Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Kunstler Georges
traitcompet
Commits
67ee0df5
Commit
67ee0df5
authored
Jan 23, 2014
by
Georges Kunstler
Browse files
minor change in function for output
parent
025bdc23
Changes
4
Hide whitespace changes
Inline
Side-by-side
R/analysis/lmer.output-fun.R
View file @
67ee0df5
...
...
@@ -181,7 +181,8 @@ return(mat.ratio)
### FUNCTION TO REPORT BEST MODEL PER ECOREGION AND TRAITS
fun.AIC
<-
function
(
id2.one
,
DF.results
){
models
<-
c
(
'lmer.LOGLIN.nocomp.Tf'
,
'lmer.LOGLIN.simplecomp.Tf'
,
'lmer.LOGLIN.E.Tf'
,
'lmer.LOGLIN.R.Tf'
,
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
models
<-
c
(
'lmer.LOGLIN.nocomp.Tf'
,
'lmer.LOGLIN.simplecomp.Tf'
,
'lmer.LOGLIN.HD.Tf'
,
'lmer.LOGLIN.E.Tf'
,
'lmer.LOGLIN.R.Tf'
,
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
best
<-
as.vector
(
DF.results
[
DF.results
$
id2
==
id2.one
,
c
(
'id2'
,
'trait'
,
'set'
,
'ecocode'
,
'filling'
,
'MAT'
,
'MAP'
,
'model'
)])[
which.min
(
DF.results
$
AIC
[
DF.results
$
id2
==
id2.one
]),]
AIC.all
<-
as.vector
(
DF.results
[
DF.results
$
id2
==
id2.one
,
c
(
'AIC'
)])
names
(
AIC.all
)
<-
as.vector
(
DF.results
[
DF.results
$
id2
==
id2.one
,
c
(
'model'
)])
...
...
@@ -192,14 +193,14 @@ fun.AIC <- function(id2.one,DF.results){
}
fun.AICc
<-
function
(
id2.one
,
DF.results
){
models
<-
c
(
'lmer.LOGLIN.nocomp.Tf'
,
'lmer.LOGLIN.simplecomp.Tf'
,
'lmer.LOGLIN.E.Tf'
,
'lmer.LOGLIN.R.Tf'
,
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
models
<-
c
(
'lmer.LOGLIN.nocomp.Tf'
,
'lmer.LOGLIN.simplecomp.Tf'
,
'lmer.LOGLIN.
HD.Tf'
,
'lmer.LOGLIN.
E.Tf'
,
'lmer.LOGLIN.R.Tf'
,
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
Deviance.all
<-
DF.results
[
DF.results
$
id2
==
id2.one
,
'deviance'
]
names
(
Deviance.all
)
<-
DF.results
[
DF.results
$
id2
==
id2.one
,
'model'
]
Deviance.all
<-
Deviance.all
[
models
]
nobs.all
<-
DF.results
[
DF.results
$
id2
==
id2.one
,
'nobs'
]
names
(
nobs.all
)
<-
DF.results
[
DF.results
$
id2
==
id2.one
,
'model'
]
nobs.all
<-
nobs.all
[
models
]
n.param
<-
c
(
2
,
3
,
4
,
4
,
5
,
4
)
n.param
<-
c
(
2
,
3
,
4
,
4
,
4
,
5
,
4
)
AICc
<-
Deviance.all
+2
*
n.param
*
(
nobs.all
)
/
(
nobs.all
-
n.param
-1
)
id2.n
<-
unique
(
DF.results
[
DF.results
$
id2
==
id2.one
,
c
(
'id2'
)])
res
<-
data.frame
(
id2.n
,
models
[
which.min
(
AICc
)],
t
(
AICc
),
row.names
=
NULL
)
...
...
R/analysis/lmer.output.figs.R
View file @
67ee0df5
...
...
@@ -14,7 +14,6 @@ DF.results <- do.call("rbind",lapply(list.lmer,fun.format.in.data.frame,names.pa
# add id
DF.results
$
id
<-
paste
(
DF.results
$
set
,
DF.results
$
ecocode
,
sep
=
"."
