process.py 21.8 KB
Newer Older
1
2
import pandas as pd
from scipy import interpolate, integrate
3
import scipy.optimize as so
4

5
import plotly.graph_objs as go
6

7
import trios.utils.utils as uu
8
9
from trios.utils.utils import reshape as r
import trios.utils.auxdata as ua
10
from trios.config import *
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


class awr_process:
    def __init__(self, df=None, wl=None):
        self.df = df
        self.aot = 0.1
        self.ws = 2
        self.wl = wl
        self.rhosoaa_fine_file = rhosoaa_fine_file
        self.rhosoaa_coarse_file = rhosoaa_coarse_file
        self.M1999_file = M1999_file
        self.M2015_file = M2015_file
        self.load_rho_lut()
        self.rho = self.rhosoaa_fine

    def load_rho_lut(self):
        self.rhosoaa_fine = pd.read_csv(self.rhosoaa_fine_file, index_col=[0, 1, 2, 3, 4, 5])
        self.rhosoaa_coarse = pd.read_csv(self.rhosoaa_coarse_file, index_col=[0, 1, 2, 3, 4, 5])
        self.rhoM1999 = pd.read_csv(self.M1999_file, skiprows=7, index_col=[0, 1, 2, 3])
        self.rhoM2015 = pd.read_csv(self.M2015_file, skiprows=8, index_col=[0, 1, 2, 3])
        self.rhoM1999.dropna(inplace=True)
        self.rhoM2015.dropna(inplace=True)

    def get_rho_values(self, sza, vza, azi, ws=[2], aot=[0.1], wl=[550], sunglint=False):
        '''
        Interpolate the rho factor values from tabulated data

        :param sza: solar zenith angle in deg, array-like
        :param vza: view zenith angle in deg, array-like
        :param azi: relative azimuth in deg (=0 when looking at Sun), array-like
        :param ws: wind speed, m/s,(based on Cox-Munk parametrization of surface roughness) array-like
        :param aot: aerosol optical thickness at 550 nm, array-like
        :param wl: wavelength in nm, array-like
        :param sunglint: add sunglint component in rho calculation if True
        :return:
        '''

        grid = self.rho.rho.index.levels

        # convert pandas dataframe into 6D array of the tabulated rho values for interpolation
        rhoname = 'rho'
        if sunglint:
            rhoname = 'rho_g'

        rho_6d = r().df2ndarray(self.rho, rhoname)

        rho_ = calc().spline_2d(grid[-2:], rho_6d, (azi, vza))

        rho_wl = calc().spline_4d(grid[:-2], rho_, (ws, aot, wl, sza))

        return rho_wl.squeeze()

    def get_rho_mobley(self, rhodf, sza, vza, azi, ws):
        '''
        Get the Mobley rho factor from cubic interpolation in the tabulated values

        :param rhodf:
        :param sza:
        :param vza:
        :param azi:
        :param ws:
        :return:
        '''

        rhodf = rhodf.query('sza<75 & vza >0')
        rhodf.index = rhodf.index.remove_unused_levels()

        # grid {wind, sza, vza, azi}
        grid = rhodf.index.levels

        rho_ = r().df2ndarray(rhodf, 'rho')
        rho_mobley = calc().spline_4d(grid, rho_, (ws, sza, vza, azi))
        return rho_mobley

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    # def call_process(self, vza=[40], azi=[135], ws=2, aot=0.1):
    #     wl = self.wl
    #     Lt = self.df.loc[:, ("Lt")]
    #     Lsky = self.df.loc[:, ("Lsky")]
    #     Ed = self.df.loc[:, ("Ed")]
    #     sza = self.df.loc[:, ("sza")].values.mean()
    #     Rrs = self.process(wl, Lt, Lsky, Ed, sza, vza, azi, ws, aot)
    #     Rrs.columns = pd.MultiIndex.from_product([['Rrs(awr)'], self.Rrs.columns], names=['param', 'wl'])
    #     self.Rrs = Rrs
    #     return self.Rrs
    #
    # def process(self, wl, Lt, Lsky, Ed, sza, vza=[40], azi=[135], ws=[2], aot=[0.1]):
    #     '''
    #
    #     :param wl:
    #     :param Lt:
    #     :param Lsky:
    #     :param Ed:
    #     :param sza:
    #     :param vza:
    #     :param azi:
    #     :param ws:
    #     :param aot:
    #     :return:
    #     '''
    #
    #     # ------------------
    #     # filtering
    #     # ------------------
    #     ind_Ed, notused = calc.spectra_median_filter(Ed)
    #     ind_sky, notused = calc.spectra_median_filter(Lsky)
    #     ind = ind_Ed & ind_sky
    #     Lt, Lsky, Ed, sza = Lt[ind], Lsky[ind], Ed[ind], sza[ind]
    #
    #     rho = self.get_rho_values(np.median(sza), vza, azi, wl=wl, ws=ws, aot=aot)
    #     self.Rrs = (Lt - rho * Lsky.values) / Ed.values
    #     self.Rrs.columns = pd.MultiIndex.from_product([['Rrs(awr)'], wl], names=['param', 'wl'])
    #     return self.Rrs, rho

