diff --git a/merge.data.PARACOU.R b/merge.data.PARACOU.R index f90818c85c2b64857c783f020623e2178d0dbe06..4f3bef5fdc7e6a4ccbffd12fefb067ea955be67f 100644 --- a/merge.data.PARACOU.R +++ b/merge.data.PARACOU.R @@ -1,13 +1,9 @@ ### MERGE paracou DATA -### Edited by FH rm(list = ls()) source("./R/format.function.R") library(reshape) -######################### -## READ DATA -#################### -### read individuals tree data +############################ read individuals tree data data.paracou <- read.table("./data/raw/DataParacou/20130717_paracou_1984_2012.csv", header=TRUE,stringsAsFactors=FALSE,sep = ";", na.strings = "NULL") #barplot(apply(!is.na(data.paracou[,paste("circ_",1984:2012,sep="")]),MARGIN=2,FUN=sum),las=3) @@ -26,7 +22,8 @@ for(k in numeric.col.name){ data.paracou[,k] <- gsub(",",".",data.paracou[,k]); data.paracou[,k] <- as.numeric(data.paracou[,k]) } ## Replace all , in decimals with . -data.paracou$treeid <- apply(data.paracou[,c("plot","subplot","tree")],1,paste,collapse="."); ## Create a tree id +data.paracou$tree.id <- apply(data.paracou[,c("plot","subplot","tree")],1,paste,collapse="_"); +data.paracou$sp <- data.paracou[["taxonid"]] data.paracou <- data.paracou[,c(ncol(data.paracou),1:(ncol(data.paracou)-1))] ## ## plot each plot @@ -34,8 +31,7 @@ data.paracou <- data.paracou[,c(ncol(data.paracou),1:(ncol(data.paracou)-1))] ## lapply(unique(data.paracou[["plot"]]),FUN=fun.circles.plot,data.paracou[['x']],data.paracou[['y']],data.paracou[["plot"]],data.paracou[["circum2009"]],inches=0.2) ## dev.off() -####################### -###### SELECT OBSERVATION WITHOUT PROBLEMS +############################# SELECT OBSERVATION WITHOUT PROBLEMS ## REMOVE ALL TREES WITH X OR Y >250 m data.paracou <- subset(data.paracou,subset=(!is.na(data.paracou[["x"]])) & data.paracou[["x"]]<251 & data.paracou[["y"]]<251) #### REMOVE PLOTs 16 17 18 ACCORDING TO GHSILAIN @@ -44,16 +40,68 @@ data.paracou <- subset(data.paracou,subset=! data.paracou[["plot"]] %in% 16:18) data.paracou <- subset(data.paracou,subset=!(as.numeric(data.paracou[["yeardied"]])<=2001 & !is.na(data.paracou[["yeardied"]]))) -###################################### -## MASSAGE TRAIT DATA -############################ +######################################## MASSAGE TRAIT DATA + +### read species names +species.clean <- read.csv("./data/raw/DataParacou/20130717_paracou_taxonomie.csv",stringsAsFactors=FALSE, header = T, sep = ";") +species.clean$sp <- species.clean[["idTaxon"]] +species.clean$Latin_name <- paste(species.clean[["Genre"]],species.clean[["Espece"]],sep=" ") +## keep only one row pers idTaxon +species.clean <- subset(species.clean,subset=!duplicated(species.clean[["sp"]]),select=c("sp","Latin_name","Genre","Espece","Famille","idCIRAD")) + +## select only species present in data base +species.clean <- subset(species.clean,subset=species.clean[["sp"]] %in% data.paracou[["sp"]]) +## percentage of species with no taxonomic identification +length(grep("Indet",species.clean[["Latin_name"]]))/nrow(species.clean) ## 25% + +dataWD <- read.csv("./data/raw/DataParacou/WD-Species-Paracou-Ervan_GV.csv",stringsAsFactors=FALSE, header = T,sep=" ") +#dataWD <- merge(dataWD, species.clean, by = "idCIRAD", sort = F) +length(unique(species.clean$idCIRAD)) != dim(species.clean) +## dataWD uses idCIRAD as identifier, but this is not a unique identifier in species.clean! +## But wood density seems to also be available from seed.traits + +### need to read the different traits data based and merge ..... +bridge <- read.csv("./data/raw/DataParacou/BridgeDATA.g.csv",stringsAsFactors=FALSE, header = T, sep = ";") +bridge$Latin_name <- paste(bridge[["Genus"]],bridge[["species"]],sep=" ") +### check % of match of the bridg data +sum(species.clean[["Latin_name"]] %in% bridge[["Latin_name"]])/length(species.clean[["Latin_name"]]) +## only 307 species /775 are in teh traits data .... + +seed.traits <- read.csv("./data/raw/DataParacou/Autour-de-Paracou-Releves-par-trait-et-taxon.txt",stringsAsFactors=FALSE, header = T, sep = "\t") + +## Reformat seed.traits to one row