)
## load climatic data
site.clim.all
<-
read.csv
(
file.path
(
"output/processed"
,
"all.sites.clim.csv"
),
stringsAsFactors
=
FALSE
)
site.clim.all
$
id
<-
paste
(
site.clim.all
$
set
,
site.clim.all
$
ecocode
,
sep
=
"."
)
...
...
@@ -50,24 +49,51 @@ DF.results <- cbind(DF.results,DF.R2m.diff,DF.R2c.diff,DF.AIC.diff,DF.delta.AIC,
DF.best.and.all.AIC
<-
do.call
(
'rbind'
,
lapply
(
unique
(
DF.results
$
id2
),
FUN
=
fun.AIC
,
DF.results
))
DF.best.and.all.AICc
<-
do.call
(
'rbind'
,
lapply
(
unique
(
DF.results
$
id2
),
FUN
=
fun.AICc
,
DF.results
))
table
(
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
best.model
,
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
trait
,
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
set
)
## AIC weights
AIC.weights
<-
do.call
(
'rbind'
,
lapply
(
1
:
nrow
(
DF.best.and.all.AICc
),
FUN
=
function
(
i
,
DF
)
exp
((
min
(
DF
[
i
,])
-
DF
[
i
,])
/
2
)
/
sum
(
exp
((
min
(
DF
[
i
,])
-
DF
[
i
,])
/
2
)),
DF.best.and.all.AIC
[,
9
:
14
]))
AIC.weights
<-
do.call
(
'rbind'
,
lapply
(
1
:
nrow
(
DF.best.and.all.AICc
),
FUN
=
function
(
i
,
DF
)
exp
((
min
(
DF
[
i
,])
-
DF
[
i
,])
/
2
)
/
sum
(
exp
((
min
(
DF
[
i
,])
-
DF
[
i
,])
/
2
)),
DF.best.and.all.AIC
[,
9
:
15
]))
DF.AIC.weights
<-
data.frame
(
DF.best.and.all.AICc
[,
1
],
AIC.weights
)
names
(
DF.AIC.weights
)
<-
c
(
'id2'
,
paste
(
'AIC.weight'
,
names
(
DF.AIC.weights
)[
-1
],
sep
=
'.'
))
DF.best.and.all.AIC
<-
merge
(
DF.best.and.all.AIC
,
DF.AIC.weights
,
by
=
'id2'
)
#### compute percentage of vqariance explained by var
## compute a global AIC
fun.global.aic
<-
function
(
DF.results
){
DF.results
<-
DF.results
[
DF.results
$
nobs
>
1000
,]
# select set ecocode with more than 1000 obs
DF.results
<-
DF.results
[
DF.results
$
id2
%in%
names
(
table
(
DF.results
$
id2
))[
table
(
DF.results
$
id2
)
==
7
],]
# select set ecocode with 7 model tested
## species
DF.results.sp
<-
DF.results
[
DF.results
$
filling
==
'species'
,]
# select set ecocode with more than 1000 obs
test.same.n.model.ecoregion
<-
apply
(
table
(
DF.results.sp
$
trait
,
DF.results.sp
$
model
),
MARGIN
=
1
,
function
(
x
)
all
(
x
==
x
[
1
]))
if
(
!
all
(
test.same.n.model.ecoregion
))
stop
(
paste
(
'error not the same number of ecoregion for traits'
,
names
(
test.same.n.model.ecoregion
)[
!
test.same.n.model.ecoregion
]))
list.sp
<-
list
(
AIC.tot
=
tapply
(
DF.results.sp
$
AIC
,
INDEX
=
list
(
DF.results.sp
$
trait
,
DF.results.sp
$
model
),
FUN
=
sum
),
N.ecoregion
=
tapply
(
DF.results.sp
$
AIC
,
INDEX
=
list
(
DF.results.sp
$
trait
,
DF.results.sp
$
model
),
FUN
=
length
))
## genus
DF.results.ge
<-
DF.results
[
DF.results
$
filling
==
'genus'
,]
# select set ecocode with more than 1000 obs
test.same.n.model.ecoregion
<-
apply
(
table
(
DF.results.ge
$
trait
,
DF.results.ge
$
model
),
MARGIN
=
1
,
function
(
x
)
all
(
x
==
x
[
1
]))
if
(
!
