'Crocus'] study_folder = 'meteo' if self.model_name is 'Safran' else 'pro' return op.join(self.full_path, self.REANALYSIS_FOLDER, study_folder) """ Spatial properties """ @property def original_safran_massif_id_to_massif_name(self) -> Dict[int, str]: return {massif_id: massif_name for massif_id, massif_name in enumerate(self.all_massif_names)} @cached_property def all_massif_names(self) -> List[str]: """ Pour l'identification des massifs, le numéro de la variable massif_num correspond à celui de l'attribut num_opp """ metadata_path = op.join(self.full_path, self.REANALYSIS_FOLDER, 'metadata') dbf = Dbf5(op.join(metadata_path, 'massifs_alpes.dbf')) df = dbf.to_dataframe().copy() # type: pd.DataFrame dbf.f.close() df.sort_values(by='num_opp', inplace=True) all_massif_names = list(df['nom']) # Correct a massif name all_massif_names[all_massif_names.index('Beaufortin')] = 'Beaufortain' return all_massif_names def load_df_centroid(self) -> pd.DataFrame: # Load df_centroid containing all the massif names df_centroid = pd.read_csv(op.join(self.map_full_path, 'coordonnees_massifs_alpes.csv')) df_centroid.set_index('NOM', inplace=True) # Check that the names of massifs are the same symmetric_difference = set(df_centroid.index).symmetric_difference(self.all_massif_names) assert len(symmetric_difference) == 0, symmetric_difference # Sort the column in the order of the SAFRAN dataset df_centroid = df_centroid.reindex(self.all_massif_names, axis=0) for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]: df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float) return df_centroid @cached_property def massif_name_to_altitudes(self) -> Dict[str, List[int]]: s = ZS_INT_23 + [0] zs_list = [] zs_all_list = [] for a, b in zip(s[:-1], s[1:]): zs_list.append(a) if a > b: zs_all_list.append(zs_list) zs_list = [] return OrderedDict(zip(self.all_massif_names, zs_all_list)) @cached_property def altitude_to_massif_names(self) -> Dict[int, List[str]]: altitude_to_massif_names = {altitude: [] for altitude in ALTITUDES} for massif_name in self.massif_name_to_altitudes.keys(): for altitude in self.massif_name_to_altitudes[massif_name]: altitude_to_massif_names[altitude].append(massif_name) return altitude_to_massif_names """ Visualization methods """ @property def coordinate_id_to_massif_name(self) -> Dict[int, str]: df_centroid = self.load_df_centroid() return dict(zip(df_centroid['id'], df_centroid.index)) @property def idx_to_coords_list(self): df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv')) coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X], row_massif[AbstractCoordinates.COORDINATE_Y]) for _, row_massif in df_massif.iterrows()] all_idxs = set([t[0] for t in coord_tuples]) return {idx: [coords for idx_loop, *coords in coord_tuples if idx == idx_loop] for idx in all_idxs} @property def all_coords_list(self): all_values = [] for e in self.idx_to_coords_list.values(): all_values.extend(e) return list(zip(*all_values)) @property def visualization_x_limits(self): return min(self.all_coords_list[0]), max(self.all_coords_list[0]) @property def visualization_y_limits(self): return min(self.all_coords_list[1]), max(self.all_coords_list[1]) @cached_property def mask_french_alps(self): resolution = AbstractMarginFunction.VISUALIZATION_RESOLUTION mask_french_alps = np.zeros([resolution, resolution]) for polygon in self.idx_to_coords_list.values(): xy_values = list(zip(*polygon)) normalized_polygon = [] for values, (minlim, max_lim) in zip(xy_values, [self.visualization_x_limits, self.visualization_y_limits]): values -= minlim values *= resolution / (max_lim - minlim) normalized_polygon.append(values) normalized_polygon = list(zip(*normalized_polygon)) img = Image.new('L', (resolution, resolution), 0) ImageDraw.Draw(img).polygon(normalized_polygon, outline=1, fill=1) mask_massif = np.array(img) mask_french_alps += mask_massif return ~np.array(mask_french_alps, dtype=bool)