Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Kunstler Georges
traitcompet
Commits
93926ca2
Commit
93926ca2
authored
Feb 07, 2014
by
Georges Kunstler
Browse files
added evergreen and angio plus global standardization
parent
f12d15b5
Changes
25
Hide whitespace changes
Inline
Side-by-side
Makefile
View file @
93926ca2
...
@@ -27,7 +27,7 @@ $(D2)/TRY/data.TRY.std.rds:
...
@@ -27,7 +27,7 @@ $(D2)/TRY/data.TRY.std.rds:
BCI
:
$(D3)/BCI/Done.txt
BCI
:
$(D3)/BCI/Done.txt
$(D3)/BCI/Done.txt
:
R/process.data/process.fun.R $(D2)/BCI/traits.csv
$(D3)/BCI/Done.txt
:
R/process.data/process.fun.R $(D2)/BCI/traits.csv
Rscript
-e
"source('
$<
'); process_bigplot_dataset('BCI', Rlim=15); process_bigplot_dataset('BCI', Rlim=15,std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_bigplot_dataset('BCI', Rlim=15
,std.traits='local'
); process_bigplot_dataset('BCI', Rlim=15,std.traits=
'no'); process_bigplot_dataset('BCI', Rlim=15,std.traits='global'
);"
$(D2)/BCI/traits.csv
:
R/find.trait/BCI.R R/find.trait/trait.fun.R $(D2)/BCI/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/BCI/traits.csv
:
R/find.trait/BCI.R R/find.trait/trait.fun.R $(D2)/BCI/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -40,7 +40,7 @@ $(D2)/BCI/tree.csv: R/format.data/BCI.R $(shell find $(D1)/BCI -type f)
...
@@ -40,7 +40,7 @@ $(D2)/BCI/tree.csv: R/format.data/BCI.R $(shell find $(D1)/BCI -type f)
Japan
:
$(D3)/Japan/Done.txt
Japan
:
$(D3)/Japan/Done.txt
$(D3)/Japan/Done.txt
:
R/process.data/process.fun.R $(D2)/Japan/traits.csv
$(D3)/Japan/Done.txt
:
R/process.data/process.fun.R $(D2)/Japan/traits.csv
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Japan', Rlim=15); process_bigplot_dataset('Japan', Rlim=15,std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Japan', Rlim=15
,std.traits='local'
); process_bigplot_dataset('Japan', Rlim=15,std.traits=
'no'); process_bigplot_dataset('Japan', Rlim=15,std.traits='global'
);"
$(D2)/Japan/traits.csv
:
R/find.trait/Japan.R R/find.trait/trait.fun.R $(D2)/Japan/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Japan/traits.csv
:
R/find.trait/Japan.R R/find.trait/trait.fun.R $(D2)/Japan/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -52,7 +52,7 @@ $(D2)/Japan/tree.csv: R/format.data/Japan.R $(shell find $(D1)/Japan -type f)
...
@@ -52,7 +52,7 @@ $(D2)/Japan/tree.csv: R/format.data/Japan.R $(shell find $(D1)/Japan -type f)
Luquillo
:
$(D3)/Luquillo/Done.txt
Luquillo
:
$(D3)/Luquillo/Done.txt
$(D3)/Luquillo/Done.txt
:
R/process.data/process.fun.R $(D2)/Luquillo/traits.csv
$(D3)/Luquillo/Done.txt
:
R/process.data/process.fun.R $(D2)/Luquillo/traits.csv
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Luquillo', Rlim=15); process_bigplot_dataset('Luquillo', Rlim=15,std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Luquillo', Rlim=15
,std.traits='local'
); process_bigplot_dataset('Luquillo', Rlim=15,std.traits=
'no');process_bigplot_dataset('Luquillo', Rlim=15,std.traits='global'
);"
$(D2)/Luquillo/traits.csv
:
R/find.trait/Luquillo.R R/find.trait/trait.fun.R $(D2)/Luquillo/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Luquillo/traits.csv
:
R/find.trait/Luquillo.R R/find.trait/trait.fun.R $(D2)/Luquillo/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -65,7 +65,7 @@ $(D2)/Luquillo/tree.csv: R/format.data/Luquillo.R $(shell find $(D1)/Luquillo -t
...
