From f16a80752ebdd35aaf846dae383bf73faad714bf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Grelot?= <frederic.grelot@irstea.fr> Date: Sun, 23 Jan 2022 00:41:07 +0100 Subject: [PATCH] =?UTF-8?q?geau=20Version=201.0.7.0=200=20errors=20?= =?UTF-8?q?=E2=9C=94=20|=200=20warnings=20=E2=9C=94=20|=200=20notes=20?= =?UTF-8?q?=E2=9C=94?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit - map_so_ii - ajout du thème onrn, gestion des detail n_catnat, freq_sin, cost, cost_hab, cost_mean, ratio, balance, ppri_year - réorganisation du code pour theme dans l'ordre alphabétique - so_ii_onrn dataset - inclusion & aide - so_ii_clc - correction de l'aide - so_ii_limit - correction de l'aide Refs #7 --- geau/DESCRIPTION | 2 +- geau/R/data.r | 193 +++++++++++-------- geau/R/map_so_ii.r | 378 ++++++++++++++++++++++++------------- geau/data-raw/so_ii_onrn.R | 28 +++ geau/data/so_ii_onrn.rda | Bin 0 -> 2936 bytes geau/man/map_so_ii.Rd | 4 +- geau/man/so_ii_clc.Rd | 8 +- geau/man/so_ii_limit.Rd | 10 - geau/man/so_ii_onrn.Rd | 50 +++++ 9 files changed, 453 insertions(+), 220 deletions(-) create mode 100644 geau/data-raw/so_ii_onrn.R create mode 100644 geau/data/so_ii_onrn.rda create mode 100644 geau/man/so_ii_onrn.Rd diff --git a/geau/DESCRIPTION b/geau/DESCRIPTION index 168cad4..6d9acb0 100644 --- a/geau/DESCRIPTION +++ b/geau/DESCRIPTION @@ -1,6 +1,6 @@ Package: geau Title: Utilities very useful to share within geau-inondation team -Version: 1.0.6.1 +Version: 1.0.7.0 Authors@R: c( person(given = "Frédéric", diff --git a/geau/R/data.r b/geau/R/data.r index 7528b6f..11d1c53 100644 --- a/geau/R/data.r +++ b/geau/R/data.r @@ -1,10 +1,55 @@ -#' Local collectivities included in so-ii +#' Color and label for CLC #' -#' A dataset containing the INSEE code of all local collectivities -#' (communes) included in so-ii +#' A dataset proposing default colors and labels for plotting CLC #' -#' @format a vector of 78 INSEE code -"so_ii_scope" +#' @format data.frame 5 rows, 3 variables +"clc_color" + +#' Catchment areas of interest within the so-ii perimeter +#' +#' A dataset containing the official catchments areas of interest from the BD +#' TOPAGE within the so-ii perimeter. For degre = 3, the data are basically +#' what is found in BD TOPAGE. For degres 1 and 2, the data result from +#' sf::st_union of data of degre 3 to give a more synthetic representation. +#' +#' @format sf data.frame 15 rows, 4 variables +#' \describe{ +#' \item{id}{id, from BD TOPAGE (corresponding to CdOh) or NA when catchment +#' is constructed by so-ii team.} +#' \item{name}{character, name of the catchment area in BD TOPAGE, or given +#' name for catchments constructed by so-ii team.} +#' \item{degre}{factor, importance of the catchment used to plot the +#' catchment areas with different levels of detail ("1", "2", "3").} +#' } +#' +#' @source \url{http://bdtopage.eaufrance.fr/page/objectifs} +"so_ii_catchment" + +#' Number of Cat Nat events for the municipalities of so-ii +#' +#' A dataset containing the number of Cat Nat events (linked to flood) by year +#' and so-ii municipality according to the GASPAR database. +#' +#' @format array with 3 dimensions +#' \describe{ +#' \item{first}{commune as in so_ii_scope} +#' \item{second}{year of Cat Nat events} +#' \item{third}{type of hazard} +#' } +#' +#' @source \url{https://www.georisques.gouv.fr/donnees/bases-de-donnees/base-gaspar} # nolint +"so_ii_catnat" + +#' CLC information for so-ii +#' +#' A dataset containing the Corine Land Cover information on so-ii. +#' +#' @format sf data.frame 1337 rows, 2 variables +#' \describe{ +#' \item{clc_2018}{character, classification from CLC 2018} +#' \item{color}{character, default color to be used to plot so_ii_clc} +#' } +"so_ii_clc" #' Spatial definition of collectivities included in so-ii #' @@ -37,6 +82,25 @@ #' @source \url{https://www.data.gouv.fr/fr/datasets/admin-express/} "so_ii_collectivity" +#' Hydrographic network within the so-ii perimeter +#' +#' A dataset containing the official hydrographic network from the BD TOPAGE +#' within the so-ii perimeter. +#' +#' @format sf data.frame 125 rows, 4 variables +#' \describe{ +#' \item{id}{id, from BD TOPAGE (corresponding to CdOh)} +#' \item{name}{character, name of the hydrographic elements in the BD TOPAGE} +#' \item{degre}{factor, level of importance of the hydrographic element +#' used to plot the hydrographic network with different levels of +#' detail ("1", "2", "3").} +#' \item{type}{factor, type of hydrographic element ("canal", "river", +#' "waterbody")} +#' } +#' +#' @source \url{http://bdtopage.eaufrance.fr/page/objectifs} +"so_ii_hydro" + #' Spatial perimeter of so-ii #' #' A dataset containing the perimeter of so-ii. @@ -47,16 +111,53 @@ #' @format sfc_POLYGON of length 1 "so_ii_limit" -#' CLC information for so-ii +#' Local collectivities included in so-ii #' -#' A dataset containing the Corine Land Cover information on so-ii. +#' A dataset containing the INSEE code of all local collectivities +#' (communes) included in so-ii #' -#' @format sf data.frame 1337 rows, 2 variables +#' @format a vector of 78 INSEE code +"so_ii_scope" + +#' ONRN information for so-ii +#' +#' A dataset containing part of the information available at the ONRN for so-ii +#' communities. The information chosen is exclusively related to floods. It is +#' mainly related to impacts and therefore to the claims in from the Cat-Nat +#' system. These data on claims are taken from the CCR, the others from the +#' gaspar database. +#' +#' @format data.frame 78 rows, 23 variables #' \describe{ -#' \item{clc_2018}{character, classification from CLC 2018} -#' \item{color}{character, default color to be used to plot so_ii_clc} +#' \item{n_catnat}{Number of Cat Nat events} +#' \item{freq_sin}{Number of claims divided by number of contracts +#' for 1995 to 2018. freq_sin is calculated as the mean of freq_sin_min +#' and freq_sin_max (range for each category).} +#' \item{cost}{Cumulative cost of claims for 1995 to 2018. Cost is calculated +#' as the mean of cost_min and cost_max (range for each category).} +#' \item{cost_mean}{Mean cost of claims (cost divided by claims) for 1995 to +#' 2018. cost_mean is calculated as the mean of cost_mean_min and +#' cost_mean_max (range for each category).} +#' \item{cost_hab}{Cost divided by the population for 1995 to 2018. cost_hab +#' is calculated as the mean of cost_hab_min and cost_hab_max (range for +#' each category).} +#' \item{ratio}{Cost divided by premium for 1995 to 2018. ratio is calculated +#' as the mean of cost_hab_min and cost_hab_max (range for each +#' category).} +#' \item{balance}{Cost minus premium for 1995 to 2018. This is an estimation +#' made by so-ii team by considering a mean premium for each habitant +#' of 24.92829 euro per habitant (total premium in 2018 divided by +#' total population)} +#' \item{ppri_year}{Year given for the last PPRI.} +#' \item{ppri_state}{State of the last PPRI.} +#' \item{ppri_state_sub}{Some details on the state of the last PPRI.} +#' \item{ppri_state_age}{State of the last PPRI for age information.} +#' \item{ppri_age_min}{Lower boundary for the age of the PPRI.} +#' \item{ppri_age_min}{Upper boundary for the age of the PPRI..