    @staticmethod
    def filtering(Lt, Lsky, Ed, **kargs):
        '''

        :param Lt:
        :param Lsky:
        :param Ed:
        :param kargs:
        :return:
        '''

        ind_Ed, notused = calc.spectra_median_filter(Ed, kargs)
        ind_sky, notused = calc.spectra_median_filter(Lsky, kargs)
        ind = ind_Ed & ind_sky
        return ind

    def process_wrapper(self, wl, df, sza, vza=[40], azi=[135], ws=[2], aot=[0.1], method='M99'):

        print(sza, vza, azi, ws, aot, method)
        Rrs, rho = self.process(wl, df.Lt, df.Lsky.values, df.Ed.values, sza, vza, azi, ws, aot, method)

        Rrs.columns = pd.MultiIndex.from_product([['Rrs'], wl], names=['param', 'wl'])

        return Rrs, rho
148

149
    def process(self, wl, Lt, Lsky, Ed, sza, vza=[40], azi=[135], ws=[2], aot=[0.1], method='M99'):
150
151
152
153
154
155
156
157
158
159
160
        '''

        :param wl:
        :param Lt:
        :param Lsky:
        :param Ed:
        :param sza:
        :param vza:
        :param azi:
        :param ws:
        :param aot:
161
        :param method: 'M99, 'M15, 'osoaa'
162
163
164
        :return:
        '''

165
166
167
168
169
170
171
172
173
174
175
176
177
        # -----------------------------
        # standard data processing
        # -----------------------------

        if method == 'osoaa':
            rho = self.get_rho_values(np.median(sza), vza, azi, wl=wl, ws=ws, aot=aot)
        elif method == 'M99':
            rho = self.get_rho_mobley(self.rhoM1999, [np.median(sza)], [vza], [azi], [ws])
        elif method == 'M15':
            rho = self.get_rho_mobley(self.rhoM2015, [np.median(sza)], [vza], [azi], [ws])
        else:
            return print('ERROR: no method for rho factor')

178
        self.Rrs = (Lt - rho * Lsky) / Ed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        # Rrs.columns = pd.MultiIndex.from_product([['Rrs'], wl], names=['param', 'wl'])

        return self.Rrs, rho.mean()

    def cost_func(self, x, param, meas, Rrs_bar):
        sza, vza, azi = param
        Lt, Lsky, Ed = meas
        ws = x

        rho = self.get_rho_mobley(self.rhoM1999, [sza], [vza], [azi], [ws])

        Rrs = (Lt - rho * Lsky) / Ed

        return Rrs - Rrs_bar

        # x_ave = x.mean()
        # return np.sum(np.abs(x - x_ave))

    def process_optimization(self, wl, Lt, Lsky, Ed, sza, vza=[40], azi=[135], ws=[2], aot=[0.1], method='M99'):
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        # ------------------------------
        # initialization of mean/median values
        # ------------------------------
        Rrs, rho = self.process(wl, Lt, Lsky, Ed, sza, ws=ws, azi=azi)
        Rrs_bar = Rrs.mean(axis=0)

