import matplotlib as mpl import matplotlib.cm as cm import matplotlib.colorbar as cbar import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axes_grid1 import make_axes_locatable from experiment.meteo_france_data.plot.shifted_color_map import shiftedColorMap from extreme_fit.distribution.abstract_params import AbstractParams def get_shifted_map(vmin, vmax): # Load the shifted cmap to center on a middle point if vmin < 0 < vmax: midpoint = 1 - vmax / (vmax + abs(vmin)) elif vmin < 0 and vmax < 0: midpoint = 1.0 elif vmin > 0 and vmax > 0: midpoint = 0.0 else: raise ValueError('Unexpected values: vmin={}, vmax={}'.format(vmin, vmax)) cmap = [plt.cm.coolwarm, plt.cm.bwr, plt.cm.seismic][1] shifted_cmap = shiftedColorMap(cmap, midpoint=midpoint, name='shifted') return shifted_cmap def create_colorbase_axis(ax, label, cmap, norm, ticks_values_and_labels=None): divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.0) ticks = ticks_values_and_labels[0] if ticks_values_and_labels is not None else None cb = cbar.ColorbarBase(cax, cmap=cmap, norm=norm, ticks=ticks) if ticks_values_and_labels is not None: cb.ax.set_yticklabels([str(t) for t in ticks_values_and_labels[1]]) if isinstance(label, str): cb.set_label(label) return norm def get_norm(vmin, vmax): return mpl.colors.Normalize(vmin=vmin, vmax=vmax) def get_colors(values, cmap, vmin, vmax, replace_blue_by_white=False): norm = get_norm(vmin, vmax) m = cm.ScalarMappable(norm=norm, cmap=cmap) colors = [m.to_rgba(value) for value in values] if replace_blue_by_white: colors = [color if color[2] != 1 else (1, 1, 1, 1) for color in colors] return colors def imshow_shifted(ax, gev_param_name, values, visualization_extend, mask_2D=None): condition = np.isnan(values) if mask_2D is not None: condition |= mask_2D masked_array = np.ma.masked_where(condition, values) vmin, vmax = np.min(masked_array), np.max(masked_array) shifted_cmap = get_shifted_map(vmin, vmax) norm = get_norm(vmin, vmax) create_colorbase_axis(ax, gev_param_name, shifted_cmap, norm) shifted_cmap.set_bad(color='white') if gev_param_name != AbstractParams.SHAPE: epsilon = 1e-2 * (np.max(values) - np.min(values)) value = np.min(values) # The right blue corner will be blue (but most of the time, another display will be on top) masked_array[-1, -1] = value - epsilon # IMPORTANT: Origin for all the plots is at the bottom left corner ax.imshow(masked_array, extent=visualization_extend, cmap=shifted_cmap, origin='lower')