process_test_setup.py 4.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import base64
import pandas as pd
import numpy as np
import glob
import io
import os
from textwrap import dedent as d
import re
import matplotlib.pyplot as plt
import plotly
import plotly.graph_objs as go
from scipy.interpolate import interp1d

from utils.sunposition import sunpos
import utils.utils as u
16
from trios.process import *
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


coordf = glob.glob("/DATA/OBS2CO/data/info/mesures_in_situ.csv")[0]
coords = pd.read_csv(coordf, sep=';')
awrfiles = glob.glob("/DATA/OBS2CO/data/trios/raw/aw*idpr*.csv")

awrfiles = glob.glob("/DATA/OBS2CO/data/trios/test_setup/raw/aw*idpr*.csv")
swrfiles = glob.glob("/DATA/OBS2CO/data/trios/raw/Lu0*idpr*.csv")

idpr='167'

c = coords[coords.ID_prel == int(idpr)]  # .values[0]
lat = c['Lat'].values[0]
lon = c['Lon'].values[0]
alt = 0 #c['Altitude']
name = c['ID_lac'].values[0]

# -----------------------------------------------
#   SWR processing
# -----------------------------------------------

swr = u.swr_data(idpr, swrfiles)
if swr.file:
    df, wl = swr.reader(lat, lon, alt)
    Rrs_swr = swr_process(df, wl).process()

# -----------------------------------------------
#   AWR processing
# -----------------------------------------------
awr = u.awr_data(idpr, awrfiles)

index_idx=[2,0,1]

d=u.data(index_idx)
Ed, wl_Ed = d.load_csv(awr.Edf)
Lsky, wl_Lsky = d.load_csv(awr.Lskyf)
Lt0, wl_Lt = d.load_csv(awr.Ltf)

# ''' interpolate Ed and Lsky data upon Lt wavelength'''
wl = wl_Lt
Lt0.columns = pd.MultiIndex.from_tuples(zip(['Lt'] * len(wl), wl), names=['param', 'wl'])
intEd = interp1d(wl_Ed, Ed.values, fill_value='extrapolate')(wl)
newEd = pd.DataFrame(index=Ed.index,
                     columns=pd.MultiIndex.from_tuples(zip(['Ed'] * len(wl), wl), names=['param', 'wl']),
                     data=intEd)
intLsky = interp1d(wl_Lsky, Lsky.values, fill_value='extrapolate')(wl)
newLsky = pd.DataFrame(index=Lsky.index, columns=pd.MultiIndex.from_tuples(zip(['Lsky'] * len(wl), wl),
                        names=['param', 'wl']), data=intLsky)

awr = awr_process()
ws=[2]
fig, axs = plt.subplots(nrows=3, ncols=4, figsize=(16, 10))
fig.subplots_adjust(left=0.1, right=0.9, hspace=.5, wspace=0.65)

i=0
for azi, Lt1 in Lt0.groupby(level=2):
    for vza,Lt in Lt1.groupby(level=1):
74
        ax = axs.flat[i]
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        i=i+1
        print(azi,vza)

        Lsky = newLsky.loc[(newLsky.index.get_level_values(1) ==  vza) & (newLsky.index.get_level_values(2) ==  azi)]
        Ed = newEd.loc[(newEd.index.get_level_values(1) ==  vza) & (newEd.index.get_level_values(2) ==  azi)]

        Lsky_idx = Lsky.index
        Ed_idx= Ed.index
        Lt_idx = Lt.index
        Lsky.reset_index(level=[1,2],inplace=True)
        Ed.reset_index(level=[1,2],inplace=True)
        Lt.reset_index(level=[1,2],inplace=True)

        # merge sensor data on time
        df = pd.merge_asof(Lt, Ed, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"),
                           direction="nearest")
        df = pd.merge_asof(df, Lsky, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"),
                           direction="nearest")

        # add solar angle data and idpr
        # compute solar angle (mean between fisrt and last aqcuisition time
        df['sza', ''] = np.nan
        for index, row in df.iterrows():
            # print index
            sza = sunpos(index, lat, lon, alt)[1]
            df.at[index, 'sza'] = sza

        rho_h = awr.get_rho_values([df.sza.min()],[vza],[azi],wl=wl)
        rho15 = awr.get_rho_mobley(awr.rhoM2015,[df.sza.min()],[vza],[azi],[ws])
        rho99 = awr.get_rho_mobley(awr.rhoM1999,[df.sza.min()],[vza],[azi],[ws])

        Rrs_h =(df.loc[:,'Lt'] -rho_h*df.loc[:,'Lsky'])/ df.loc[:,'Ed']
        Rrs15 = (df.loc[:,'Lt'] -rho15*df.loc[:,'Lsky'])/ df.loc[:,'Ed']

        Rrs99 = (df.loc[:,'Lt'] -rho99*df.loc[:,'Lsky'])/ df.loc[:,'Ed']
        #plt.figure()


        def add_curve(ax,x,mean,std,c='red',label=''):
            ax.plot(x,mean, linestyle='solid', c=c, lw=2.5,
                alpha=0.8, label=label)
            ax.fill_between(x,
                    mean - std,
                    mean + std, alpha=0.35,color=c)
        add_curve(ax,wl,Rrs_swr.transpose().mean(axis=1),Rrs_swr.transpose().std(axis=1),label='swr',c='black')
        add_curve(ax,wl,Rrs15.transpose().mean(axis=1),Rrs15.transpose().std(axis=1),label='M2015')
        add_curve(ax,wl,Rrs99.transpose().mean(axis=1),Rrs99.transpose().std(axis=1),c='orange',label='M1999')
        add_curve(ax,wl,Rrs_h.transpose().mean(axis=1),Rrs_h.transpose().std(axis=1),c='grey',label='h')

        ax.set_title('azi='+str(azi)+', vza='+str(vza))


        ax.legend(loc='best', frameon=False)

        ax.set_ylabel(r'$R_{rs}\  (sr^{-1})$')
        ax.set_xlabel(r'Wavelength (nm)')

Lt.index.names