import datetime from matplotlib.patches import Polygon import io import os import os.path as op from collections import OrderedDict from contextlib import redirect_stdout from itertools import chain from multiprocessing.pool import Pool from typing import List, Dict, Tuple, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image from PIL import ImageDraw from matplotlib.colors import Normalize from netCDF4 import Dataset from experiment.meteo_france_data.scm_models_data.abstract_variable import AbstractVariable from experiment.meteo_france_data.scm_models_data.scm_constants import ALTITUDES, ZS_INT_23, ZS_INT_MASK, LONGITUDES, \ LATITUDES, ORIENTATIONS, SLOPES, ORDERED_ALLSLOPES_ALTITUDES, ORDERED_ALLSLOPES_ORIENTATIONS, \ ORDERED_ALLSLOPES_SLOPES, ORDERED_ALLSLOPES_MASSIFNUM from experiment.meteo_france_data.scm_models_data.visualization.utils import get_km_formatter from extreme_fit.model.margin_model.margin_function.abstract_margin_function import \ AbstractMarginFunction from experiment.meteo_france_data.plot.create_shifted_cmap import create_colorbase_axis, \ get_shifted_map, get_colors from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \ AbstractSpatialCoordinates from spatio_temporal_dataset.spatio_temporal_observations.annual_maxima_observations import AnnualMaxima from root_utils import get_full_path, cached_property, NB_CORES, classproperty f = io.StringIO() with redirect_stdout(f): from simpledbf import Dbf5 class AbstractStudy(object): """ A Study is defined by: - a variable class that correspond to the meteorogical quantity of interest - an altitude of interest - a start and a end year Les fichiers netcdf de SAFRAN et CROCUS sont autodocumentés (on peut les comprendre avec ncdump -h notamment). The year 2017 represents the nc file that correspond to the winter between the year 2017 and 2018. """ REANALYSIS_FLAT_FOLDER = 'SAFRAN_montagne-CROCUS_2019/alp_flat/reanalysis' REANALYSIS_ALLSLOPES_FOLDER = 'SAFRAN_montagne-CROCUS_2019/alp_allslopes/reanalysis' # REANALYSIS_FOLDER = 'SAFRAN_montagne-CROCUS_2019/postes/reanalysis' def __init__(self, variable_class: type, altitude: int = 1800, year_min=1000, year_max=3000, multiprocessing=True, orientation=None, slope=20.0): assert isinstance(altitude, int), type(altitude) assert altitude in ALTITUDES, altitude self.altitude = altitude self.model_name = None self.variable_class = variable_class self.year_min = year_min self.year_max = year_max self.multiprocessing = multiprocessing # Add some attributes, for the "allslopes" reanalysis assert orientation is None or orientation in ORIENTATIONS assert slope in SLOPES self.orientation = orientation self.slope = slope """ Time """ @cached_property def year_to_days(self) -> OrderedDict: # Map each year to the 'days since year-08-01 06:00:00' year_to_days = OrderedDict() for year in self.ordered_years: date = datetime.datetime(year=year, month=8, day=1, hour=6, minute=0, second=0) days = [] for i in range(366): days.append(str(date).split()[0]) date += datetime.timedelta(days=1) if date.month == 8 and date.day == 1: break year_to_days[year] = days return year_to_days @property def all_days(self): return list(chain(*list(self.year_to_days.values()))) @property def all_daily_series(self): all_daily_series = np.concatenate(list(self.year_to_daily_time_serie_array.values())) assert len(all_daily_series) == len(self.all_days) return all_daily_series """ Annual maxima """ @property def observations_annual_maxima(self) -> AnnualMaxima: return AnnualMaxima(df_maxima_gev=pd.DataFrame(self.year_to_annual_maxima, index=self.study_massif_names)) def annual_maxima_and_years(self, massif_name) -> Tuple[np.ndarray, np.ndarray]: df = self.observations_annual_maxima.df_maxima_gev return df.loc[massif_name].values, np.array(df.columns) @cached_property def