Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Kunstler Georges
traitcompet
Commits
3b4e3196
Commit
3b4e3196
authored
Feb 21, 2014
by
Georges Kunstler
Browse files
start write lmer all data model
parent
87744325
Changes
19
Hide whitespace changes
Inline
Side-by-side
R/analysis/lmer.run.nolog.R
View file @
3b4e3196
###########################
###########################
### FUNCTION TO RUN LMER ESTIMATION
### FUNCTION TO RUN LMER ESTIMATION
WITH NO logBA
library
(
lme4
)
...
...
R/find.trait/BCI.R
View file @
3b4e3196
...
...
@@ -80,10 +80,28 @@ data.cat.extract <- fun.change.factor.pheno.try(data.cat.extract)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
## READ pheno data from BCI
pheno.bci
<-
read.csv
(
"data/raw/BCI/BCI.pheno.csv"
,
stringsAsFactors
=
FALSE
)
pheno.bci
$
Latin_name
<-
paste
(
pheno.bci
$
genus
,
pheno.bci
$
species
,
sep
=
" "
)
## merge bci data
data.cat.extract
<-
merge
(
data.cat.extract
,
subset
(
pheno.bci
,
select
=
c
(
"Latin_name"
,
"deciduous"
)),
by
=
"Latin_name"
,
all.x
=
TRUE
,
all.y
=
FALSE
)
write.csv
(
data.cat.extract
,
file
=
"output/pheno.comparison.bci.joe.csv"
,
row.names
=
FALSE
)
data.cat.extract
$
deciduous
[
data.cat.extract
$
deciduous
%in%
c
(
'DB'
,
'DF'
,
'D-NOVEMBER'
)
&
!
is.na
(
data.cat.extract
$
deciduous
)]
<-
'D_EV'
data.cat.extract
$
deciduous
[
data.cat.extract
$
deciduous
%in%
c
(
'DO'
)
&
!
is.na
(
data.cat.extract
$
deciduous
)]
<-
'D'
data.cat.extract
$
deciduous
[
data.cat.extract
$
deciduous
%in%
c
(
'E'
)
&
!
is.na
(
data.cat.extract
$
deciduous
)]
<-
'EV'
data.cat.extract
$
Pheno.T
[
!
is.na
(
data.cat.extract
$
deciduous
)]
<-
data.cat.extract
$
deciduous
[
!
is.na
(
data.cat.extract
$
deciduous
)]
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
###
write.csv
(
data.traits
,
file
=
"output/formatted/BCI/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/Fushan.R
View file @
3b4e3196
...
...
@@ -60,7 +60,6 @@ data.cat.extract[data.cat.extract$Latin_name %in% c('Machilus zuihoensis',
'Osmanthus matsumuranus'
,
'Symplocos wikstroemiifolia'
,
'Itea parviflora'
,
'Symplocos sonoharae'
,
'Cyclobalanopsis sessilifolia'
,
'Eriobotrya deflexa'
,
'Neolitsea konishii'
),
"Pheno.T"
]
<-
'EV'
data.cat.extract
[
is.na
(
data.cat.extract
$
Pheno.T
),]
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
...
...
R/format.data/BCI.R
View file @
3b4e3196
...
...
@@ -166,7 +166,7 @@ data.bci[["ecocode"]] <- "tropical"
###################### PLOT SELECTION FOR THE ANALYSIS
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
'Lon'
,
'Lat'
,
"x"
,
"y"
,
"census"
,
'MAT'
,
'MAP'
)
data.tree
<-
subset
(
data.bci
,
select
=
c
(
vec.basic.var
))
...
...
R/format.data/Canada.R
View file @
3b4e3196
...
...
@@ -91,7 +91,7 @@ data.canada <- merge(data.canada, data.frame(plot = names(perc.dead), perc.dead
table
(
data.canada
$
dead
)
## data.canada <- data.canada[data.canada$dead == 0,]
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.canada
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
...
...
R/format.data/France.R
View file @
3b4e3196
...
...
@@ -82,7 +82,7 @@ data.france$MAP <- data.france$SAP
## names of variables for abiotic conditions
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
## other var
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.france
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/format.data/Fushan.R
View file @
3b4e3196
...
...
@@ -64,7 +64,7 @@ data.fushan$MAP <- clim$MAP
###################### PLOT SELECTION FOR THE ANALYSIS - NEEDS REDOING
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
'Lon'
,
'Lat'
,
"x"
,
"y"
,
"census"
,
'MAT'
,
'MAP'
)
data.tree
<-
subset
(
data.fushan
,
select
=
c
(
vec.basic.var
))
...
...
R/format.data/Japan.R
View file @
3b4e3196
...
...
@@ -169,7 +169,7 @@ data.japan$MAP <- clim$MAP
###################### PLOT SELECTION FOR THE ANALYSIS
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
'Lon'
,
'Lat'
,
"x"
,
"y"
,
"census"
,
'MAT'
,
'MAP'
)
data.tree
<-
subset
(
data.japan
,
select
=
c
(
vec.basic.var
))
...
...
R/format.data/Luquillo.R
View file @
3b4e3196
...
...
@@ -116,10 +116,10 @@ data.luq[["ecocode"]] <- "tropical"
###################### PLOT SELECTION FOR THE ANALYSIS - NEEDS REDOING
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
'Lon'
,
'Lat'
,
"x"
,
"y"
,
"census"
,
'MAT'
,
'MAP'
)
data.tree
<-
subset
(
data.luq
,
select
=
c
(
vec.basic.var
))
y
data.tree
<-
subset
(
data.tree
,
subset
=!
is.na
(
data.tree
$
x
)
&
!
is.na
(
data.tree
$
y
))
## convert var factor in character or numeric
data.tree
<-
fun.convert.type.B
(
data.tree
)
...
...
R/format.data/Mbaiki.R
View file @
3b4e3196
...
...
@@ -135,7 +135,7 @@ data.mbaiki$MAT <- clim$MAT
data.mbaiki
$
MAP
<-
clim
$
MAP
###################### PLOT SELECTION FOR THE ANALYSIS - NEEDS REDOING
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
'Lon'
,
'Lat'
,
"x"
,
"y"
,
"census"
,
'MAT'
,
'MAP'
)
data.tree
<-
subset
(
data.mbaiki
,
select
=
c
(
vec.basic.var
))
...
...
R/format.data/NSW.R
View file @
3b4e3196
...
...
@@ -186,7 +186,7 @@ data.nsw$MAT <- clim$MAT
data.nsw
$
MAP
<-
clim
$
MAP
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.nsw
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/format.data/NVS.R
View file @
3b4e3196
...
...
@@ -88,7 +88,7 @@ data.nz <- merge(data.nz, data.frame(plot = names(perc.dead), perc.dead = perc.d
###### REMOVE DEAD TREE at first census
data.nz
<-
subset
(
data.nz
,
subset
=!
is.na
(
data.nz
[[
"D"
]]))
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.nz
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/format.data/Paracou.R
View file @
3b4e3196
...
...
@@ -109,7 +109,7 @@ data.paracou$MAT <- clim$MAT
data.paracou
$
MAP
<-
clim
$
MAP
###################### PLOT SELECTION FOR THE ANALYSIS - NEEDS REDOING
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
'Lon'
,
'Lat'
,
"x"
,
"y"
,
"census"
,
'MAT'
,
'MAP'
)
data.tree
<-
subset
(
data.paracou
,
select
=
c
(
vec.basic.var
))
...
...
R/format.data/Spain.R
View file @
3b4e3196
...
...
@@ -120,7 +120,7 @@ colnames(data.spain)[colnames(data.spain) %in% c("mat", "pp", "PET")] <- c("MAT"
data.spain
$
ecocode
<-
NULL
colnames
(
data.spain
)[
names
(
data.spain
)
==
"ecocode.merged"
]
<-
c
(
"ecocode"
)
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.spain
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/format.data/Sweden.R
View file @
3b4e3196
...
...
@@ -9,9 +9,9 @@ dir.create("output/formatted/Sweden", recursive=TRUE,showWarnings=FALSE)
######################### READ DATA read individuals tree data
data.swe
<-
read.table
(
"data/raw/Sweden/Swe_NFI_all.txt"
,
header
=
T
,
stringsAsFactors
=
F
,
sep
=
"\t"
)
#head(data.swe)
data.swe
$
tree.id
<-
apply
(
cbind
(
data.swe
[[
"
Y
ear"
]],
data.swe
[[
"TractNr"
]],
data.swe
[[
"PlotNr"
]],
data.swe
$
tree.id
<-
apply
(
cbind
(
data.swe
[[
"
y
ear"
]],
data.swe
[[
"TractNr"
]],
data.swe
[[
"PlotNr"
]],
data.swe
[[
"TreeNr"
]]),
1
,
paste
,
collapse
=
"_"
)
data.swe
$
plot
<-
apply
(
cbind
(
data.swe
[[
"
Y
ear"
]],
data.swe
[[
"TractNr"
]],
data.swe
[[
"PlotNr"
]]),
data.swe
$
plot
<-
apply
(
cbind
(
data.swe
[[
"
y
ear"
]],
data.swe
[[
"TractNr"
]],
data.swe
[[
"PlotNr"
]]),
1
,
paste
,
collapse
=
"_"
)
dim
(
data.swe
)
#table(table(data.swe$TreeID))
...
...
@@ -128,7 +128,7 @@ data.swe <- merge(data.swe,data.frame(plot=names(perc.dead),perc.dead=perc.dead)
## vec.abio.var.names <- c("MAT", "MAP") ## TODO NO MAT MAP NEED TO LOAD FROM WORLDCLIM
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.swe
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/format.data/Swiss.R
View file @
3b4e3196
...
...
@@ -104,7 +104,7 @@ data.swiss <- merge(data.swiss, data.frame(plot = data.climate$CLNR, swb = data.
rm
(
data.climate
)
### select good columns
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.swiss
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/format.data/US.R
View file @
3b4e3196
...
...
@@ -120,7 +120,8 @@ rm(greco, perc.dead, tab.small.div, sel.small.div)
## variables to keep
vec.abio.var.names
<-
c
(
"MAT"
,
"MAP"
)
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"dead"
,
vec.basic.var
<-
c
(
"obs.id"
,
"tree.id"
,
"sp"
,
"sp.name"
,
"cluster"
,
"plot"
,
"ecocode"
,
"D"
,
"G"
,
"BA.G"
,
"year"
,
"dead"
,
"Lon"
,
"Lat"
,
"weights"
,
"census"
)
data.tree
<-
subset
(
data.us
,
select
=
c
(
vec.basic.var
,
vec.abio.var.names
))
## select only tree above 10cm DBH
...
...
R/process.data/test.tree.CWM-fun.R
View file @
3b4e3196
...
...
@@ -447,6 +447,25 @@ return(accept)
## function compute FD per plot
## TODO
fun.compute.sd.var.cluster
<-
function
(
data
,
var
){
cluster.unique.id
<-
paste
(
data
[[
'set'
],
data
[[
'ecocode'
]],
data
[[
'cluster'
]])
tapply
(
data
[[
var
]],
INDEX
=
cluster.unique.id
,
FUN
=
sd
,
na.rm
=
TRUE
)
cluster.unique.id
<-
paste
(
data
[[
'set'
]
]
,
data
[[
'ecocode'
]],
data
[[
'cluster'
]])
return
(
tapply
(
data
[[
var
]],
INDEX
=
cluster.unique.id
,
FUN
=
sd
,
na.rm
=
TRUE
)
)
}
fun.compute.mean.var.cluster
<-
function
(
data
,
var
){
cluster.unique.id
<-
paste
(
data
[[
'set'
]],
data
[[
'ecocode'
]],
data
[[
'cluster'
]])
return
(
tapply
(
data
[[
var
]],
INDEX
=
cluster.unique.id
,
FUN
=
mean
,
na.rm
=
TRUE
))
}
fun.compute.perc.var.cluster
<-
function
(
data
,
var
){
cluster.unique.id
<-
paste
(
data
[[
'set'
]],
data
[[
'ecocode'
]],
data
[[
'cluster'
]])
return
(
tapply
(
data
[[
var
]],
INDEX
=
cluster.unique.id
,
FUN
=
function
(
x
)
sum
(
x
,
na.rm
=
TRUE
)
/
length
(
x
)))
}
fun.compute.all.var.cluster
<-
function
(
data
){
trait.name
<-
c
(
"Leaf.N"
,
"Seed.mass"
,
"SLA"
,
"Wood.density"
,
"Max.height"
)
var.for.mean
<-
c
(
'MAT'
,
'MAP'
,
"BATOT"
,
paste
(
trait.name
,
"abs.CWM.fill"
,
sep
=
"."
))
var.for.sd
<-
c
(
paste
(
trait.name
,
"focal"
,
sep
=
"."
))
var.for.per
<-
c
()
}
### TODO LOOK AT FD R cran package to see diversity index that can be computed
R/process.data/test.tree.CWM.R
View file @
3b4e3196
...
...
@@ -35,15 +35,25 @@ mat.perc.I <- do.call("rbind", lmat.perc.I)
lmat.perc.B
<-
mclapply
(
sets.B
,
fun.test.set.tree.CWM.B
,
filedir
=
filedir
,
mc.cores
=
getOption
(
"mc.cores"
,
5
))
mat.perc.B
<-
do.call
(
"rbind"
,
lmat.perc.B
)
rm
(
lmat.perc.B
,
lmat.perc.I
)
mat.perc
<-
data.frame
(
rbind
(
mat.perc.I
,
mat.perc.B
),
stringsAsFactors
=
FALSE
)
rm
(
mat.perc.B
,
mat.perc.I
)
mat.perc
<-
data.frame
(
lapply
(
mat.perc
,
function
(
x
)
(
unlist
(
x
))))
write.csv
(
mat.perc
,
file
=
file.path
(
filedir
,
"all.sites.perc.traits.csv"
),
row.names
=
FALSE
)
###############################################################
## format table for report
## genus perc
mat.num.g
<-
mat.perc
[,
c
(
1
:
3
,
9
:
13
)]
mat.num.g
[,
4
:
8
]
<-
mat.perc
[,
9
:
13
]
/
mat.perc
[,
3
]
mat.perc
<-
read.csv
(
file.path
(
filedir
,
"all.sites.perc.traits.csv"
))
mat.num.g
<-
mat.perc
[,
c
(
'set'
,
'ecocode'
,
'num.obs'
,
"Leaf.N.num.genus"
,
"Seed.mass.num.genus"
,
"SLA.num.genus"
,
"Wood.density.num.genus"
,
"Max.height.num.genus"
)]
mat.num.g
[,
4
:
8
]
<-
mat.perc
[,
c
(
"Leaf.N.num.genus"
,
"Seed.mass.num.genus"
,
"SLA.num.genus"
,
"Wood.density.num.genus"
,
"Max.height.num.genus"
)]
/
mat.perc
[,
"num.obs"
]
names
(
mat.num.g
)
<-
c
(
'set'
,
'ecoregion'
,
'P obs total'
,
'P Leaf N'
,
'P Seed mass'
,
'P SLA'
,
'P Wood density'
,
'P Max height'
)
...
...
@@ -54,24 +64,42 @@ pandoc.table(mat.num.g,
split.tables
=
'Inf'
)
## species perc
mat.num.sp
<-
mat.perc
[,
c
(
1
:
8
)]
mat.num.sp
[,
4
:
8
]
<-
mat.perc
[,
4
:
8
]
/
mat.perc
[,
3
]
mat.num.sp
<-
mat.perc
[,
c
(
'set'
,
'ecocode'
,
'num.obs'
,
"Leaf.N.num.species"
,
"Seed.mass.num.species"
,
"SLA.num.species"
,
"Wood.density.num.species"
,
"Max.height.num.species"
)]
mat.num.sp
[,
4
:
8
]
<-
mat.perc
[,
4
:
8
]
/
mat.perc
[,
'num.obs'
]
names
(
mat.num.sp
)
<-
c
(
'set'
,
'ecoregion'
,
'P obs total'
,
'P Leaf N'
,
'P Seed mass'
,
'P SLA'
,
'P Wood density'
,
'P Max height'
)
pandoc.table
(
mat.num.sp
,
caption
=
"Number of tree radial growth observation per data sets and ecoregion."
,
split.tables
=
'Inf'
)
### read all data
data.all
<-
read.csv
(
file
=
file.path
(
filedir
,
"data.all.csv"
))
data.all.sample
<-
read.csv
(
file
=
file.path
(
filedir
,
"data.all.csv"
),
stringsAsFactors
=
FALSE
,
nrows
=
1000
)
classes
<-
sapply
(
data.all.sample
,
class
)
classes
[
classes
==
'integer'
]
<-
"numeric"
nrows
<-
as.numeric
(
system
(
'wc -l < output/processed/data.all.csv'
,
intern
=
TRUE
))
data.all
<-
read.csv
(
file
=
file.path
(
filedir
,
"data.all.csv"
),
stringsAsFactors
=
FALSE
,
nrows
=
nrows
,
colClasses
=
classes
)
if
(
dim
(
data.all
)[
1
]
!=
sum
(
mat.perc
[[
'num.obs'
]]))
stop
(
'error not same dimension per ecoregion and total'
)
## data.all[['G']][!(trim.positive.growth(data.all[['G']]) &
## trim.negative.growth(dbh1=data.all[['D']]*10,
## dbh2=data.all[['D']]*10 +data.all[['year']]*data.all[['G']]))] <- NA
## data.all[['BA.G']][!(trim.positive.growth(data.all[['G']]) &
## trim.negative.growth(data.all[['D']]*10,dbh2=data.all[['D']]*10 +data.all[['year']]*data.all[['G']]))] <- NA
data.all
[[
'G'
]][
!
(
trim.positive.growth
(
data.all
[[
'G'
]])
&
trim.negative.growth
(
dbh1
=
data.all
[[
'D'
]]
*
10
,
dbh2
=
data.all
[[
'D'
]]
*
10
+
data.all
[[
'year'
]]
*
data.all
[[
'G'
]]))]
<-
NA
(
data.all
[[
'G'
]]
>
-50
&
!
is.na
(
data.all
[[
'G'
]])))]
<-
NA
data.all
[[
'BA.G'
]][
!
(
trim.positive.growth
(
data.all
[[
'G'
]])
&
trim.negative.growth
(
data.all
[[
'
D
'
]]
*
10
,
dbh2
=
data.all
[[
'D'
]]
*
10
+
data.all
[[
'year'
]]
*
data.all
[[
'G'
]]))]
<-
NA
(
data.all
[[
'
G
'
]]
>
-50
&
!
is.na
(
data.all
[[
'G'
]]))
)
]
<-
NA
## plot
...
...
@@ -92,6 +120,8 @@ to.dev(fun.plot.xy.set(data.all,var.x='D',var.y='BA.G',cex=0.6),dev=png,
filename
=
"figs/test.processed/fig.xy.D.BA.G.set.png"
)
to.dev
(
fun.plot.xy.set
(
data.all
,
var.x
=
'D'
,
var.y
=
'G'
,
cex
=
0.6
),
dev
=
png
,
filename
=
"figs/test.processed/fig.xy.D.G.set.png"
)
to.dev
(
fun.plot.xy.set
(
data.all
,
var.x
=
'BATOT'
,
var.y
=
'G'
,
cex
=
0.6
),
dev
=
png
,
filename
=
"figs/test.processed/fig.xy.BATOT.G.set.png"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment