from typing import Dict, List, Union, Tuple import numpy as np from extreme_fit.distribution.gev.gev_params import GevParams from extreme_fit.function.margin_function.linear_margin_function import LinearMarginFunction from extreme_fit.function.margin_function.polynomial_margin_function import PolynomialMarginFunction from extreme_fit.function.param_function.abstract_coef import AbstractCoef from extreme_fit.function.param_function.param_function import LinearParamFunction, PolynomialParamFunction, \ SplineParamFunction from extreme_fit.function.param_function.polynomial_coef import PolynomialAllCoef from extreme_fit.function.param_function.spline_coef import SplineAllCoef, SplineCoef from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates class SplineMarginFunction(LinearMarginFunction): def __init__(self, coordinates: AbstractCoordinates, param_name_to_dim_and_max_degree: Dict[str, List[Tuple[int, int]]], param_name_to_coef: Dict[str, SplineAllCoef], starting_point: Union[None, int] = None, params_class: type = GevParams, log_scale=None): param_name_to_dims = {} for param_name in param_name_to_dim_and_max_degree.keys(): dims = [c[0] for c in param_name_to_dim_and_max_degree[param_name]] param_name_to_dims[param_name] = dims self.param_name_to_dim_and_max_degree = param_name_to_dim_and_max_degree super().__init__(coordinates, param_name_to_dims, param_name_to_coef, starting_point, params_class, log_scale) COEF_CLASS = SplineAllCoef def load_specific_param_function(self, param_name): coef = self.param_name_to_coef[param_name] assert isinstance(coef, (PolynomialAllCoef, SplineAllCoef)) if isinstance(coef, PolynomialAllCoef): return PolynomialParamFunction(dim_and_degree=self.param_name_to_dim_and_max_degree[param_name], coef=coef) else: return SplineParamFunction(dim_and_degree=self.param_name_to_dim_and_max_degree[param_name], coef=coef) def get_params(self, coordinate: np.ndarray, is_transformed: bool = True) -> GevParams: return super().get_params(coordinate, is_transformed) @property def nb_params(self): return sum([c.nb_params for c in self.param_name_to_coef.values()]) @classmethod def from_coef_dict(cls, coordinates: AbstractCoordinates, param_name_to_dims: Dict[str, List[Tuple[int, int]]], coef_dict: Dict[str, float], starting_point: Union[None, int] = None, log_scale=None): coef_dict, spline_param_name_to_dim_to_knots_and_coefficient = coef_dict # Load polynomial coefficient polynomial_margin_function = PolynomialMarginFunction.from_coef_dict(coordinates, param_name_to_dims, coef_dict, starting_point, log_scale) param_name_to_coef = polynomial_margin_function.param_name_to_coef param_name_to_dim_and_max_degree = param_name_to_dims # Load the remaining spline coefficient assert cls.COEF_CLASS is not None, 'a COEF_CLASS class attributes needs to be defined' for param_name, dim_to_knots_and_coefficients in spline_param_name_to_dim_to_knots_and_coefficient.items(): dim_to_spline_coef = {} for dim, (knots, coefficients) in dim_to_knots_and_coefficients.items(): dim_to_spline_coef[dim] = SplineCoef(param_name, coefficients, knots) param_name_to_coef[param_name] = SplineAllCoef(param_name, dim_to_spline_coef) return cls(coordinates, param_name_to_dim_and_max_degree, param_name_to_coef, starting_point, log_scale=log_scale)