        # -----------------------------
        # non-linear optimization
        # -----------------------------

        for j in range(10):
            x_est = []
            res = []
            Rrs_est = []
            rho_est = []

            for i in range(len(Lt)):
                geom = [sza[i], vza, azi]
                meas = [Lt[i], Lsky[i], Ed[i]]
                x0 = ws
219
                res_lsq = so.least_squares(self.cost_func, x0, bounds=(0, 15), args=(geom, meas, Rrs_bar))
220
221
222
223
224
225
226
227
228
                res.append(res_lsq)
                x_est.append(res_lsq.x[0])
                Rrs, rho = self.process(wl, Lt[i], Lsky[i], Ed[i], sza[i], ws=res_lsq.x[0], azi=azi)
                Rrs_est.append(Rrs)
                rho_est.append(rho)
                print(res_lsq.x, res_lsq.cost)
            Rrs_bar = np.mean(Rrs_est, axis=0)
            Rrs_std = np.std(Rrs_est, axis=0)
        return Rrs_bar, Rrs_std
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256


class swr_process:
    def __init__(self, df=None, wl=None, ):
        self.df = df
        self.wl = wl

    def call_process(self, shade_corr=False):
        wl = self.wl
        Lu = self.df.loc[:, ("Lu0+")]
        Ed = self.df.loc[:, ("Ed")]
        sza = self.df.loc[:, ("sza")].values.mean()
        Rrs = self.process(Lu, Ed, sza, wl, shade_corr=shade_corr)
        Rrs.columns = pd.MultiIndex.from_product([['Rrs(swr)'], Rrs.columns], names=['param', 'wl'])
        self.Rrs = Rrs
        return Rrs

    def process(self, Lu, Ed, sza, wl, R=0.05, shade_corr=False):
        Rrs = Lu / Ed
        ang_w = calc().angle_w(sza)

        iopw = ua.iopw()
        iopw.load_iopw()
        iopw.get_iopw(wl)
        a, bb = iopw.aw, iopw.bbw
        # TODO add particulate and dissolved component to a and bb values
        # a,bb = aux.get_iop(..., withwater=True)
        acdom = ua.cdom(0.5, wl).get_acdom()
Harmel Tristan's avatar
Harmel Tristan committed
257
258
        a = a + acdom
        bb = bb
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        if shade_corr:
            Rrs = self.shade_corr(Rrs, R, ang_w, a, bb, wl)
        # Rrs.columns = pd.MultiIndex.from_product([['Rrs(swr)'], Rrs.columns], names=['param', 'wl'])
        self.Rrs = Rrs
        self.a = a
        self.bb = bb
        self.acdom = acdom
        return self.Rrs

    def epsilon(self, K, R, ang_w):
        '''
        epsilon from Shang et al, 2017, Applied Optics
        :param K:
        :param R:
        :param ang_w: Sun zenith angle below surface (in deg)
        :return:
        '''

        self.eps = np.array(1 - np.exp(-K * R / np.tan(np.radians(ang_w))))
        return self.eps

    def K(self, a, bb, ang_w):
        '''
        K (sum attenuation coef. of Lu in and outside the shade) from Shang et al, 2017, Applied Optics
        :param a: total absorption coefficient (m-1)
        :param bb: total backscattering coefficient (m-1)
        :param ang_w: Sun zenith angle below surface (in deg)
        :return:
        '''
        sin_ang_w = np.sin(np.radians(ang_w))
        self.K_ = (3.15 * sin_ang_w + 1.15) * a * np.exp(-1.57 * bb) \
                  + (5.62 * sin_ang_w - 0.23) * bb * np.exp(-0.5 * a)
        return self.K_

    def shade_corr(self, Rrs, R, ang_w, a, bb, wl, wl_cutoff=900):
        '''
        Correction of shading error from Shang et al, 2017, Applied Optics
        :param Rrs:
        :param R:
        :param ang_w:
        :param a:
        :param bb:
        :return:
        '''

        K = self.K(a, bb, ang_w)
        eps = self.epsilon(K, R, ang_w)
        eps[wl > wl_cutoff] = 0
        self.Rrs = Rrs / (1 - eps)
        return self.Rrs


class iwr_process:
    def __init__(self, df=None, wl=None, ):
        self.df = df
        self.wl = wl

316
    def process(self, meas, std, mode='linear'):
317
        wl_ = self.wl
318