@@ -65,7 +65,7 @@ $(D2)/Luquillo/tree.csv: R/format.data/Luquillo.R $(shell find $(D1)/Luquillo -t
Mbaiki
:
$(D3)/Mbaiki/Done.txt
Mbaiki
:
$(D3)/Mbaiki/Done.txt
$(D3)/Mbaiki/Done.txt
:
R/process.data/process.fun.R $(D2)/Mbaiki/traits.csv
$(D3)/Mbaiki/Done.txt
:
R/process.data/process.fun.R $(D2)/Mbaiki/traits.csv
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Mbaiki', Rlim=15); process_bigplot_dataset('Mbaiki', Rlim=15,std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Mbaiki', Rlim=15
,std.traits='local'
); process_bigplot_dataset('Mbaiki', Rlim=15,std.traits=
'no'); process_bigplot_dataset('Mbaiki', Rlim=15,std.traits='global'
);"
$(D2)/Mbaiki/traits.csv
:
R/find.trait/Mbaiki.R R/find.trait/trait.fun.R $(D2)/Mbaiki/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Mbaiki/traits.csv
:
R/find.trait/Mbaiki.R R/find.trait/trait.fun.R $(D2)/Mbaiki/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -78,7 +78,7 @@ $(D2)/Mbaiki/tree.csv: R/format.data/Mbaiki.R $(shell find $(D1)/Mbaiki -type f)
...
@@ -78,7 +78,7 @@ $(D2)/Mbaiki/tree.csv: R/format.data/Mbaiki.R $(shell find $(D1)/Mbaiki -type f)
Canada
:
$(D3)/Canada/Done.txt
Canada
:
$(D3)/Canada/Done.txt
$(D3)/Canada/Done.txt
:
R/process.data/process.fun.R $(D2)/Canada/traits.csv
$(D3)/Canada/Done.txt
:
R/process.data/process.fun.R $(D2)/Canada/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('Canada'); process_inventory_dataset('Canada',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('Canada'
,std.traits='local'
); process_inventory_dataset('Canada',std.traits=
'no');process_inventory_dataset('Canada',std.traits='global'
);"
$(D2)/Canada/traits.csv
:
R/find.trait/Canada.R R/find.trait/trait.fun.R $(D2)/Canada/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Canada/traits.csv
:
R/find.trait/Canada.R R/find.trait/trait.fun.R $(D2)/Canada/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -90,7 +90,7 @@ $(D2)/Canada/tree.csv: R/format.data/Canada.R $(shell find $(D1)/Canada -type f)
...
@@ -90,7 +90,7 @@ $(D2)/Canada/tree.csv: R/format.data/Canada.R $(shell find $(D1)/Canada -type f)
France
:
$(D3)/France/Done.txt
France
:
$(D3)/France/Done.txt
$(D3)/France/Done.txt
:
R/process.data/process.fun.R $(D2)/France/traits.csv
$(D3)/France/Done.txt
:
R/process.data/process.fun.R $(D2)/France/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('France'); process_inventory_dataset('France',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('France'
,std.traits='local'
); process_inventory_dataset('France',std.traits=
'no');process_inventory_dataset('France',std.traits='global'
);"
$(D2)/France/traits.csv
:
R/find.trait/France.R R/find.trait/trait.fun.R $(D2)/France/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/France/traits.csv
:
R/find.trait/France.R R/find.trait/trait.fun.R $(D2)/France/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -103,7 +103,7 @@ $(D2)/France/tree.csv: R/format.data/France.R $(shell find $(D1)/France -type f)
...
@@ -103,7 +103,7 @@ $(D2)/France/tree.csv: R/format.data/France.R $(shell find $(D1)/France -type f)
Fushan
:
$(D3)/Fushan/Done.txt
Fushan
:
$(D3)/Fushan/Done.txt
$(D3)/Fushan/Done.txt
:
R/process.data/process.fun.R $(D2)/Fushan/traits.csv
$(D3)/Fushan/Done.txt
:
R/process.data/process.fun.R $(D2)/Fushan/traits.csv
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Fushan', Rlim=15); process_bigplot_dataset('Fushan', Rlim=15,std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Fushan', Rlim=15
,std.traits='local'
); process_bigplot_dataset('Fushan', Rlim=15,std.traits=
'no');process_bigplot_dataset('Fushan', Rlim=15,std.traits='global'
);"
$(D2)/Fushan/traits.csv
:
R/find.trait/Fushan.R R/find.trait/trait.fun.R $(D2)/Fushan/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Fushan/traits.csv
:
R/find.trait/Fushan.R R/find.trait/trait.fun.R $(D2)/Fushan/tree.csv $(D2)/TRY/data.TRY.std.rds
...