year_to_annual_maxima(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_maxima = OrderedDict() for year, time_serie in self._year_to_max_daily_time_serie.items(): year_to_annual_maxima[year] = time_serie.max(axis=0) return year_to_annual_maxima @cached_property def year_to_annual_maxima_index(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_maxima = OrderedDict() for year, time_serie in self._year_to_max_daily_time_serie.items(): year_to_annual_maxima[year] = time_serie.argmax(axis=0) return year_to_annual_maxima """ Annual total """ @property def df_annual_total(self) -> pd.DataFrame: return pd.DataFrame(self.year_to_annual_total, index=self.study_massif_names).transpose() def annual_aggregation_function(self, *args, **kwargs): raise NotImplementedError() @cached_property def year_to_annual_total(self) -> OrderedDict: # Map each year to an array of size nb_massif year_to_annual_mean = OrderedDict() for year, time_serie in self._year_to_daily_time_serie_array.items(): year_to_annual_mean[year] = self.apply_annual_aggregation(time_serie) return year_to_annual_mean def apply_annual_aggregation(self, time_serie): return self.annual_aggregation_function(time_serie, axis=0) """ Load daily observations """ @cached_property def year_to_daily_time_serie_array(self) -> OrderedDict: return self._year_to_daily_time_serie_array @property def _year_to_max_daily_time_serie(self) -> OrderedDict: return self._year_to_daily_time_serie_array @property def _year_to_daily_time_serie_array(self) -> OrderedDict: # Map each year to a matrix of size 365-nb_days_consecutive+1 x nb_massifs year_to_daily_time_serie_array = OrderedDict() for year in self.ordered_years: # Check daily data daily_time_serie = self.year_to_variable_object[year].daily_time_serie_array assert daily_time_serie.shape[0] in [365, 366] assert daily_time_serie.shape[1] == len(self.column_mask) # Filter only the data corresponding to the altitude of interest daily_time_serie = daily_time_serie[:, self.column_mask] year_to_daily_time_serie_array[year] = daily_time_serie return year_to_daily_time_serie_array """ Load Variables and Datasets """ @cached_property def year_to_variable_object(self) -> OrderedDict: # Map each year to the variable array path_files, ordered_years = self.ordered_years_and_path_files if self.multiprocessing: with Pool(NB_CORES) as p: variables = p.map(self.load_variable_object, path_files) else: variables = [self.load_variable_object(path_file) for path_file in path_files] return OrderedDict(zip(ordered_years, variables)) def instantiate_variable_object(self, variable_array) -> AbstractVariable: return self.variable_class(variable_array) def load_variable_array(self, dataset): return np.array(dataset.variables[self.load_keyword()]) def load_variable_object(self, path_file): dataset = Dataset(path_file) variable_array = self.load_variable_array(dataset) return self.instantiate_variable_object(variable_array) def load_keyword(self): return self.variable_class.keyword() @property def year_to_dataset_ordered_dict(self) -> OrderedDict: print('This code is quite long... ' 'You should consider year_to_variable which is way faster when multiprocessing=True') # Map each year to the correspond netCDF4 Dataset path_files, ordered_years = self.ordered_years_and_path_files datasets = [Dataset(path_file) for path_file in path_files] return OrderedDict(zip(ordered_years, datasets)) @cached_property def ordered_years_and_path_files(self): nc_files = [(int(f.split('_')[-2][:4]), f) for f in os.listdir(self.study_full_path) if f.endswith('.nc')] ordered_years, path_files = zip(*[(year, op.join(self.study_full_path, nc_file)) for year, nc_file in sorted(nc_files, key=lambda t: t[0]) if self.year_min <= year < self.year_max]) return path_files, ordered_years """ Temporal properties """ @property def ordered_years(self): return self.ordered_years_and_path_files[1] @property def start_year_and_stop_year(self) -> Tuple[int, int]: ordered_years = self.ordered_years return ordered_years[0], ordered_years[-1] """ Spatial properties """ @property def study_massif_names(self) -> List[str]: # Massif names that are present in the current study (i.e. for the current altitude) return self.altitude_to_massif_names[self.altitude] @property def df_massifs_longitude_and_latitude(self) -> pd.DataFrame: # DataFrame object that represents the massif coordinates in degrees extracted from the SCM data # Another way of getting the latitudes and longitudes could have been the following: # any_ordered_dict = list(self.year_to_dataset_ordered_dict.values())[0] # longitude = np.array(any_ordered_dict.variables['longitude']) # latitude = np.array(any_ordered_dict.variables['latitude']) longitude = np.array(LONGITUDES) latitude = np.array(LATITUDES) columns = [AbstractSpatialCoordinates.COORDINATE_X, AbstractSpatialCoordinates.COORDINATE_Y] data = dict(zip(columns, [longitude[self.flat_mask], latitude[self.flat_mask]])) return pd.DataFrame(data=data, index=self.study_massif_names, columns=columns) @property def missing_massif_name(self): return set(self.all_massif_names) - set(self.altitude_to_massif_names[self.altitude]) @property def column_mask(self): return self.allslopes_mask if self.has_orientation else self.flat_mask @property def allslopes_mask(self): altitude_mask = np.array(ORDERED_ALLSLOPES_ALTITUDES) == self.altitude orientation_mask = np.array(ORDERED_ALLSLOPES_ORIENTATIONS) == self.orientation slope_mask = np.array(ORDERED_ALLSLOPES_SLOPES) == self.slope allslopes_mask = altitude_mask & orientation_mask & slope_mask # Exclude all the data corresponding to the 24th massif massif_24_mask = np.array(ORDERED_ALLSLOPES_MASSIFNUM) == 30 return allslopes_mask & ~massif_24_mask @cached_property def flat_mask(self): altitude_mask = ZS_INT_MASK == self.altitude assert np.sum(altitude_mask) == len(self.altitude_to_massif_names[self.altitude]) return altitude_mask """ Path properties """ @property def title(self): return "{}/at altitude {}m ({} mountain chains)".format(self.variable_name, self.altitude, len(self.study_massif_names)) @property def variable_name(self): return self.variable_class.NAME + ' ({})'.format(self.variable_unit) @property def variable_unit(self): return self.variable_class.UNIT """ Visualization methods """ @classmethod def massifs_coordinates_for_display(cls, massif_names) -> AbstractSpatialCoordinates: # Coordinate object that represents the massif coordinates in Lambert extended # extracted for a csv file, and used only for display purposes df = cls.load_df_centroid() # Filter, keep massifs present at the altitude of interest df = df.loc[massif_names, :] # Build coordinate object from df_centroid return AbstractSpatialCoordinates.from_df(df) @classmethod def visualize_study(cls, ax=None, massif_name_to_value: Union[None, Dict[str, float]] = None, show=True, fill=True, replace_blue_by_white=True, label=None, add_text=False, cmap=None, add_colorbar=False, vmax=100, vmin=0, default_color_for_missing_massif='gainsboro', default_color_for_nan_values='w', massif_name_to_color=None, show_label=True, scaled=True, fontsize=7, axis_off=False, massif_name_to_hatch_boolean_list=None, norm=None, massif_name_to_marker_style=None, ticks_values_and_labels=None, ): if ax is None: ax = plt.gca() if massif_name_to_value is not None: massif_names, values = list(zip(*massif_name_to_value.items())) else: massif_names, values = None, None if massif_name_to_color is None: # Load the colors if cmap is None: cmap = get_shifted_map(vmin, vmax) norm = Normalize(vmin, vmax) colors = get_colors(values, cmap, vmin, vmax, replace_blue_by_white) massif_name_to_color = dict(zip(massif_names, colors)) massif_name_to_fill_kwargs = {massif_name: {'color': color} for massif_name, color in massif_name_to_color.items()} massif_names = list(massif_name_to_fill_kwargs.keys()) masssif_coordinate_for_display = cls.massifs_coordinates_for_display(massif_names) for coordinate_id, coords_list in cls.idx_to_coords_list.items(): # Retrieve the list of coords (x,y) that define the contour of the massif of id coordinate_id # if j == 0: # mask_outside_polygon(poly_verts=l, ax=ax) # Plot the contour of the massif coords_list = list(zip(*coords_list)) ax.plot(*coords_list, color='black') # Potentially, fill the inside of the polygon with some color if fill and coordinate_id in cls.coordinate_id_to_massif_name: massif_name = cls.coordinate_id_to_massif_name[coordinate_id] if massif_name in massif_name_to_marker_style: massif_coordinate = masssif_coordinate_for_display.df_all_coordinates.loc[massif_name, :].values if massif_name in ['Maurienne', 'Mercantour']: massif_coordinate[1] -= 5000 ax.plot(massif_coordinate[0], massif_coordinate[1], **massif_name_to_marker_style[massif_name]) if massif_name_to_fill_kwargs is not None and massif_name in massif_name_to_fill_kwargs: fill_kwargs = massif_name_to_fill_kwargs[massif_name] ax.fill(*coords_list, **fill_kwargs) else: ax.fill(*coords_list, **{'color': default_color_for_missing_massif}) # For the moment we comment all the part of this code # # Add a hatch to visualize the mean & variance variation sign # hatch_list = ['//', '\\\\'] # if massif_name_to_hatch_boolean_list is not None: # if massif_name in massif_name_to_hatch_boolean_list: # a = np.array(coords_list).transpose() # hatch_boolean_list = massif_name_to_hatch_boolean_list[massif_name] # for hatch, is_hatch in zip(hatch_list, hatch_boolean_list): # if is_hatch: # ax.add_patch(Polygon(xy=a, fill=False, hatch=hatch)) if show_label: # Improve some explanation on the X axis and on the Y axis ax.set_xlabel('Longitude (km)') ax.xaxis.set_major_formatter(get_km_formatter()) ax.set_ylabel('Latitude (km)') ax.yaxis.set_major_formatter(get_km_formatter()) else: # Remove the ticks ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Display the name or value of the massif if add_text: for _, row in masssif_coordinate_for_display.df_all_coordinates.iterrows(): x, y = list(row) massif_name = row.name value = massif_name_to_value[massif_name] str_value = str(value) ax.text(x, y, str_value, horizontalalignment='center', verticalalignment='center', fontsize=fontsize) if scaled: plt.axis('scaled') # create the colorbar only at the end if add_colorbar: if len(set(values)) > 1: create_colorbase_axis(ax, label, cmap, norm, ticks_values_and_labels=ticks_values_and_labels) if axis_off: plt.axis('off') if show: plt.show() return ax """ CLASS ATTRIBUTES COMMON TO ALL OBJECTS (written as object attributes/methods for simplicity) """ """ Path properties """ @classproperty def relative_path(self) -> str: return r'local/spatio_temporal_datasets' @classproperty def full_path(self) -> str: return get_full_path(relative_path=self.relative_path) @classproperty def map_full_path(self) -> str: return op.join(self.full_path, 'map') @classproperty def result_full_path(cls) -> str: return op.join(cls.full_path, 'results') @property def study_full_path(self) -> str: assert self.model_name in ['Safran', 'Crocus'] study_folder = 'meteo' if self.model_name is 'Safran' else 'pro' return op.join(self.reanalysis_path, study_folder) @property def reanalysis_path(self): reanalysis_folder = self.REANALYSIS_ALLSLOPES_FOLDER if self.has_orientation else self.REANALYSIS_FLAT_FOLDER return op.join(self.full_path, reanalysis_folder) @property def has_orientation(self): return self.orientation is not None """ Spatial properties """ @classproperty def