319
320
321
322
323
324
325
326
327
328
329
330
        ################
        # load aux data
        iopw = ua.iopw()
        iopw.load_iopw()
        irr = ua.irradiance()
        irr.load_F0()
        # TODO check noise values (e.g., NEI from Trios), should it be spectral?
        noise = 0.1

        N = len(wl_)
        x = meas.prof_Edz  # - 0.56
        res = uu.fit(N)
331
332
        if mode == 'lsq':
            res = uu.fit(N, 4)
333
334
335
336
337
338
339
340
341
342
343

        for idx, wl in enumerate(wl_[:-10]):
            aw, bbw = iopw.get_iopw(wl)
            F0 = irr.get_F0(wl)

            y = meas.Edz.iloc[:, idx]
            sigma = std.Edz.iloc[:, idx]
            sigma[sigma < noise] = noise
            sigma.fillna(np.inf, inplace=True)
            if mode == 'linear':
                res.popt[idx, :], res.pcov[idx, ...] = so.curve_fit(self.f_Edz, x, y, [1.1 * aw, 100],
344
                                                                    bounds=([aw, 0], [np.inf, F0]))
345
346
            elif mode == 'log':
                res.popt[idx, :], res.pcov[idx, ...] = so.curve_fit(self.f_logEdz, x, np.log(1 + y),
347
348
349
                                                                    [1.1 * aw, 100], bounds=(
                        [aw, 0], [np.inf, F0]))  # , sigma=sigma, absolute_sigma=True
            elif mode == 'lsq':
350
351
                z = (meas.prof_Edz, meas.prof_Luz)
                y = (meas.Edz.iloc[:, idx], meas.Luz.iloc[:, idx])
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

                sig_Edz = self.format_sigma(std.Edz.iloc[:, idx],meas.Edz.iloc[:, idx], 0.1)
                sig_Luz = self.format_sigma(std.Luz.iloc[:, idx],meas.Luz.iloc[:, idx], 1e-3)

                sigma = (sig_Edz, sig_Luz)
                sigma = (1,1)
                x0 = [1.1 * aw, meas.Ed.iloc[:, idx].mean(), 1.1 * aw, meas.Luz.iloc[0, idx]]

                lsq = so.least_squares(self.cost_func, x0, args=(z, y, sigma),
                                       bounds=([aw, 0, aw/2, 0], [np.inf, F0, np.inf, np.inf]))
                cost = 2 * lsq.cost  # res.cost is half sum of squares!
                res.popt[idx, :], res.pcov[idx, ...] = lsq.x, calc().cov_from_jac(lsq.jac, cost)

            if mode == 'lsq':
                # TODO formalize and do more clever things for Quality Control
                # discard retrieval if error covariance > threshold error covariance median
                QC_idx = res.pcov[:, 3,3] > 20 *  np.nanmedian(res.pcov[:, 3,3])

                res.popt[QC_idx, 3] = np.nan
371
372
373

        return res

374
375
376
377
378
379
380
381
382
383
384
385
    def format_sigma(self, sigma, rescale = 1, noise=0.1):
        '''

        :param sigma:
        :return:
        '''

        sigma = (sigma + noise) / rescale

        return sigma.fillna(np.inf)

    # @staticmethod
386
387
388
    def f_Edz(self, depth, Kd, Ed0):
        '''simple Edz model for homogeneous water column'''
        return Ed0 * np.exp(-Kd * depth)
389

390
    # @staticmethod
391
392
393
    def f_logEdz(self, depth, Kd, Ed0):
        '''simple Edz model for homogeneous water column'''
        return np.log(1 + self.f_Edz(depth, Kd, Ed0))  # Ed0) -Kd*depth
394

395
396
    def f_Lu(self, depth, KLu, Lw0minus):
        '''simple Edz model for homogeneous water column'''
397
        return Lw0minus * np.exp(-KLu * depth)
398

399
    def cost_func(self, x, z, mes, sigma):
400
401
402
403
404

        z_Edz = z[0]
        z_Lu = z[1]
        Edz = mes[0]
        Lu = mes[1]
405
406
        sig_Edz = sigma[0]
        sig_Luz = sigma[1]
407

408
409
        cost_f1 = (Edz - self.f_Edz(z_Edz, x[0], x[1])) / sig_Edz
        cost_f2 = (Lu - self.f_Lu(z_Lu, x[2], x[3])) / sig_Luz
410