} #' } -"so_ii_limit" +#' +#' @source \url{https://www.georisques.gouv.fr/articles-risques/acceder-aux-indicateurs-sinistralite} +"so_ii_onrn" #' Population for so-ii #' @@ -69,72 +170,4 @@ #' } #' #' @source \url{https://www.insee.fr/fr/statistiques/2522602} -"so_ii_population" - -#' Number of Cat Nat events for the municipalities of so-ii -#' -#' A dataset containing the number of Cat Nat events (linked to flood) by year -#' and so-ii municipality according to the GASPAR database. -#' -#' @format array with 3 dimensions -#' \describe{ -#' \item{first}{commune as in so_ii_scope} -#' \item{second}{year of Cat Nat events} -#' \item{third}{type of hazard} -#' } -#' -#' @source \url{https://www.georisques.gouv.fr/donnees/bases-de-donnees/base-gaspar} # nolint -"so_ii_catnat" - -#' CLC information for so-ii -#' -#' A dataset containing the 2018 version of CLC information for so-ii -#' -#' @format sf object -"so_ii_clc" - -#' Color and label for CLC -#' -#' A dataset proposing default colors and labels for plotting CLC -#' -#' @format data.frame 5 rows, 3 variables -"clc_color" - -#' Hydrographic network within the so-ii perimeter -#' -#' A dataset containing the official hydrographic network from the BD TOPAGE -#' within the so-ii perimeter. -#' -#' @format sf data.frame 125 rows, 4 variables -#' \describe{ -#' \item{id}{id, from BD TOPAGE (corresponding to CdOh)} -#' \item{name}{character, name of the hydrographic elements in the BD TOPAGE} -#' \item{degre}{factor, level of importance of the hydrographic element -#' used to plot the hydrographic network with different levels of -#' detail ("1", "2", "3").} -#' \item{type}{factor, type of hydrographic element ("canal", "river", -#' "waterbody")} -#' } -#' -#' @source \url{http://bdtopage.eaufrance.fr/page/objectifs} -"so_ii_hydro" - -#' Catchment areas of interest within the so-ii perimeter -#' -#' A dataset containing the official catchments areas of interest from the BD -#' TOPAGE within the so-ii perimeter. For degre = 3, the data are basically -#' what is found in BD TOPAGE. For degres 1 and 2, the data result from -#' sf::st_union of data of degre 3 to give a more synthetic representation. -#' -#' @format sf data.frame 15 rows, 4 variables -#' \describe{ -#' \item{id}{id, from BD TOPAGE (corresponding to CdOh) or NA when catchment -#' is constructed by so-ii team.} -#' \item{name}{character, name of the catchment area in BD TOPAGE, or given -#' name for catchments constructed by so-ii team.} -#' \item{degre}{factor, importance of the catchment used to plot the -#' catchment areas with different levels of detail ("1", "2", "3").} -#' } -#' -#' @source \url{http://bdtopage.eaufrance.fr/page/objectifs} -"so_ii_catchment" \ No newline at end of file +"so_ii_population" \ No newline at end of file diff --git a/geau/R/map_so_ii.r b/geau/R/map_so_ii.r index d165283..5eb7b23 100644 --- a/geau/R/map_so_ii.r +++ b/geau/R/map_so_ii.r @@ -16,6 +16,8 @@ #' levels of detail or "canal", "river", "waterbody" for types of #' hydrographic elements. If missing, "none" will be chosen, and #' everything is plotted.} +#' \item{\strong{onrn}: detail must be chosen in "n_catnat", "freq_sin", +#' "cost", "cost_hab", "cost_mean", "ratio", "balance", "ppri_year".} #' } #' } #' \subsection{year specification}{ @@ -55,7 +57,7 @@ map_so_ii = function( dataset, dataset_legend = NULL, - theme = c("none", "collectivity", "catchment", "catnat", "clc", "hydro", "population"), + theme = c("none", "collectivity", "catchment", "catnat", "clc", "hydro", "onrn", "population"), bar = TRUE, path = NULL, legend_theme = FALSE, @@ -79,6 +81,102 @@ map_so_ii = function( graphics::par(mai = c(.65, .60, .50, .15)) plot(geau::so_ii_limit, axes = TRUE) + if ("catchment" %in% theme) { + if (missing(detail)) { + detail = "1" + } + detail = match.arg( + as.character(detail), + choices = levels(geau::so_ii_catchment[["degre"]]) + ) + selection = geau::so_ii_catchment[["degre"]] == detail + geometry = geau::so_ii_catchment[["geometry"]][selection] + catchment = as.factor(geau::so_ii_catchment[["catchment_name"]][selection]) + color_legend = grDevices::hcl.colors(nlevels(catchment), "Pastel 1", alpha = .3) + color = color_legend[catchment] + border = "grey80" + lwd = 2 + theme_legend = list( + title = sprintf("Bassin versant"), + legend = levels(catchment), + x = "topright", + cex = .8, + bg = "white", + inset = 0.01, + fill = color_legend, + border = border + ) + if (detail == "3") rm(theme_legend) + + plot(geometry, border = border, col = color, lwd = lwd, add = TRUE) + } + + if ("catnat" %in% theme) { + if (missing(detail)) { + detail = dimnames(geau::so_ii_catnat)[["hazard"]] + } + detail = match.arg( + detail, + dimnames(geau::so_ii_catnat)[["hazard"]], + several.ok = TRUE + ) + border = NA + color = NA + if (!missing(year)) { + year = match.arg( + as.character(year), + dimnames(geau::so_ii_catnat)[["period"]] + ) + border = "grey80" + catnat = apply( + geau::so_ii_catnat[, year, detail, drop = FALSE], + 1:2, + sum + ) + color = ifelse( + catnat > 0, + scales::alpha("grey80", .5), + NA + ) + theme_legend = list( + title = sprintf("Cat-Nat %s", year), + legend = c("Sans d\u00e9claration", "Avec d\u00e9claration"), + x = "topright", + cex = .8, + bg = "white", + inset = 0.01, + fill = unique(color), + border = border + ) + } + + plot( + geau::so_ii_collectivity[["geometry"]], + border = border, + col = color, + add = TRUE + ) + } + + if ("clc" %in% theme) { + plot( + geau::so_ii_clc[["geometry"]], + border = NA, + col = geau::so_ii_clc[["color"]], + add = TRUE + ) + + theme_legend = list( + title = "CLC (2018)", + legend = geau::clc_color[["label_fr"]], + x = "topright", + cex = .8, + bg = "white", + inset = 0.01, + fill = geau::clc_color[["color"]] + ) + } + if ("collectivity" %in% theme) { if (missing(detail)) { detail = "none" @@ -136,23 +234,167 @@ map_so_ii = function( } } - if ("clc" %in% theme) { + if ("hydro" %in% theme) { + if (missing(detail)) { + detail = "none" + } + detail = match.arg( + as.character(detail), + choices = c( + "none", + levels(geau::so_ii_hydro[["degre"]]), + levels(geau::so_ii_hydro[["type"]]) + ) + ) + color = scales::alpha("blue", .3) + bg = scales::alpha("blue", .3) + border = NA + selection = seq(nrow(geau::so_ii_hydro)) + theme_legend = list( + title = sprintf("R\u00e9seau hydrographique"), + legend = "\u00e9l\u00e9ment du r\u00e9seau", + x = "topright", + cex = .8, + bg = "white", + inset = 0.01, + col = color, + lwd = 1 + ) + if (detail %in% levels(geau::so_ii_hydro[["type"]])) { + selection = as.character(geau::so_ii_hydro[["type"]]) == detail + theme_legend[["legend"]] = detail + } + if (detail %in% levels(geau::so_ii_hydro[["degre"]])) { + selection = as.character(geau::so_ii_hydro[["degre"]]) <= detail + } + geometry = geau::so_ii_hydro[["geometry"]][selection] + lwd = 4 - as.numeric(geau::so_ii_hydro[["degre"]][selection]) + + plot(geometry, col = color, lwd = lwd, border = border, add = TRUE) + } + + if ("onrn" %in% theme) { + if (missing(detail)) { + detail = "cost" + } + detail = match.arg( + as.character(detail), + sort(colnames(geau::so_ii_onrn)[1:8]) + ) + + onrn_palette = switch( + EXPR = detail, + "n_catnat" = scales::colour_ramp(c("white", "red"), alpha = .5), + "freq_sin" = scales::colour_ramp(c("white", "red"), alpha = .5), + "cost" = scales::colour_ramp(c("white", "red"), alpha = .5), + "cost_hab" = scales::colour_ramp(c("white", "red"), alpha = .5), + "cost_mean" = scales::colour_ramp(c("white", "red"), alpha = .5), + "ratio" = scales::colour_ramp(c("green", "white", "red"), alpha = .5), + "balance" = scales::colour_ramp(c("red", "white", "green"), alpha = .5), + "ppri_year" = scales::colour_ramp(c("grey80", "grey50"), alpha = .5), + NULL + ) + onrn_trans = switch( + EXPR = detail, + "n_catnat" = scales::identity_trans(), + "freq_sin" = scales::identity_trans(), + "cost" = scales::sqrt_trans(), + "cost_hab" = scales::sqrt_trans(), + "cost_mean" = scales::sqrt_trans(), + "ratio" = scales::sqrt_trans(), + "balance" = scales::modulus_trans(.5), + "ppri_year" = scales::identity_trans(), + NULL + ) + onrn_range = switch( + EXPR = detail, + "ratio" = c(0, 4), + "balance" = max(abs(range(geau::so_ii_onrn[["balance"]]))) * c(-1, 1), + NULL + ) + + color = scales::cscale( + c(onrn_range, geau::so_ii_onrn[[detail]]), + onrn_palette, + trans = onrn_trans) + if (length(onrn_range) > 0) { + color = color[-seq(onrn_range)] + } + border = "grey80" plot( - geau::so_ii_clc[["geometry"]], - border = NA, - col = geau::so_ii_clc[["color"]], + geau::so_ii_collectivity[["geometry"]], + border = border, + col = color, add = TRUE ) + if (sprintf("%s_min", detail) %in% names(geau::so_ii_onrn)) { + selection = c(detail, sprintf("%s_min", detail), sprintf("%s_max", detail)) + temp = unique(geau::so_ii_onrn[selection]) + temp = temp[order(temp[[detail]]), ] + text_legend = gsub("0 - 0", "0", + sprintf( + "%s - %s", + temp[[sprintf("%s_min", detail)]], + temp[[sprintf("%s_max", detail)]] + ) + ) + value_legend = temp[[detail]] + } + if (detail %in% c("n_catnat", "ppri_year")) { + value_legend = round( + seq( + min(geau::so_ii_onrn[[detail]], na.rm = TRUE), + max(geau::so_ii_onrn[[detail]], na.rm = TRUE), + length.out = 5 + ) + ) + text_legend = value_legend + } + if (detail %in% c("balance")) { + value_legend = unique( + c( + seq(min(geau::so_ii_onrn[[detail]]), 0, length.out = 4), + seq(0, max(geau::so_ii_onrn[[detail]]), length.out = 4) + ) + ) + text_legend = formatC( + as.integer(signif(round(value_legend), 2)), + big.mark = " " + ) + } + color_legend = scales::cscale( + c(onrn_range, value_legend), + onrn_palette, + trans = onrn_trans + ) + if (length(onrn_range) > 0) { + color_legend = color_legend[-seq(onrn_range)] + } + title_onrn = switch( + EXPR = detail, + "n_catnat" = "N arr\u00eat\u00e9s Cat-Nat (ONRN)", + "freq_sin" = "Sinistre / Risque [1995-2018]", + "cost" = "Co\u00fbt cumul\u00e9 (\u20AC) [1995-2018]", + "cost_hab" = "Co\u00fbt / hab (\u20ac) [1995-2018]", + "cost_mean" = "Co\u00fbt / sinistre (\u20ac) [1995-2018]", + "ratio" = "Co\u00fbt / Prime [1995-2018]", + "balance" = "Co\u00fbt - Prime (\u20ac) [1995-2018]", + "ppri_year" = "Ann\u00e9e des PPRI", + NULL + ) + theme_legend = list( - title = "CLC (2018)", - legend = geau::clc_color[["label_fr"]], + title = title_onrn, + legend = text_legend, x = "topright", cex = .8, bg = "white", inset = 0.01, - fill = geau::clc_color[["color"]] + fill = color_legend, + border = border ) + rm(text_legend) } if ("population" %in% theme) { @@ -204,122 +446,6 @@ map_so_ii = function( ) } - if ("catnat" %in% theme) { - if (missing(detail)) { - detail = dimnames(geau::so_ii_catnat)[["hazard"]] - } - detail = match.arg( - detail, - dimnames(geau::so_ii_catnat)[["hazard"]], - several.ok = TRUE - ) - border = NA - color = NA - if (!missing(year)) { - year = match.arg( - as.character(year), - dimnames(geau::so_ii_catnat)[["period"]] - ) - border = "grey80" - catnat = apply( - geau::so_ii_catnat[, year, detail, drop = FALSE], - 1:2, - sum - ) - color = ifelse( - catnat > 0, - scales::alpha("grey80", .5), - NA - ) - theme_legend = list( - title = sprintf("Cat-Nat %s", year), - legend = c("Sans d\u00e9claration", "Avec d\u00e9claration"), - x = "topright", - cex = .8, - bg = "white", - inset = 0.01, - fill = unique(color), - border = border - ) - } - - plot( - geau::so_ii_collectivity[["geometry"]], - border = border, - col = color, - add = TRUE - ) - } - - if ("hydro" %in% theme) { - if (missing(detail)) { - detail = "none" - } - detail = match.arg( - as.character(detail), - choices = c( - "none", - levels(geau::so_ii_hydro[["degre"]]), - levels(geau::so_ii_hydro[["type"]]) - ) - ) - color = scales::alpha("blue", .3) - bg = scales::alpha("blue", .3) - border = NA - selection = seq(nrow(geau::so_ii_hydro)) - theme_legend = list( - title = sprintf("R\u00e9seau hydrographique"), - legend = "\u00e9l\u00e9ment du r\u00e9seau", - x = "topright", - cex = .8, - bg = "white", - inset = 0.01, - col = color, - lwd = 1 - ) - if (detail %in% levels(geau::so_ii_hydro[["type"]])) { - selection = as.character(geau::so_ii_hydro[["type"]]) == detail - theme_legend[["legend"]] = detail - } - if (detail %in% levels(geau::so_ii_hydro[["degre"]])) { - selection = as.character(geau::so_ii_hydro[["degre"]]) <= detail - } - geometry = geau::so_ii_hydro[["geometry"]][selection] - lwd = 4 - as.numeric(geau::so_ii_hydro[["degre"]][selection]) - - plot(geometry, col = color, lwd = lwd, border = border, add = TRUE) - } - - if ("catchment" %in% theme) { - if (missing(detail)) { - detail = "1" - } - detail = match.arg( - as.character(detail), - choices = levels(geau::so_ii_catchment[["degre"]]) - ) - selection = geau::so_ii_catchment[["degre"]] == detail - geometry = geau::so_ii_catchment[["geometry"]][selection] - catchment = as.factor(geau::so_ii_catchment[["catchment_name"]][selection]) - color_legend = grDevices::hcl.colors(nlevels(catchment), "Pastel 1", alpha = .3) - color = color_legend[catchment] - border = "grey80" - lwd = 2 - theme_legend = list( - title = sprintf("Bassin versant"), - legend = levels(catchment), - x = "topright", - cex = .8, - bg = "white", - inset = 0.01, - fill = color_legend, - border = border - ) - if (detail == "3") rm(theme_legend) - - plot(geometry, border = border, col = color, lwd = lwd, add = TRUE) - } - if (!missing(dataset)) plot(dataset[["geometry"]], add = TRUE, ...) plot(geau::so_ii_limit, lwd = 2, add = TRUE) @@ -344,9 +470,9 @@ map_so_ii = function( do.call(graphics::legend, dataset_legend) } - if (legend_theme == TRUE && exists("theme_legend")) { + if (legend_theme == TRUE && exists("theme_legend", inherits = FALSE)) { temp = do.call(graphics::legend, theme_legend) - if (exists("text_legend")) { + if (exists("text_legend", inherits = FALSE)) { graphics::text( x = temp[["rect"]][["left"]] + temp[["rect"]][["w"]], y = temp[["text"]][["y"]], diff --git a/geau/data-raw/so_ii_onrn.R b/geau/data-raw/so_ii_onrn.R new file mode 100644 index 0000000..a6118f0 --- /dev/null +++ b/geau/data-raw/so_ii_onrn.R @@ -0,0 +1,28 @@ +# code to prepare `so_ii_onrn` dataset goes here + +so_ii_onrn = read.csv2( + geau::current_version("data-common/so-ii/onrn"), + row.names = 1 +) +class(so_ii_population) = "data.frame" +rownames(so_ii_population) = so_ii_population[["CODGEO"]] +selection = grep( + "PMUN|PSCDC|PTOT", + colnames(so_ii_population), + value = TRUE +) +so_ii_population = as.matrix( + so_ii_population[geau::so_ii_scope, selection] +) +year = gsub("PMUN", "20", selection) +year = gsub("PTOT", "19", year) +year = gsub("1919", "19", year) +year = gsub("1918", "18", year) +dimnames(so_ii_population)[[2]] = year + +# updating datasets + +# actual = setwd(file.path(system.file(package = "geau"), "..")) +actual = setwd("geau") +usethis::use_data(so_ii_population, internal = FALSE, overwrite = TRUE) +setwd(actual) diff --git a/geau/data/so_ii_onrn.rda b/geau/data/so_ii_onrn.rda new file mode 100644 index 0000000000000000000000000000000000000000..5985ecbfe976d7619b844a785b0f048fdb6ff0eb GIT binary patch literal 2936 zcmYjMc{tPy7ye~tEW>oiE`8MuW3o@yHg3NrG&A-Ygt!exnJib~mT@t|j5UR_?;2z6 zX30(@`*Kr;EQur`CD|(B%e~L{Jm34r`<`>&bIx-P-qGWv)>#KE#bKgtAr(M=+1*3V z?&fajPYwO4yUSa9rRBYR58KnC&QnGLNwUq$;Nibc>|c9nz-NZ<E4INTX)B#k4T<mJ zuB~GklpcAnyL^3K+<gjNsAw(w{*d)Tv~G~i_^mq>J_KA#55#5{E;5CRzZVuU(&<0> z@O=}|5FFI!{p>UZ4JhV9#j_b!LxVZoNN`^+@DqYehzS!w?1cb;kpEZzwE%=6hG<Bf z9fp8n{C|yqSoi-}sAz8l!!OV?FJ5%v4i14s;2=O>*vDf&kN@e2F%e>E05FIE5RkL? zO~O%vOh8^<kd+GvLqLzcMT2|v&jAqde;KeBiZKBUfhDeA81G>&pG{n(^N33%YJ?