original_safran_massif_id_to_massif_name(cls) -> Dict[int, str]: return {massif_id: massif_name for massif_id, massif_name in enumerate(cls.all_massif_names)} @classproperty def all_massif_names(cls) -> List[str]: """ Pour l'identification des massifs, le numéro de la variable massif_num correspond à celui de l'attribut num_opp """ metadata_path = op.join(cls.full_path, cls.REANALYSIS_FLAT_FOLDER, 'metadata') dbf = Dbf5(op.join(metadata_path, 'massifs_alpes.dbf')) df = dbf.to_dataframe().copy() # type: pd.DataFrame dbf.f.close() df.sort_values(by='num_opp', inplace=True) all_massif_names = list(df['nom']) # Correct a massif name all_massif_names[all_massif_names.index('Beaufortin')] = 'Beaufortain' return all_massif_names @classmethod def load_df_centroid(cls) -> pd.DataFrame: # Load df_centroid containing all the massif names df_centroid = pd.read_csv(op.join(cls.map_full_path, 'coordonnees_massifs_alpes.csv')) df_centroid.set_index('NOM', inplace=True) # Check that the names of massifs are the same symmetric_difference = set(df_centroid.index).symmetric_difference(cls.all_massif_names) assert len(symmetric_difference) == 0, symmetric_difference # Sort the column in the order of the SAFRAN dataset df_centroid = df_centroid.reindex(cls.all_massif_names, axis=0) for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]: df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float) return df_centroid @cached_property def massif_name_to_altitudes(self) -> Dict[str, List[int]]: s = ZS_INT_23 + [0] zs_list = [] zs_all_list = [] for a, b in zip(s[:-1], s[1:]): zs_list.append(a) if a > b: zs_all_list.append(zs_list) zs_list = [] return OrderedDict(zip(self.all_massif_names, zs_all_list)) @cached_property def altitude_to_massif_names(self) -> Dict[int, List[str]]: altitude_to_massif_names = {altitude: [] for altitude in ALTITUDES} for massif_name in self.massif_name_to_altitudes.keys(): for altitude in self.massif_name_to_altitudes[massif_name]: altitude_to_massif_names[altitude].append(massif_name) # massif_names are ordered in the same way as all_massif_names return altitude_to_massif_names """ Visualization methods """ @classproperty def coordinate_id_to_massif_name(cls) -> Dict[int, str]: df_centroid = cls.load_df_centroid() return dict(zip(df_centroid['id'], df_centroid.index)) @classproperty def idx_to_coords_list(self): df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv')) coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X], row_massif[AbstractCoordinates.COORDINATE_Y]) for _, row_massif in df_massif.iterrows()] all_idxs = set([t[0] for t in coord_tuples]) return {idx: [coords for idx_loop, *coords in coord_tuples if idx == idx_loop] for idx in all_idxs} @property def all_coords_list(self): all_values = [] for e in self.idx_to_coords_list.values(): all_values.extend(e) return list(zip(*all_values)) @property def visualization_x_limits(self): return min(self.all_coords_list[0]), max(self.all_coords_list[0]) @property def visualization_y_limits(self): return min(self.all_coords_list[1]), max(self.all_coords_list[1]) @cached_property def mask_french_alps(self): resolution = AbstractMarginFunction.VISUALIZATION_RESOLUTION mask_french_alps = np.zeros([resolution, resolution]) for polygon in self.idx_to_coords_list.values(): xy_values = list(zip(*polygon)) normalized_polygon = [] for values, (minlim, max_lim) in zip(xy_values, [self.visualization_x_limits, self.visualization_y_limits]): values -= minlim values *= resolution / (max_lim - minlim) normalized_polygon.append(values) normalized_polygon = list(zip(*normalized_polygon)) img = Image.new('L', (resolution, resolution), 0) ImageDraw.Draw(img).polygon(normalized_polygon, outline=1, fill=1) mask_massif = np.array(img) mask_french_alps += mask_massif return ~np.array(mask_french_alps, dtype=bool)