all
(
test.same.n.model.ecoregion
))
stop
(
paste
(
'error not the same number of ecoregion for traits'
,
names
(
test.same.n.model.ecoregion
)[
!
test.same.n.model.ecoregion
]))
list.ge
<-
list
(
AIC.tot
=
tapply
(
DF.results.ge
$
AIC
,
INDEX
=
list
(
DF.results.ge
$
trait
,
DF.results.ge
$
model
),
FUN
=
sum
),
N.ecoregion
=
tapply
(
DF.results.ge
$
AIC
,
INDEX
=
list
(
DF.results.ge
$
trait
,
DF.results.ge
$
model
),
FUN
=
length
))
return
(
list
(
sp
=
list.sp
,
ge
=
list.ge
))
}
global.AIC.list
<-
fun.global.aic
(
DF.results
)
#### compute percentage of variance explained by var
DF.results
$
abs.perc.var
<-
DF.results
$
sumTnTfBn.abs.VAR
/
DF.results
$
sumBn.VAR
DF.results
$
R.perc.var
<-
DF.results
$
sumTfBn.VAR
/
DF.results
$
sumBn.VAR
DF.results
$
E.perc.var
<-
DF.results
$
sumTnBn.VAR
/
DF.results
$
sumBn.VAR
DF.results
$
ER.perc.var
<-
DF.results
$
effect.response.var
/
DF.results
$
sumBn.VAR
## print AIC table in markdown format
library
(
'pander'
)
fun.AIC.print.pandoc.table.trait
<-
function
(
DF.best.and.all.AIC
,
trait.select
){
...
...
@@ -76,8 +102,8 @@ aa <- as.data.frame.matrix( t(with(subset(DF.best.and.all.AIC,subset=trait %in%
table
(
best.model
,
set
))))
AIC.pandoc.table
<-
data.frame
(
set
=
rownames
(
aa
),
aa
[,
c
(
4
,
6
,
1
,
5
,
2
,
3
)],
row.names
=
NULL
)
names
(
AIC.pandoc.table
)
<-
gsub
(
"lmer.LOGLIN."
,
""
,
names
(
AIC.pandoc.table
))
print
(
pandoc.table
(
AIC.pandoc.table
,
caption
=
paste
(
"Best models per data set for trait"
,
trait.select
)))
}
print
(
pandoc.table
(
AIC.pandoc.table
,
caption
=
paste
(
"Best models per data set for trait"
,
trait.select
)))
}
fun.AIC.print.pandoc.table.trait
(
DF.best.and.all.AIC
,
trait.select
=
"SLA"
)
fun.AIC.print.pandoc.table.trait
(
DF.best.and.all.AIC
,
trait.select
=
"Leaf.N"
)
...
...
@@ -91,13 +117,14 @@ fun.AIC.print.pandoc.table.trait(DF.best.and.all.AIC,trait.select=c("SLA","Leaf.
#############################################
### DO THE PLOT
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
)
names
(
models
)
<-
c
(
'Effect/response'
)
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
names
(
models
)
<-
c
(
'Effect/response'
,
'Absolute distance'
)
var.y.l
<-
list
(
'R2m.simplecomp'
,
'R2m.simplecomp'
)
pdf
(
'figs/R2m.MAP.pdf'
,
width
=
12
,
height
=
8
)
fun.plot.panel.lmer.res.x.y
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
var.y
=
'R2m.simplecomp'
,
ylim
=
c
(
-0.015
,
0.06
))
var.x
=
'MAP'
,
var.y
.l
=
var.y.l
,
ylim
=
c
(
-0.015
,
0.06
))
dev.off
()
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
...
...