@@ -117,7 +117,7 @@ $(D2)/Fushan/tree.csv: R/format.data/Fushan.R $(shell find $(D1)/Fushan -type f)
...
@@ -117,7 +117,7 @@ $(D2)/Fushan/tree.csv: R/format.data/Fushan.R $(shell find $(D1)/Fushan -type f)
NSW
:
$(D3)/NSW/Done.txt
NSW
:
$(D3)/NSW/Done.txt
$(D3)/NSW/Done.txt
:
R/process.data/process.fun.R $(D2)/NSW/traits.csv
$(D3)/NSW/Done.txt
:
R/process.data/process.fun.R $(D2)/NSW/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('NSW'); process_inventory_dataset('NSW',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('NSW'
,std.traits='local'
); process_inventory_dataset('NSW',std.traits=
'no');process_inventory_dataset('NSW',std.traits='global'
);"
$(D2)/NSW/traits.csv
:
R/find.trait/NSW.R R/find.trait/trait.fun.R $(D2)/NSW/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/NSW/traits.csv
:
R/find.trait/NSW.R R/find.trait/trait.fun.R $(D2)/NSW/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -130,7 +130,7 @@ $(D2)/NSW/tree.csv: R/format.data/NSW.R $(shell find $(D1)/NSW -type f)
...
@@ -130,7 +130,7 @@ $(D2)/NSW/tree.csv: R/format.data/NSW.R $(shell find $(D1)/NSW -type f)
NVS
:
$(D3)/NVS/Done.txt
NVS
:
$(D3)/NVS/Done.txt
$(D3)/NVS/Done.txt
:
R/process.data/process.fun.R $(D2)/NVS/traits.csv
$(D3)/NVS/Done.txt
:
R/process.data/process.fun.R $(D2)/NVS/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('NVS'); process_inventory_dataset('NVS',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('NVS'
,std.traits='local'
); process_inventory_dataset('NVS',std.traits=
'no'); process_inventory_dataset('NVS',std.traits='global'
);"
$(D2)/NVS/traits.csv
:
R/find.trait/NVS.R R/find.trait/trait.fun.R $(D2)/NVS/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/NVS/traits.csv
:
R/find.trait/NVS.R R/find.trait/trait.fun.R $(D2)/NVS/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -143,7 +143,7 @@ $(D2)/NVS/tree.csv: R/format.data/NVS.R $(shell find $(D1)/NVS -type f)
...
@@ -143,7 +143,7 @@ $(D2)/NVS/tree.csv: R/format.data/NVS.R $(shell find $(D1)/NVS -type f)
Paracou
:
$(D3)/Paracou/Done.txt
Paracou
:
$(D3)/Paracou/Done.txt
$(D3)/Paracou/Done.txt
:
R/process.data/process.fun.R $(D2)/Paracou/traits.csv
$(D3)/Paracou/Done.txt
:
R/process.data/process.fun.R $(D2)/Paracou/traits.csv
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Paracou', Rlim=15); process_bigplot_dataset('Paracou', Rlim=15,std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_bigplot_dataset('Paracou', Rlim=15
,std.traits='local'
); process_bigplot_dataset('Paracou', Rlim=15,std.traits=
'no'); process_bigplot_dataset('Paracou', Rlim=15,std.traits='global'
);"
$(D2)/Paracou/traits.csv
:
R/find.trait/Paracou.R R/find.trait/trait.fun.R $(D2)/Paracou/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Paracou/traits.csv
:
R/find.trait/Paracou.R R/find.trait/trait.fun.R $(D2)/Paracou/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -156,7 +156,7 @@ $(D2)/Paracou/tree.csv: R/format.data/Paracou.R $(shell find $(D1)/Paracou -type
...