411
        return np.append(cost_f1, cost_f2)
412
413
414
415

    def Kd(self, depth, Edz):
        Kd = np.diff(Edz) / np.diff(depth)

416
417
    def plot_raw(self, x='Luz', y='prof_Luz'):
        trace = go.Scattergl(
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            x=self.df[x].values,
            y=self.df[y].values,

            text=self.df.index.get_level_values(0),
            hoverinfo="text",
            marker={
                'size': 7,
                'opacity': 0.5,
                # 'color': 'rgba({}, {}, {}, {})'.format(*s_m.to_rgba(parameters[i]).flatten()),
                # x.unique(),#color': df.index.get_level_values(0),
                'line': {'width': 0.5, 'color': 'white'},
            },
            # error_y=ErrorY(
            #     type='data',
            #     array=df['Error'],
            #     thickness=1.5,
            #     width=2,
            #     color='#B4E8FC'
            # ),

        )

440
        layout = go.Layout(
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
            height=450,
            xaxis=dict(
                range=[0, 200],
                showgrid=False,
                showline=False,
                zeroline=False,
                fixedrange=True,
                tickvals=[0, 50, 100, 150, 200],
                ticktext=['200', '150', '100', '50', '0'],
                title=''
            ),
            yaxis=dict(
                range=[min(-5, min(self.df[y])),
                       max(0, max(self.df[y]))],
                showline=False,
                fixedrange=True,
                zeroline=False,
                # nticks=max(6, round(df['Speed'].iloc[-1]/10))
            ),
460
            margin=go.Margin(
461
462
463
464
465
466
                t=45,
                l=50,
                r=50
            )
        )

467
        return go.Figure(data=[trace], layout=layout)
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512


class self_shading:
    def __init__(self):
        '''GordonDing 1992 values for epsilon'''

        self.ang = np.linspace(0, 90, 10)
        self.eps_dir_LuZ = [2.17, 2.17, 2.23, 2.23, 2.29, 2.37, 2.41, 2.45, 2.45, 2.45]
        self.eps_dir_EuZ = [3.14, 3.14, 3.05, 2.94, 2.80, 2.64, 2.47, 2.33, 2.33, 2.33]
        self.eps_dif_LuZ = 4.61,
        self.eps_dif_EuZ = 2.70

    def epsilon(self, sza):
        eps = interpolate.interp1d(self.ang, self.eps_dif_EuZ)(sza)
        return eps


class calc:
    def __init__(self):
        pass

    def PAR(self, wl, Ed):
        '''
        Compute instantaneous PAR from Ed spectrum.
        PAR in mW m-2
        PAR_quanta in µmol photon m-2 s-1
        :param wl:
        :param Ed:
        :return:
        '''
        # ---------------------------------------------
        #      PARAMETERS
        # Planck constant in J s or W s2
        h = 6.6260695729e-3  # d-34
        # light speed in m s-1
        c = 2.99792458e0  # d8
        # Avogadro Number in mol-1
        Avogadro = 6.0221412927e0  # d23
        hc = Avogadro * h * c
        # ---------------------------------------------

        idx_par = (wl >= 400) & (wl <= 700)
        wl = wl[idx_par]
        Ed = Ed[idx_par]
        par = integrate.trapz(Ed, wl)
513
        par_quanta = integrate.trapz(np.multiply(wl, Ed), wl) / hc
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        return par, par_quanta

    def earth_sun_correction(self, dayofyear):
        '''
        Earth-Sun distance correction factor for adjustment of mean solar irradiance

        :param dayofyear:
        :return: correction factor
        '''
        theta = 2. * np.pi * dayofyear / 365
        d2 = 1.00011 + 0.034221 * np.cos(theta) + 0.00128 * np.sin(theta) + \
             0.000719 * np.cos(2 * theta) + 0.000077 * np.sin(2 * theta)
        return d2

    def bidir(self, sza, vza, azi):

        bidir = 1

        return bidir

    def angle_w(self, angle_air, n=1.334):
        '''
        convert above surface angle (angle_air) into sub-surface angle
        :param angle_air in deg
        :param n: refractive index of water
        :return: sub-surface angle in deg
        '''
        return np.degrees(np.arcsin(np.sin(np.radians(angle_air)) / n))