per species, with each trait as a column +spp.means <- (cast(seed.traits, LIB_TAXON ~ METHO_LIB, value = "MEASURE", fun = mean)) +colnames(spp.means)[-1] <- paste(colnames(spp.means)[-1],".mean",sep="") +spp.sds <- (cast(seed.traits, LIB_TAXON ~ METHO_LIB, value = "MEASURE", fun = sd)) +colnames(spp.sds) <- paste(colnames(spp.sds),".sd",sep="") +seed.traits2 <- cbind(spp.means,spp.sds[,-1])[,c("LIB_TAXON","Leaf nitrogen concentration (standard).mean","Leaf nitrogen concentration (standard).sd", + "Specific leaf area (standard).mean","Specific leaf area (standard).sd", "Wood density.mean","Wood density.sd")] +colnames(seed.traits2)[1] <- c("Latin_name") +seed.traits2 <- seed.traits2[order(seed.traits2$Latin_name),] +for(k in 2:ncol(seed.traits2)) seed.traits2[,k][!is.finite(seed.traits2[,k])] <- NA +seed.traits2$sp <- species.clean$sp[match(seed.traits2$Latin_name,species.clean$Latin_name)] +colnames(seed.traits2) <- c("Latin_name","Leaf.N.mean","Leaf.N.sd","SLA.mean","SLA.sd","Wood.density.mean","Wood.density.sd","sp") +seed.traits2$SLA.mean <- seed.traits2$SLA.mean/1 ## Conversion from m2/kg to mm2/mg +seed.traits2$Wood.density.mean <- seed.traits2$Wood.density.mean/1 ## conversion from g/cm3 to mg/mm3 + + + +# - $sp$ the species code as in previous table +# - $Latin\_name$ the latin name of the species +# - $Leaf.N.mean$ Leaf Nitrogen per mass in TRY mg/g +# - $Seed.mass.mean$ dry mass in TRY mg +# - $SLA.mean$ in TRY mm2 mg-1 +# - $Wood.density.mean$ in TRY mg/mm3 +# - $Max.height.mean$ from NFI data I compute the 99% quantile in m +# - and the same columns with $sd$ instead of $mean$ with either the mean sd within species if species mean or the mean sd with genus if genus mean because no species data +# - a dummy variable with true or false if genus mean + +## still to be completed +############################################ FORMAT INDIVIDUAL TREE DATA -########################################## -## FORMAT INDIVIDUAL TREE DATA -############# data.paracou2 <- data.paracou[rep(1:nrow(data.paracou),each=2),c(1:10,(ncol(data.paracou)-2):ncol(data.paracou))] rownames(data.paracou2) <- 1:nrow(data.paracou2); data.paracou2 <- as.data.frame(data.paracou2) -data.paracou2$census <- rep(c(2001,2001+4),nrow(data.paracou)); data.paracou2$yr2 <- rep(c(2005,2005+4),nrow(data.paracou)) +data.paracou2$yr1 <- rep(c(2001,2001+4),nrow(data.paracou)); data.paracou2$yr2 <- rep(c(2005,2005+4),nrow(data.paracou)) data.paracou2$year <- rep(c(4,4),nrow(data.paracou)) data.paracou2$dbh1 <- c(rbind(data.paracou$circum2001/pi,data.paracou$circum2005/pi)) data.paracou2$dbh2 <- c(rbind(data.paracou$circum2005/pi,data.paracou$circum2009/pi)) @@ -62,21 +110,19 @@ data.paracou2$code2 <- c(as.numeric(rbind(data.paracou$code2005,data.paracou$cod data.paracou2$dead <- rep(0,nrow(data.paracou)*2) data.paracou2$dead[c(as.numeric(data.paracou[["yeardied"]]) %in% 2002:2005 & (!is.na(data.paracou[["yeardied"]])), as.numeric(data.paracou[["yeardied"]]) %in% 2006:2009 & (!is.na(data.paracou[["yeardied"]])))] <- 1 -data.paracou2$sp <- data.paracou[["taxonid"]] ## remove tree dead at first census for both date (census 2001-2005 2005-2009) data.paracou <- subset(data.paracou2,subset=!(data.paracou2[['yr1']] ==2005 & (as.numeric(data.paracou[["yeardied"]]) %in% 2002:2005 & (!is.na(data.paracou[["yeardied"]]))))) - ## change unit and names of variables to be the same in all data for the tree data.paracou$G <- 10*(data.paracou$dbh2-data.paracou$dbh1)/data.paracou$year ## diameter growth in mm per year data.paracou$G[data.paracou$code1>0] <- NA ## indivs with code indicating problem in dbh measurment at dbh1 data.paracou$G[data.paracou$code2>0] <- NA ## indivs with code indicating problem in dbh measurment at dbh2 +data.paracou2$cenus <- data.paracou$yr1 -data.paracou[which(data.paracou$G < -50),] ## THERE SEEMS TO BE SOME PROBLEMS WITH THE DBH DATA ## much less issue after removing diam problem data.paracou$D <- data.paracou[["dbh1"]]; data.paracou$D[data.paracou$D == 0] <- NA ;## diameter in cm data.paracou$plot <- data.paracou$plot#apply(data.paracou[,c("forest","plot","subplot")],1,paste,collapse=".") ## plot code -data.paracou$htot <- rep(NA,length(data.paracou[["G"]])) ## height of tree in m - MISSING +data.paracou$htot <- rep(NA,length(data.paracou[["G"]])) ## height of tree in m data.paracou$obs.id <- 1:nrow(data.paracou) ### delete recruit in 2001 or 2005 for first census @@ -84,35 +130,25 @@ data.paracou <- subset(data.paracou,subset=!is.na(data.paracou$D)) ## minimum circumfer 30 delete all tree with a dbh <30/pi, data.paracou <- subset(data.paracou,subset= data.paracou[["D"]]>(30/pi)) -###################### -## ECOREGION -################### -## paracou has only 1 eco-region YES NO ECOREGION +######################## ECOREGION -###################### -## PERCENT DEAD -################### -## variable percent dead -## compute numer of dead per plot to remove plot with disturbance -## THERE ARE LOTS OF NAs - DID YOU WANT TO REMOVE THEM OR TREAT THEM AS ALIVE +## paracou has only 1 eco-region + +######################## PERCENT DEAD - compute numer of dead per plot to remove plot with disturbance perc.dead <- tapply(data.paracou[["dead"]],INDEX=data.paracou[["plot"]],FUN=function.perc.dead2) data.paracou <- merge(data.paracou,data.frame(plot=names(perc.dead),perc.dead=perc.dead), by = "plot", sort=FALSE) -########################################################### -### VARIABLES SELECTION FOR THE ANALYSIS -################### +################################################## VARIABLES SELECTION FOR THE ANALYSIS #vec.abio.var.names <- c("MAT","MAP") ## MISSING NEED OTHER BASED ON TOPOGRAPHY ASK BRUNO -vec.basic.var <- c("obs.id","treeid","sp","plot","D","G","dead","census","year","htot","x","y","perc.dead") +vec.basic.var <- c("obs.id","tree.id","sp","plot","D","G","dead","census","year","htot","x","y","perc.dead") data.tree <- subset(data.paracou,select=c(vec.basic.var)) #,vec.abio.var.names ############################################## ## COMPUTE MATRIX OF COMPETITION INDEX WITH SUM OF BA PER SPECIES IN EACH PLOT in m^2/ha without the target species -########################### ## NEED TO COMPUTE BASED ON RADIUS AROUND TARGET TREE - ### species as factor because number data.tree[['sp']] <- factor(data.tree[['sp']]) Rlim <- 15 # set size of neighborhood for competition index @@ -156,34 +192,6 @@ data.BA.sp <- subset(data.BA.sp,subset=not.in.buffer.zone) -######################## -######################### -##### TRAITS - -### read species names -species.clean <- read.csv("./data/raw/DataParacou/20130717_paracou_taxonomie.csv",stringsAsFactors=FALSE, header = T, sep = ";") -species.clean$sp <- species.clean[["idTaxon"]] -species.clean$Latin_name <- paste(species.clean[["Genre"]],species.clean[["Espece"]],sep=" ") -## keep only one row pers idTaxon -species.clean <- subset(species.clean,subset=!duplicated(species.clean[["sp"]]),select=c("sp","Latin_name","Genre","Espece","Famille")) - -## select only species present in data base -species.clean <- subset(species.clean,subset=species.clean[["sp"]] %in% data.tree[["sp"]]) -## percentage of species with no taxonomic identification -length(grep("Indet",species.clean[["Latin_name"]]))/nrow(species.clean) ## 25% - -### need to read the different traits data based and merge ..... -bridge <- read.csv("./data/raw/DataParacou/BridgeDATA.g.csv",stringsAsFactors=FALSE, header = T, sep = ";") -bridge$Latin_name <- paste(bridge[["Genus"]],bridge[["species"]],sep=" ") -dataWD <- read.csv("./data/raw/DataParacou/WD-Species-Paracou-Ervan_GV.csv",stringsAsFactors=FALSE, header = T,sep=" ") -seed.traits <- read.csv("./data/raw/DataParacou/Autour de Paracou - Releves par trait et taxon.txt",stringsAsFactors=FALSE, header = T, sep = "\t") - -### check % of match of the bridg data -sum(species.clean[["Latin_name"]] %in% bridge[["Latin_name"]])/length(species.clean[["Latin_name"]]) -## only 307 species /775 are in teh traits data .... - - - ## ## save everything as a list ## list.paracou <- list(data.tree=data.tree,data.BA.SP=data.BA.sp,data.traits=data.traits) ## save(list.spain,file="./data/process/list.paracou.Rdata")