<u z{<%<5YdRoL>t2g2PIw1V<m>8sc(gGhi-5Mv@q_EXSV8zh;%xfQkGlm$c>ZFvhILYy zYSrQRqI=2uN3W1ODjzsd;S?f_;LX+LCm5?dffAKqcmYXTMy7-pEuWwG-YVfKgVQqJ zly2!S{yv{DnPB+r{K<D~4;&n#F({@u5GKE)%-4N2$P|YPoJ&h(!S9jp_3~xB^G0l9 zl#tQqNG2dY;aGAWmnf-WYijR_>#huUjOr-O-*(i(`ez?A?cm@lH(?0*WaEjzlX9Ck zw^AheEXHSp?t%WZZ_AQ+y|wX%&0CwFb#IRt%}irpYFe%6s}(3v<nt8~3@0h$p+7~M z%(B%v&nY4BZ>ba*Gk$?|TiCW6#rbglfPm%R^L7@L%0zE?uZki*O(NDNw-~JyZr(sI zfT2+1C>C?n@ky5a*uef-Gg>-2enPUEVW&_nrJDb)0Ux7DP?he=div&Slk+8_b!?E1 zrAA1K^{E)GvSSuIiw!HqGuP+pC?Yw_ksM_<$?8iQbRNm<)e~VkGIdt`#)WD6MsG-H zm1OEId_n*4fulcO#Fl(!V~pomTx5Ahx`eu2YA3>xRVUcN5<dp27TXfe*LxUC-OghZ zHLi>I(AI_sPSb&>pQq2oCp?~dyz=9+Vtc`nA(FY;YFXq<%M5h5Zq0U`?78LiiGYiN z)BUdtYOmQmvM7{s+^NHZ$uZ9aM~4F4-2O}&rC9i5qHd)*Y56{>I4;)H1LYUzTia5j z>JZvOVshhNlG5B<b5gqc<>Ls0R<4@u!~<EP9|r4&Q}>b2R9Akmk(yb2&`$|2V%1>; zuk7rzdPTsW)sE<WQ<q4%fcs!j7{1eFfxDE`c|FhZ&c%aM)6_Tl3ilP~&Ix5^iGmM^ zBxzwKckkwTvjOww9jOqD-+V&4^s0S9);GxObte(|><r3T<4d^@@<ukkACf={X|~2E z4JkR49eu@zXyePAy_KjXR?PD8Q7(p?tWCD1T=QOQA?1?sUM?<TL<}5b)$N|_*qGQS zU2}D&uen|T*&)yxgA^{8k|RJ{bCHoYJ+7ceDou`XMF#`SlqEX4#@j}coWq)eh9yiR zO!24+v~*NO6jwo64P&oB#7Z-rld|y=j_y(LDxei5N8@OlYS@+~37+Z|cD0xMg;k7* zX5rMCTpMboF;*9u0|jX8_~!CsH;xRXj1XYG9t3i3uCf9sRZqVw!&d!fq&oABruXS^ z9v!`??H;c&*lBAP=1zeQ7(38)ii2FRaVg=ep7+psu-7;f&nurjzEWD0d!Y@l5q?43 zZj!JMs@RNI^n1FcyN}0`u2caSiy0y;9lyl~G<JG_EwmH~{Wu3L^E?PYnUjV~n8Upt z>$VqEM2;<}ehr8+c7@-uh(qsKV6q}Keh4>BUY2@6>J)sp-2gC`8VKFml3HI*EH6w? zkDhM&bWH^bo0T(2YSy3f6FPke@J5l#IrkZuDh2Co0g@Lnpr*c_i=i|XRxaWa4H2Qs ze&e&`qcy9){=sk-UeemGNqv;(HXL-mk(bRL!l$^%iC-@=gTAVRvIJD$+_IXE7?OZG zurA86vCoN-`lM(TVw#O~G|-7s_cC*V)-gS7Dov&O3zg_LcvRRSPusZ(R>?k5Xarcr z>kIgHmreitARj0-GmFh&_gis%iOfVOTL8*Y?LzG{b)*r6nTOnaJ;>wW1Q@$HLyLjW zmWyD>Y;3Pzd;aTUmY$KlI9NxIzT3wd{C*HCX~EYCJbloqbe%RlIhDRYy4k?BYF()4 zc}68T;zbSakKQ)ujCcWxi!dbs7m{L$@2}<a;)et+FLXJ3Z(<Q+*Y8z<_;&TH*hP+N zl~%@dwZ^gt_r_F&{<PRPYeFs$|HXy^Pbqjrj#cyq2Yyg73URuoG-2{QLB)?`6mwgM z)SI7M3UxUdd2luKH`%GStx4&(TF=MZzif}B0HWS*O4g~-dN{k3h~2`<zeS`*#a|H6 zTv!t1tMxv0%_F%)DO}?=7*;|YquR**dF2XYOKXMn`)Uicg!KM)BzbqWu{+=L#;mXY z>2vN?PAdogj?VYXoIIkZca--OxR`lIU@CL+VOhM8J?DpvY*(F&#yYA75Ft^v<=_Qn z3mxr@j7FS8-Y3B)Tf)RbL{U^nLaecrLadadYO;Eb7D3>cANh1#vfkv;<FW6$^4@n3 zi3WB?jMdgec^w+btGJpT)}x}N^zz}?4_KgokOGaFnvhZGJ78;7k}IPghfs!#!l`gp zg@S}cUoy1|zu;#hcG0}1am@9S&Ld=%-Lvs$OeY&^wlRBc6WUkey1<;bYW1LN<vmi} z32i3Qaq}M{?jm1E{5^vdvMw22xxk_Gw49#al{pvjB_K5s-!l@{UYgJqHZB9>Gtb0; zaz$9CX;C65^8)D83$FhSDR6;f6`%aJN8|ms!pyD~4-QpBx#H1086d^p{A;HVff5lt z;PS>C8kVsb&_+FHu7M{W#KDv-gUws*m=eS9eNk{<{ef4RA3L`}*t4w6kCo{RW(Cx~ z1b&uKDlTny{5XJcT;7_cHND-)5593J`|@TeX5;f0v)f}3q^;Q*AJ_&662z#tTusm` zt78w{WRq%#?G_3RMcF4zaZ^*1QSB3qXBV-KKfop8hKVRlPB|=0ORhrVcz%G`sV@Q& z@;uP;SoL;oGkk;LYlp|LSLjS7W7~Y5nIE1~mh_!lYY1t3L6%-WQkNJU`XpTG_jm3A zJrY>YthtakDA~>gW`C+Arp+uuQtYs{RF+OV+Gm}A?*;^WAiePTHPgtl*z!*~feh2m z6|_YMWd9L|Sng7bXZ?XzfyXy4$Y-r}87I!XWB<oOn+RRbnQc_mWNMVEZs-*O*Gu(+ zm;A~-Ts~eoadlEGd0k_~JhNyh>dfRSIxT`Y5&_iaoN1}<ny|+3P^P2f)Uml-!Ulb5 zX7z{7A<bGZ(w`NJP6ge;nyxQRz{uu5+*gzQgEv#x7)z1qh_$CFIvGD&rfvjOe!W`p z@OowA9aE(^Nw-J?DC)LbP<ZI_u&d>n(8lC<gKC#r)Y#b{T8JpN)7*&_%t{}Rw9-(2 zYE!!FT*LFnhdHu=JX(l>Y|)=RZWAgy!LpW-C1>uV6)bFDXTNo6p1d-fr_iUSfxX_y z2T12(-QPt%cdIS?hr-f=%scG7=u>p6{<=y3Q=)Dx&f5cDvAzE+U~K459(Ut~?t|@) z5o<#H?5dyp+gqvYyC!jhpf#NW3RbN*ds5BAse>z@wic@&p2e`{DA9^ab1gB6LbWTq z=E0gz*GVC)om0A%_L{jSZ+Bv5x20o9YITQ82gpPy-_y|~=yd5E;3SynB-Sd67ucQo OL@0zy9K7kQ1N;|l^gf9I literal 0 HcmV?d00001 diff --git a/geau/man/map_so_ii.Rd b/geau/man/map_so_ii.Rd index 63263ef..592e5ef 100644 --- a/geau/man/map_so_ii.Rd +++ b/geau/man/map_so_ii.Rd @@ -8,7 +8,7 @@ map_so_ii( dataset, dataset_legend = NULL, - theme = c("none", "collectivity", "catchment", "catnat", "clc", "hydro", + theme = c("none", "collectivity", "catchment", "catnat", "clc", "hydro", "onrn", "population"), bar = TRUE, path = NULL, @@ -59,6 +59,8 @@ and only the boundaries of collectivities are plotted.} levels of detail or "canal", "river", "waterbody" for types of hydrographic elements. If missing, "none" will be chosen, and everything is plotted.