@@ -156,7 +156,7 @@ $(D2)/Paracou/tree.csv: R/format.data/Paracou.R $(shell find $(D1)/Paracou -type
Spain
:
$(D3)/Spain/Done.txt
Spain
:
$(D3)/Spain/Done.txt
$(D3)/Spain/Done.txt
:
R/process.data/process.fun.R $(D2)/Spain/traits.csv
$(D3)/Spain/Done.txt
:
R/process.data/process.fun.R $(D2)/Spain/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('Spain'); process_inventory_dataset('Spain',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('Spain'
,std.traits='local'
); process_inventory_dataset('Spain',std.traits=
'no'); process_inventory_dataset('Spain',std.traits='global'
);"
$(D2)/Spain/traits.csv
:
R/find.trait/Spain.R R/find.trait/trait.fun.R $(D2)/Spain/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Spain/traits.csv
:
R/find.trait/Spain.R R/find.trait/trait.fun.R $(D2)/Spain/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -169,7 +169,7 @@ $(D2)/Spain/tree.csv: R/format.data/Spain.R $(shell find $(D1)/Spain -type f)
...
@@ -169,7 +169,7 @@ $(D2)/Spain/tree.csv: R/format.data/Spain.R $(shell find $(D1)/Spain -type f)
Sweden
:
$(D3)/Sweden/Done.txt
Sweden
:
$(D3)/Sweden/Done.txt
$(D3)/Sweden/Done.txt
:
R/process.data/process.fun.R $(D2)/Sweden/traits.csv
$(D3)/Sweden/Done.txt
:
R/process.data/process.fun.R $(D2)/Sweden/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('Sweden'); process_inventory_dataset('Sweden',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('Sweden'
,std.traits='local'
); process_inventory_dataset('Sweden',std.traits=
'no'); process_inventory_dataset('Sweden',std.traits='global'
);"
$(D2)/Sweden/traits.csv
:
R/find.trait/Sweden.R R/find.trait/trait.fun.R $(D2)/Sweden/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Sweden/traits.csv
:
R/find.trait/Sweden.R R/find.trait/trait.fun.R $(D2)/Sweden/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -182,7 +182,7 @@ $(D2)/Sweden/tree.csv: R/format.data/Sweden.R $(shell find $(D1)/Sweden -type f)
...
@@ -182,7 +182,7 @@ $(D2)/Sweden/tree.csv: R/format.data/Sweden.R $(shell find $(D1)/Sweden -type f)
Swiss
:
$(D3)/Swiss/Done.txt
Swiss
:
$(D3)/Swiss/Done.txt
$(D3)/Swiss/Done.txt
:
R/process.data/process.fun.R $(D2)/Swiss/traits.csv
$(D3)/Swiss/Done.txt
:
R/process.data/process.fun.R $(D2)/Swiss/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('Swiss'); process_inventory_dataset('Swiss',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('Swiss'
,std.traits='local'
); process_inventory_dataset('Swiss',std.traits=
'no'); process_inventory_dataset('Swiss',std.traits='global'
);"
$(D2)/Swiss/traits.csv
:
R/find.trait/Swiss.R R/find.trait/trait.fun.R $(D2)/Swiss/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/Swiss/traits.csv
:
R/find.trait/Swiss.R R/find.trait/trait.fun.R $(D2)/Swiss/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
@@ -195,7 +195,7 @@ $(D2)/Swiss/tree.csv: R/format.data/Swiss.R $(shell find $(D1)/Swiss -type f)
...
@@ -195,7 +195,7 @@ $(D2)/Swiss/tree.csv: R/format.data/Swiss.R $(shell find $(D1)/Swiss -type f)
US
:
$(D3)/US/Done.txt
US
:
$(D3)/US/Done.txt
$(D3)/US/Done.txt
:
R/process.data/process.fun.R $(D2)/US/traits.csv
$(D3)/US/Done.txt
:
R/process.data/process.fun.R $(D2)/US/traits.csv
Rscript
-e
"source('
$<
'); process_inventory_dataset('US'); process_inventory_dataset('US',std.traits=
FALSE
);"
Rscript
-e
"source('
$<
'); process_inventory_dataset('US'
,std.traits='local'
); process_inventory_dataset('US',std.traits=
'no');process_inventory_dataset('US',std.traits='global'
);"
$(D2)/US/traits.csv
:
R/find.trait/US.R R/find.trait/trait.fun.R $(D2)/US/tree.csv $(D2)/TRY/data.TRY.std.rds
$(D2)/US/traits.csv
:
R/find.trait/US.R R/find.trait/trait.fun.R $(D2)/US/tree.csv $(D2)/TRY/data.TRY.std.rds
Rscript
$<
Rscript
$<
...
...
R/analysis/lmer.nolog.output.R
View file @
93926ca2
...
@@ -13,7 +13,7 @@ for (set in sets){
...