@@ -112,44 +139,29 @@ dev.off()
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
names
(
models
)
<-
c
(
'Effect/response'
,
'Absolute distance'
)
var.y.l
<-
list
(
'ER.perc.var'
,
'abs.perc.var'
)
pdf
(
'figs/perc.var.relative.MAP.pdf'
,
width
=
12
,
height
=
8
)
pdf
(
'figs/perc.var.relative.
BATOT.
MAP.pdf'
,
width
=
12
,
height
=
8
)
fun.plot.panel.lmer.res.x.y
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
var.y.l
=
var.y.l
,
ylim
=
c
(
-0.015
,
100
))
dev.off
()
models
<-
c
(
'lmer.LOGLIN.AD.Tf'
)
names
(
models
)
<-
c
()
fun.plot.panel.lmer.res.x.y
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
var.y
=
'sumTnTfBn.abs.VAR'
,
ylim
=
c
(
-0.015
,
0.2
))
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
)
names
(
models
)
<-
c
(
'Effect/response'
)
fun.plot.panel.lmer.res.x.y
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
var.y
=
'ER.perc.var'
,
ylim
=
c
(
-0.015
,
100
))
models
<-
c
(
'lmer.LOGLIN.AD.Tf'
)
names
(
models
)
<-
c
(
'AB'
)
fun.plot.panel.lmer.res.x.y
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
var.y
=
'abs.perc.var'
,
ylim
=
c
(
-0.015
,
100
))
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
),
mfrow
=
c
(
2
,
2
))
boxplot
(
effect.response.var
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
))
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
))
boxplot
(
effect.response.var
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
boxplot
(
sumTfBn.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
)
)
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
))
boxplot
(
sumT
f
Bn.VAR
~
trait
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
boxplot
(
sumT
n
Bn.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
)
)
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
))
boxplot
(
sumTnBn.VAR
~
trait
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
boxplot
(
sumTnTfBn.abs.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
))
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
),
mfrow
=
c
(
2
,
2
))
boxplot
(
sumBn.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
))
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
))
boxplot
(
sumTnTfBn.abs.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
boxplot
(
Tf.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
))
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
))
boxplot
(
logD.VAR
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
0.5
))
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
),
mfrow
=
c
(
1
,
2
))
...
...
@@ -157,18 +169,19 @@ boxplot(ER.perc.var~trait+set,data=DF.results[DF.results$nobs>1000,],horizontal=
boxplot
(
abs.perc.var
~
trait
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
,
ylim
=
c
(
0
,
100
))
boxplot
(
sumBn.VAR
~
model
+
trait
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
))
boxplot
(
R2m
~
trait
+
model
+
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
boxplot
(
R2m
~
set
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
par
(
mar
=
c
(
5.1
,
9.1
,
4.1
,
2.1
),
mfrow
=
c
(
1
,
3
))
boxplot
(
sumTnBn
~
set
+
trait
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
abline
(
v
=
0
,
col
=
'red'
)
boxplot
(
sumTfBn
~
set
+
trait
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
abline
(
v
=
0
,
col
=
'red'
)
boxplot
(
sumBn
~
set
+
trait
,
data
=
DF.results
[
DF.results
$
nobs
>
1000
,],
horizontal
=
TRUE
,
las
=
2
,
cex
=
0.3
)
abline
(
v
=
0
,
col
=
'red'
)
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.AD.Tf'
)
names
(
models
)
<-
c
(
'Effect/response'
,
'Absolute distance'
)
pdf
(
'figs/R2.MAP.two.pdf'
,
width
=
10
,
height
=
7
)
fun.plot.panel.lmer.res.x.y
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
var.y
=
'R2m.simplecomp'
,
ylim
=
c
(
-0.015
,
0.08
))
dev.off
()
...
...