543
544
545
546
547
548
549
550
551
552
553
554
555
    @staticmethod
    def spectra_median_filter(spectra, threshold=0.1):
        '''
        
        :param series: pandas object
        :param threshold: relative value of median 
        :return: boolean indices, array of data within interval median +/- threshold
        '''
        spec = spectra.sum(axis=1)
        med = spec.median()
        ind = np.abs(1 - spec / med) < 0.1
        return ind, spectra[ind]

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    def spline_2d(self, gin, arr, gout):
        '''
        Interpolation of a 6D array (arr) with bicubic splines on a 2D grid
        corresponding to the 5th and 6th dimensions of arr.
        Return 4D array interpolated on gout.

        :param gin: regular 2D grid of the tabulated data (tuple/array/list of arrays)
        :param arr: tabulated data (N dimensions, interpolation on N-1 and N)
        :param gout: new 2D grid on which data are interpolated (with dims 2 and 3 of the same length);
                    (tuple/array/list of arrays)
        :return: Interpolated data (1D or 3D array depending on the dimension shapes of gout
        '''

        N = arr.shape
        interp = np.zeros(N[:-2])

        for i in range(N[0]):
            for j in range(N[1]):
                for k in range(N[2]):
                    for l in range(N[3]):
                        interp[i, j, k, l] = interpolate.RectBivariateSpline(gin[0], gin[1], arr[i, j, k, l, ...])(
                            gout[0], gout[1], grid=False)

        return interp

    def spline_4d(self, gin, lut, gout):
        '''
        Interpolation with two successive bicubic splines on a regular 4D grid.
        Designed for interpolation in radiative transfer look-up tables with the two last dimensions
        (i.e., wavelength and solar zenith angle) of the same length.
        Those dimensions are then reduced/merged to a single one to get interpolated data on a 3D grid.

        :param gin: regular 4D grid of the tabulated data (tuple/array/list of arrays)
        :param lut: tabulated data
        :param gout: new 4D grid on which data are interpolated (with dims 2 and 3 of the same length);
                    (tuple/array/list of arrays)
        :return: Interpolated data (1D or 3D array depending on the dimension shapes of gout
        '''

        N = gin[0].__len__(), gin[1].__len__(), gin[2].__len__(), gin[3].__len__()
        Nout = gout[0].__len__(), gout[1].__len__(), gout[2].__len__()
        tmp = np.zeros([N[0], N[1], Nout[2]])

        for i in range(N[0]):
            for j in range(N[1]):
601
602
                tmp[i, j, :] = interpolate.RectBivariateSpline(gin[2], gin[3], lut[i, j, :, :])(gout[2], gout[3],
                                                                                                grid=False)
603
604
605
        if Nout[0] == Nout[1] == 1:
            interp = np.ndarray(Nout[2])
            for iband in range(Nout[2]):
606
607
                interp[iband] = interpolate.RectBivariateSpline(gin[0], gin[1], tmp[:, :, iband])(gout[0], gout[1],
                                                                                                  grid=False)
608
609
610
        else:
            interp = np.ndarray([Nout[0], Nout[1], Nout[2]])
            for iband in range(Nout[2]):
611
612
613
                interp[:, :, iband] = interpolate.RectBivariateSpline(gin[0], gin[1], tmp[:, :, iband])(gout[0],
                                                                                                        gout[1],
                                                                                                        grid=True)
614
615

        return interp
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

    def cov_from_jac(self, jac, cost):
        '''
        Compute covariance from jacobian matrix computed in optimization processes
        Use Moore-Penrose inverse discarding zero singular values.
        :param jac: jacobian
        :param cost: cost residual
        :return: pcov
        '''

        from scipy.linalg import svd

        M, N = jac.shape
        _, s, VT = svd(jac, full_matrices=False)
        threshold = np.finfo(float).eps * max(jac.shape) * s[0]
        s = s[s > threshold]
        VT = VT[:s.size]
        pcov = np.dot(VT.T / s ** 2, VT)

        if pcov is None:
            # indeterminate covariance
            pcov = np.zeros((N, N), dtype=float)
            pcov.fill(np.inf)
        else:
            s_sq = cost / (M - N)
            pcov = pcov * s_sq
        return pcov