@@ -13,7 +13,7 @@ for (set in sets){
ecoregions
<-
get.ecoregions.for.set
(
set
)
ecoregions
<-
get.ecoregions.for.set
(
set
)
for
(
ecoregion
in
ecoregions
){
for
(
ecoregion
in
ecoregions
){
for
(
trait
in
traits
){
for
(
trait
in
traits
){
for
(
model
in
c
(
model.files.lmer.Tf.1
)){
for
(
model
in
c
(
model.files.lmer.Tf.1
,
model.files.lmer.Tf.2
)){
source
(
model
,
local
=
TRUE
)
source
(
model
,
local
=
TRUE
)
model.obj
<-
load.model
()
model.obj
<-
load.model
()
...
...
R/analysis/lmer.output-fun.R
View file @
93926ca2
...
@@ -396,9 +396,9 @@ fun.plot.panel.lmer.parameters.c <- function(models,traits,DF.results,var.x,list
...
@@ -396,9 +396,9 @@ fun.plot.panel.lmer.parameters.c <- function(models,traits,DF.results,var.x,list
mtext
(
var.x
,
side
=
1
,
line
=
4
)
mtext
(
var.x
,
side
=
1
,
line
=
4
)
if
(
j
==
1
)
if
(
j
==
1
)
mtext
(
paste
(
'param'
,
names
(
models
)[
i
]),
side
=
2
,
line
=
4
,
cex
=
1
)
mtext
(
paste
(
'param'
,
names
(
models
)[
i
]),
side
=
2
,
line
=
4
,
cex
=
1
)
if
(
i
==
nrows
&
j
==
ncols
)
##
if(i==nrows & j==ncols)
legend
(
'topright'
,
legend
=
levels
(
DF.results
$
set
),
pch
=
16
,
##
legend('topright',legend=levels(DF.results$set),pch=16,
col
=
col.vec
,
bty
=
'n'
,
ncol
=
2
)
##
col=col.vec,bty='n',ncol=2)
}
}
}
}
...
...
R/analysis/lmer.output.figs.R
View file @
93926ca2
...
@@ -49,6 +49,8 @@ DF.results <- cbind(DF.results,DF.R2m.diff,DF.R2c.diff,DF.AIC.diff,DF.delta.AIC,
...
@@ -49,6 +49,8 @@ DF.results <- cbind(DF.results,DF.R2m.diff,DF.R2c.diff,DF.AIC.diff,DF.delta.AIC,
DF.best.and.all.AIC
<-
do.call
(
'rbind'
,
lapply
(
unique
(
DF.results
$
id2
),
FUN
=
fun.AIC
,
DF.results
))
DF.best.and.all.AIC
<-
do.call
(
'rbind'
,
lapply
(
unique
(
DF.results
$
id2
),
FUN
=
fun.AIC
,
DF.results
))
DF.best.and.all.AICc
<-
do.call
(
'rbind'
,
lapply
(
unique
(
DF.results
$
id2
),
FUN
=
fun.AICc
,
DF.results
))
DF.best.and.all.AICc
<-
do.call
(
'rbind'
,
lapply
(
unique
(
DF.results
$
id2
),
FUN
=
fun.AICc
,
DF.results
))
table
(
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
best.model
)
table
(
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
best.model
,
table
(
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
best.model
,
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
trait
,
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
trait
,
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
set
)
DF.best.and.all.AIC
[
DF.best.and.all.AIC
$
filling
==
'species'
,]
$
set
)
...
@@ -219,7 +221,8 @@ pdf('figs/parameters.MAP.ER.all.pdf',width=9,height=7)
...
@@ -219,7 +221,8 @@ pdf('figs/parameters.MAP.ER.all.pdf',width=9,height=7)
fun.plot.panel.lmer.parameters.c
(
models
=
models
,
fun.plot.panel.lmer.parameters.c
(
models
=
models
,
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
traits
=
c
(
'Wood.density'
,
'SLA'
,
'Leaf.N'
,
'Max.height'
),
DF.results
,
var.x
=
'MAP'
,
DF.results
,
var.x
=
'MAP'
,
list.params
=
list.params
,
small.bar
=
0.02
,
ylim
=
c
(
-.15
,
.25
),
threshold.delta.AIC
=
10000
)
list.params
=
list.params
,
small.bar
=
0.02
,
threshold.delta.AIC
=
10000
)
dev.off
()
dev.off
()
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.ER.Tf'
)
models
<-
c
(
'lmer.LOGLIN.ER.Tf'
,
'lmer.LOGLIN.ER.Tf'
)
...