} +\item{\strong{onrn}: detail must be chosen in "n_catnat", "freq_sin", +"cost", "cost_hab", "cost_mean", "ratio", "balance", "ppri_year".} } } \subsection{year specification}{ diff --git a/geau/man/so_ii_clc.Rd b/geau/man/so_ii_clc.Rd index 0d62e5c..2f08e4b 100644 --- a/geau/man/so_ii_clc.Rd +++ b/geau/man/so_ii_clc.Rd @@ -5,12 +5,16 @@ \alias{so_ii_clc} \title{CLC information for so-ii} \format{ -sf object +sf data.frame 1337 rows, 2 variables +\describe{ +\item{clc_2018}{character, classification from CLC 2018} +\item{color}{character, default color to be used to plot so_ii_clc} +} } \usage{ so_ii_clc } \description{ -A dataset containing the 2018 version of CLC information for so-ii +A dataset containing the Corine Land Cover information on so-ii. } \keyword{datasets} diff --git a/geau/man/so_ii_limit.Rd b/geau/man/so_ii_limit.Rd index c54cc95..64c439b 100644 --- a/geau/man/so_ii_limit.Rd +++ b/geau/man/so_ii_limit.Rd @@ -6,22 +6,12 @@ \title{Spatial perimeter of so-ii} \format{ sfc_POLYGON of length 1 - -sf data.frame 1337 rows, 2 variables -\describe{ -\item{clc_2018}{character, classification from CLC 2018} -\item{color}{character, default color to be used to plot so_ii_clc} -} } \usage{ -so_ii_limit - so_ii_limit } \description{ A dataset containing the perimeter of so-ii. - -A dataset containing the Corine Land Cover information on so-ii. } \details{ Basically, this dataset is obtained as diff --git a/geau/man/so_ii_onrn.Rd b/geau/man/so_ii_onrn.Rd new file mode 100644 index 0000000..0991fd9 --- /dev/null +++ b/geau/man/so_ii_onrn.Rd @@ -0,0 +1,50 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/data.r +\docType{data} +\name{so_ii_onrn} +\alias{so_ii_onrn} +\title{ONRN information for so-ii} +\format{ +data.frame 78 rows, 23 variables +\describe{ +\item{n_catnat}{Number of Cat Nat events} +\item{freq_sin}{Number of claims divided by number of contracts +for 1995 to 2018. freq_sin is calculated as the mean of freq_sin_min +and freq_sin_max (range for each category).} +\item{cost}{Cumulative cost of claims for 1995 to 2018. Cost is calculated +as the mean of cost_min and cost_max (range for each category).} +\item{cost_mean}{Mean cost of claims (cost divided by claims) for 1995 to +2018. cost_mean is calculated as the mean of cost_mean_min and +cost_mean_max (range for each category).} +\item{cost_hab}{Cost divided by the population for 1995 to 2018. cost_hab +is calculated as the mean of cost_hab_min and cost_hab_max (range for +each category).} +\item{ratio}{Cost divided by premium for 1995 to 2018. ratio is calculated +as the mean of cost_hab_min and cost_hab_max (range for each +category).} +\item{balance}{Cost minus premium for 1995 to 2018. This is an estimation +made by so-ii team by considering a mean premium for each habitant +of 24.92829 euro per habitant (total premium in 2018 divided by +total population)} +\item{ppri_year}{Year given for the last PPRI.} +\item{ppri_state}{State of the last PPRI.} +\item{ppri_state_sub}{Some details on the state of the last PPRI.} +\item{ppri_state_age}{State of the last PPRI for age information.} +\item{ppri_age_min}{Lower boundary for the age of the PPRI.} +\item{ppri_age_min}{Upper boundary for the age of the PPRI..} +} +} +\source{ +\url{https://www.georisques.gouv.fr/articles-risques/acceder-aux-indicateurs-sinistralite} +} +\usage{ +so_ii_onrn +} +\description{ +A dataset containing part of the information available at the ONRN for so-ii +communities. The information chosen is exclusively related to floods. It is +mainly related to impacts and therefore to the claims in from the Cat-Nat +system. These data on claims are taken from the CCR, the others from the +gaspar database. +} +\keyword{datasets} -- GitLab