diff --git a/R/find.trait/NVS.R b/R/find.trait/NVS.R index 7336f4bfd0049d42452268b3a5fb443d1e292a65..eebacb151d68ac3682419a1b4362e0bace4cd99d 100644 --- a/R/find.trait/NVS.R +++ b/R/find.trait/NVS.R @@ -27,7 +27,7 @@ data.trait$SLA.mean <- 1/data.trait$lma.gm2; data.trait$SLA.mean <- data.trait$S data.trait$SLA.sd <- NA data.trait$Wood.density.mean <- data.trait$wood; data.trait$wood <- NULL data.trait$Wood.density.sd <- NA -data.trait$Max.height.mean <- log10(data.trait$height.m); data.trait$height.m <- NULL +data.trait$Max.height.mean <- data.trait$height.m; data.trait$height.m <- NULL data.trait$Max.height.sd <- NA ## read traits from TRY diff --git a/R/format.data/NVS.R b/R/format.data/NVS.R index 7f09974b0c92b2490375e03c058c5f3e0c0bee63..e9d47dddb94803ae40d45a0b2e8a54cafedccb92 100644 --- a/R/format.data/NVS.R +++ b/R/format.data/NVS.R @@ -67,8 +67,8 @@ rm(data.sp, data.sp2) # library(RColorBrewer) # library(rworldmap) # newmap <- getMap(resolution = 'coarse') -# ## # different resolutions available -# plot(newmap,xlim=c(166,177),ylim=c(-34,-47)) +# # ## # different resolutions available +# plot(newmap,xlim=c(166,177),ylim=c(-47,-34)) # ecoreg <- factor(data.nz$ecocode); levels(ecoreg) <- mycols <- brewer.pal(length(levels(ecoreg)), "Set1") # points(data.nz[['Lon']],data.nz[['Lat']],pty='.',cex=.2,col = as.character(ecoreg)) # legend('bottomleft', col = mycols, legend = names(table(data.nz$ecocode)), pch = rep(19,length(levels(ecoreg)))) @@ -87,4 +87,6 @@ vec.abio.var.names <- c("MAT", "MAP") vec.basic.var <- c("obs.id","tree.id", "sp", "sp.name","cluster","plot", "ecocode", "D", "G", "dead", "year", "htot", "Lon", "Lat", "perc.dead","weights","census") data.tree <- subset(data.nz, select = c(vec.basic.var, vec.abio.var.names)) + + write.csv(data.tree,file="output/formatted/NVS/tree.csv",row.names = FALSE)