...
R/analysis/run.local.R
View file @
93926ca2
##### SCRIPT TO TEST BEFORE TO SEND ON CLUSTER
##### SCRIPT TO TEST BEFORE TO SEND ON CLUSTER
source
(
"R/analysis/lmer.run.nolog.R"
)
source
(
"R/analysis/lmer.run.nolog.R"
)
run.models.for.set.all.traits
(
'France'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Spain'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Sweden'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Swiss'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'BCI'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Fushan'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Luquillo'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'NVS'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Japan'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Canada'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Paracou'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'Mbaiki'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
run.models.for.set.all.traits
(
'US'
,
model.files.lmer.Tf.1
,
run.lmer
,
type.filling
=
'species'
,
std
=
TRUE
)
sets
<-
c
(
'France'
,
'Spain'
,
'Sweden'
,
'Swiss'
,
'BCI'
,
'Fushan'
,
'Luquillo'
,
'NVS'
,
'Japan'
,
'Canada'
,
'Paracou'
,
'Mbaiki'
,
'US'
)
sets
<-
c
(
'France'
,
'Spain'
,
'Sweden'
,
'Swiss'
,
'BCI'
,
'Fushan'
,
'Luquillo'
,
'NVS'
,
'Japan'
,
'Canada'
,
'Paracou'
,
'Mbaiki'
,
'US'
)
library
(
doParallel
)
library
(
doParallel
)
...
...
R/find.trait/BCI.R
View file @
93926ca2
...
@@ -64,6 +64,26 @@ data.traits <- fun.extract.format.sp.traits.NOT.TRY(sp=species.clean$Latin_name,
...
@@ -64,6 +64,26 @@ data.traits <- fun.extract.format.sp.traits.NOT.TRY(sp=species.clean$Latin_name,
## change sp
## change sp
data.traits
$
sp
<-
species.clean
$
sp
data.traits
$
sp
<-
species.clean
$
sp
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
###
###
write.csv
(
data.traits
,
file
=
"output/formatted/BCI/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/BCI/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/Canada.R
View file @
93926ca2
...
@@ -36,6 +36,28 @@ data.traits[is.na(data.traits[["Max.height.mean"]]),
...
@@ -36,6 +36,28 @@ data.traits[is.na(data.traits[["Max.height.mean"]]),
c
(
"Max.height.mean"
,
"Max.height.sd"
,
"Max.height.genus"
)]
<-
height.genus.DF
[
c
(
"Max.height.mean"
,
"Max.height.sd"
,
"Max.height.genus"
)]
<-
height.genus.DF
[
is.na
(
data.traits
[[
"Max.height.mean"
]]),]
is.na
(
data.traits
[[
"Max.height.mean"
]]),]
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
## fix pheno for species with issue
data.cat.extract
[
data.cat.extract
$
Latin_name
%in%
c
(
'Betula spp.'
,
'Crataegus spp.'
,
'Fraxinus spp.'
,
'Malus spp.'
,
'Amelanchier spp.'
,
'Alnus spp.'
,
'Tilia spp.'
,
'Ulmus spp.'
),
'Pheno.T'
]
<-
'D'
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
###
###
write.csv
(
data.traits
,
file
=
"output/formatted/Canada/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/Canada/traits.csv"
,
row.names
=
FALSE
)
R/find.trait/France.R
View file @
93926ca2
...
@@ -37,30 +37,34 @@ data.traits[is.na(data.traits[["Max.height.mean"]]),
...
@@ -37,30 +37,34 @@ data.traits[is.na(data.traits[["Max.height.mean"]]),
height.genus.DF
[
is.na
(
data.traits
[[
"Max.height.mean"
]]),]
height.genus.DF
[
is.na
(
data.traits
[[
"Max.height.mean"
]]),]
#### TODO GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
## fix pheno for species with issue
data.cat.extract
[
data.cat.extract
$
Latin_name
%in%
c
(
'Populus sp'
,
'Tilia europaea'
,
'Prunus sp'
,
'Prunus dulcis'
,
'Sorbus latifolia'
,
'Pyrus spinosa'
,
'Sorbus semiincisa'
,
'Alnus alnobetula'
,
'Crataegus azarolus'
,
'Frangula dodonei'
,
'Tamarix africana'
),
'Pheno.T'
]
<-
'D'
data.cat.extract
[
data.cat.extract
$
Latin_name
%in%
c
(
'Pinus nigra spp. salzmannii'
)
,
'Pheno.T'
]
<-
'EV'
data.cat.extract
[
data.cat.extract
$
Pheno.T
==
'deciduous'
&
!
is.na
(
data.cat.extract
$
Pheno.T
),
'Pheno.T'
]
<-
'D'
data.cat.extract
[
data.cat.extract
$
Pheno.T
==
'evergreen'
&
!
is.na
(
data.cat.extract
$
Pheno.T
),
'Pheno.T'
]
<-
'EV'
data.cat.extract
[
data.cat.extract
$
Pheno.T
==
'deciduous/evergreen'
&
!
is.na
(
data.cat.extract
$
Pheno.T
),
'Pheno.T'
]
<-
'D_EV'
data.traits
<-
merge
(
data.traits
,
data.cat.extract
,
by
=
"sp"
)
## check if leaf Phenology agree with Zanne
sum
(
Pheno.Zanne
$
Binomial
%in%
try.cat
$
AccSpeciesName
)
merge.pheno
<-
merge
(
Pheno.Zanne
,
try.cat
,
by.x
=
"Binomial"
,
by.y
=
"AccSpeciesName"
,
all
=
FALSE
)
table
(
merge.pheno
$
LeafPhenology
,
merge.pheno
$
Phenology
)
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
###
###
write.csv
(
data.traits
,
file
=
"output/formatted/France/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/France/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/Fushan.R
View file @
93926ca2
...
@@ -36,7 +36,28 @@ rm(data.trait)
...
@@ -36,7 +36,28 @@ rm(data.trait)
## extract
## extract
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
sp
,
data
=
data.TRAITS.std
,
name.match.traits
=
"sp"
)
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
sp
,
data
=
data.TRAITS.std
,
name.match.traits
=
"sp"
)
## Check heights here; we DO NOT want to take logs of max height!
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# TODO ASK SPECIES NAME OR EVERGREEN DECIDUOUS BECAUSE NO SPECIES NAME AVAILABLE
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
###
###
write.csv
(
data.traits
,
file
=
"output/formatted/Fushan/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/Fushan/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/Japan.R
View file @
93926ca2
...
@@ -42,6 +42,24 @@ data.trait$Max.height.sd <- NA
...
@@ -42,6 +42,24 @@ data.trait$Max.height.sd <- NA
## read traits from TRY
## read traits from TRY
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
Latin_name
,
data
=
data.trait
,
name.match.traits
=
"Latin_name"
)
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
Latin_name
,
data
=
data.trait
,
name.match.traits
=
"Latin_name"
)
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
### TODO ADD GENUS MEAN FOR HEIGHT IF SPECIES IS MISSING
### TODO ADD GENUS MEAN FOR HEIGHT IF SPECIES IS MISSING
write.csv
(
data.traits
,
file
=
"output/formatted/Japan/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/Japan/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/Luquillo.R
View file @
93926ca2
...
@@ -71,6 +71,34 @@ data.traits <- fun.extract.format.sp.traits.NOT.TRY(sp=species.clean$Latin_name,
...
@@ -71,6 +71,34 @@ data.traits <- fun.extract.format.sp.traits.NOT.TRY(sp=species.clean$Latin_name,
## change sp
## change sp
data.traits
$
sp
<-
species.clean
$
sp
data.traits
$
sp
<-
species.clean
$
sp
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
## fix pheno for species with issue
data.cat.extract
[
data.cat.extract
$
Latin_name
%in%
c
(
'Prestoea acuminata'
,
'Matayba domingensis'
),
'Pheno.T'
]
<-
'D'
data.cat.extract
[
data.cat.extract
$
Latin_name
%in%
c
(
'Cecropia schreberiana'
,
'Talipariti tiliaceum'
,
'Eugenia domingensis'
,
'Ficus crassinervia'
)
,
'Pheno.T'
]
<-
'EV'
data.cat.extract
[
data.cat.extract
$
Latin_name
%in%
c
(
'Chione venosa'
)
,
'Pheno.T'
]
<-
'D_EV'
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
###
###
write.csv
(
data.traits
,
file
=
"output/formatted/Luquillo/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/Luquillo/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/Mbaiki.R
View file @
93926ca2
...
@@ -157,6 +157,23 @@ data.traits <- fun.extract.format.sp.traits.NOT.TRY(sp=species.clean$Latin_name,
...
@@ -157,6 +157,23 @@ data.traits <- fun.extract.format.sp.traits.NOT.TRY(sp=species.clean$Latin_name,
## change sp
## change sp
data.traits
$
sp
<-
species.clean
$
sp
data.traits
$
sp
<-
species.clean
$
sp
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
### Export
### Export
write.csv
(
data.traits
,
file
=
"output/formatted/Mbaiki/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/Mbaiki/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/NSW.R
View file @
93926ca2
...
@@ -33,6 +33,25 @@ rm(data.trait)
...
@@ -33,6 +33,25 @@ rm(data.trait)
## extract
## extract
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
Latin_name
,
data
=
data.TRAITS.std
,
name.match.traits
=
"sp"
)
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
Latin_name
,
data
=
data.TRAITS.std
,
name.match.traits
=
"sp"
)
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)
data.cat.extract
<-
fun.fill.pheno.try.with.zanne
(
data.cat.extract
)
data.traits
<-
merge
(
data.traits
,
data.cat.extract
[,
c
(
"sp"
,
"Phylo.group"
,
"Pheno.T"
)],
by
=
"sp"
)
### TODO ADD GENUS MEAN FOR HEIGHT IF SPECIES IS MISSING
### TODO ADD GENUS MEAN FOR HEIGHT IF SPECIES IS MISSING
write.csv
(
data.traits
,
file
=
"output/formatted/NSW/traits.csv"
,
row.names
=
FALSE
)
write.csv
(
data.traits
,
file
=
"output/formatted/NSW/traits.csv"
,
row.names
=
FALSE
)
...
...
R/find.trait/NVS.R
View file @
93926ca2
...
@@ -31,8 +31,48 @@ data.trait$Wood.density.sd <- NA
...
@@ -31,8 +31,48 @@ data.trait$Wood.density.sd <- NA
data.trait
$
Max.height.mean
<-
data.trait
$
height.m
;
data.trait
$
height.m
<-
NULL
data.trait
$
Max.height.mean
<-
data.trait
$
height.m
;
data.trait
$
height.m
<-
NULL
data.trait
$
Max.height.sd
<-
NA
data.trait
$
Max.height.sd
<-
NA
## read traits from
TRY
## read traits from
data
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
Latin_name
,
data
=
data.trait
,
name.match.traits
=
"Latin_name"
)
data.traits
<-
fun.extract.format.sp.traits.NOT.TRY
(
sp
=
species.clean
$
sp
,
Latin_name
=
species.clean
$
Latin_name
,
data
=
data.trait
,
name.match.traits
=
"Latin_name"
)
## TODO GET ANGIO CONIF DECIDUOUS EVERGREEN BUT NEED SPECIES LATIN NAME
NVS.SPECIES.name
<-
read.csv
(
"data/raw/NVS/CurrentNVSNames.csv"
,
sep
=
';'
,
stringsAsFactors
=
FALSE
)
species.clean
$
Latin_name
<-
NVS.SPECIES.name
$
Species.Name
[
match
(
species.clean
$
Latin_name_syn
,
NVS.SPECIES.name
$
NVS.Code
)]
data.traits
$
Latin_name
<-
species.clean
$
Latin_name
#### GET THE ANGIO/CONIF AND EVERGREEN/DECIDUOUS
## FOR NEW ZEALADN BETTER TO FOLLOW McGlone et al. 2004. Winter leaf loss in the New Zealand woody flora. New Zealand Journal of Botany, 2004, Vol. 42: 1-19. which report 11 species asdeciduous adn 11 species as semi-deciduous
# read try categrocial data
try.cat
<-
read.csv
(
"data/raw/TRY/TRY_Categorical_Traits_Lookup_Table_2012_03_17_TestRelease.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
""
)
Pheno.Zanne
<-
read.csv
(
"data/raw/ZanneNature/GlobalLeafPhenologyDatabase.csv"
,
stringsAsFactors
=
FALSE
)
# extract
data.cat.extract
<-
do.call
(
"rbind"
,
lapply
(
data.traits
$
sp
,
fun.get.cat.var.from.try
,
data.traits
,
try.cat
,
Pheno.Zanne
))
# change category
data.cat.extract
<-
fun.change.factor.pheno.try
(
data.cat.extract
)
data.cat.extract
<-
fun.change.factor.angio.try
(
data.cat.extract
)