@@ -189,6 +202,18 @@ fun.plot.panel.lmer.parameters.c(models=models,
list.params
=
list.params
,
small.bar
=
0.02
,
ylim
=
c
(
-.15
,
.25
),
threshold.delta.AIC
=
10000
)
dev.off
()
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.ER.Tf'
)
names
(
models
)
<-
c
(
'Effect/response effect'
,
'Effect/response response'
)
list.params
<-
list
(
c
(
Response
=
'sumTnBn'
),
c
(
Effect
=
'sumTfBn'
))
pdf
(
'figs/parameters.MAT.ER.all.pdf'
,
width
=
9
,
height
=
7
)
fun.plot.panel.lmer.parameters.c
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAT'
,
list.params
=
list.params
,
small.bar
=
0.02
,
ylim
=
c
(
-.15
,
.25
),
threshold.delta.AIC
=
10000
)
dev.off
()
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.ER.Tf'
)
names
(
models
)
<-
c
(
'Effect/response effect'
,
'Effect/response response'
)
...
...
@@ -241,16 +266,16 @@ dev.off()
##
models <- c('lmer.LOGLIN.ER')
##
names(models) <- c('Effect/response')
##
list.params <- list(
c(Response=
'sum
Tf
Bn'
,Effect='sumTnBn')
)
models
<-
c
(
'lmer.LOGLIN.ER
.Tf
'
)
names
(
models
)
<-
c
(
'Effect/response'
)
list.params
<-
list
(
'sumBn'
)
##
pdf('figs/parameters.
boxplot
.ER.pdf',width=8,height=3)
##
fun.plot.panel.lmer.parameters.
boxplot
(models=models,
##
traits = c('Wood.density','SLA','Leaf.N','Max.height'),
##
DF.results,var.x='MAP',
##
list.params=list.params,small.bar=0.02,ylim=c(-0.
1
,0.13),
col=c('red','black')
)
##
dev.off()
pdf
(
'figs/parameters.
MAP.sumBn
.ER.pdf'
,
width
=
8
,
height
=
3
)
fun.plot.panel.lmer.parameters.
c
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
list.params
=
list.params
,
small.bar
=
0.02
,
ylim
=
c
(
-0.
4
,
0.13
),
threshold.delta.AIC
=
10000
)
dev.off
()
## models <- c('lmer.LOGLIN.AD')
## names(models) <- c('Absolute distance')
...
...
R/analysis/lmer.run.R
View file @
67ee0df5
...
...
@@ -98,9 +98,13 @@ output.dir.lmer <- function (model, trait, set, ecoregion,type.filling) {
#============================================================
load.and.prepare.data.for.lmer
<-
function
(
trait
,
set
,
ecoregion
,
min.obs
,
sample.size
,
type.filling
,
base.dir
=
"output/processed/"
){
base.dir
=
"output/processed/"
,
std
=
TRUE
){
### load data
data.tree.tot
<-
read.csv
(
file.path
(
base.dir
,
set
,
ecoregion
,
"data.tree.tot.no.std.csv"
),
stringsAsFactors
=
FALSE
)
if
(
std
)
{
data.tree.tot
<-
read.csv
(
file.path
(
base.dir
,
set
,
ecoregion
,
"data.tree.tot.no.std.csv"
),
stringsAsFactors
=
FALSE
)}
else
{
data.tree.tot
<-
read.csv
(
file.path
(
base.dir
,
set
,
ecoregion
,
"data.tree.tot.csv"
),
stringsAsFactors
=
FALSE
)}
fun.data.for.lmer
(
data.tree.tot
,
trait
,
type.filling
=
type.filling
)
}
...
...
R/analysis/plots.resid.regression.lines.R
View file @
67ee0df5
...
...
@@ -148,7 +148,7 @@ lines(seq.from.to.quantile(df.lmer$sumTfBn),
fun.load.data.for.residual
<-
function
(
trait
,
set
,
ecoregion
,
type.filling
){
df.lmer
<-
load.and.prepare.data.for.lmer
(
trait
,
set
,
ecoregion
,
min.obs
=
10
,
sample.size
=
NA
,
type.filling
)
# return a DF
type.filling
,
std
=
FALSE
)
# return a DF
simple
<-
readRDS
(
file.path
(
"output/lmer"
,
set
,
ecoregion
,
trait
,
type.filling
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment