Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Kunstler Georges
traitcompet
Commits
af84e86f
Commit
af84e86f
authored
Sep 10, 2014
by
Georges Kunstler
Browse files
fixed problem in initial value
parent
a4806faa
Changes
12
Show whitespace changes
Inline
Side-by-side
Makefile
View file @
af84e86f
...
@@ -43,12 +43,12 @@ $(D2)/TRY/data.TRY.std.rds:
...
@@ -43,12 +43,12 @@ $(D2)/TRY/data.TRY.std.rds:
GLOBAL
:
$(D3)/Done.txt
GLOBAL
:
$(D3)/Done.txt
$(D3)/Done.txt
:
scripts/process.data/remove.out.R scripts/process.data/summarise.data.R $(D3)/Done.t.txt
$(D3)/Done.txt
:
scripts/process.data/remove.out.R scripts/process.data/summarise.data.R $(D3)/Done.t.txt
R
script
$<
R
CMD BATCH
$<
R
script
scripts/process.data/summarise.data.R
R
CMD BATCH
scripts/process.data/summarise.data.R
R
script
scripts/process.data/plot.data.all.R
R
CMD BATCH
scripts/process.data/plot.data.all.R
$(D3)/Done.t.txt
:
scripts/process.data/merge.all.processed.data.R
$(D3)/Done.t.txt
:
scripts/process.data/merge.all.processed.data.R
R
script
$<
R
CMD BATCH
$<
#-------------------------------------------------------
#-------------------------------------------------------
TEST.TREE
:
$(D4)/Done.txt tree.all.sites
TEST.TREE
:
$(D4)/Done.txt tree.all.sites
...
...
R/analysis/model.stan/model.stan.LOGLIN.ER.AD.Tf.fixed.R
View file @
af84e86f
...
@@ -12,24 +12,24 @@ load.model <- function(){
...
@@ -12,24 +12,24 @@ load.model <- function(){
init.fun
=
function
(
chain_id
=
1
,
list
){
init.fun
=
function
(
chain_id
=
1
,
list
){
step
<-
(
chain_id
-1
)
/
10
step
<-
(
chain_id
-1
)
/
10
init
<-
init
<-
list
(
intercept
=
0
+
step
,
list
(
intercept
=
0
+
step
,
intercept_species
=
rnorm
(
list
$
N_species
,
0
,
0.
5
+
step
),
intercept_species
=
rnorm
(
list
$
N_species
,
0
,
0.
3
+
step
),
param_sumBn_species
=
rnorm
(
list
$
N_species
,
0
,
0.
5
+
step
),
param_sumBn_species
=
rnorm
(
list
$
N_species
,
0
,
0.
1
+
step
),
param_logD_species
=
rnorm
(
list
$
N_species
,
0
,
0.
5
+
step
),
param_logD_species
=
rnorm
(
list
$
N_species
,
0
,
0.
3
+
step
),
intercept_plot
=
rnorm
(
list
$
N_plot
,
0
,
0.
5
+
step
),
intercept_plot
=
rnorm
(
list
$
N_plot
,
0
,
0.
3
+
step
),
intercept_set
=
rnorm
(
list
$
N_set
,
0
,
0.
5
+
step
),
intercept_set
=
rnorm
(
list
$
N_set
,
0
,
0.
1
+
step
),
mean_logD
=
2
/
3
+
step
,
mean_logD
=
2
/
3
+
step
,
param_Tf
=
2
/
3
+
step
,
param_Tf
=
-0.1
+
step
,
param_sumBn
=
2
/
3
+
step
,
param_sumBn
=
-0.1
+
step
,
param_sumTfBn
=
2
/
3
+
step
,
param_sumTfBn
=
-0.1
+
step
,
param_sumTnBn
=
2
/
3
+
step
,
param_sumTnBn
=
-0.1
+
step
,
param_sumTnTfBn_abs
=
2
/
3
+
step
,
param_sumTnTfBn_abs
=
-0.1
+
step
,
sigma_inter_species
=
0.5
+
step
,
sigma_inter_species
=
0.5
+
step
,
sigma_inter_plot
=
0.
5
+
+
step
,
sigma_inter_plot
=
0.
3
+
step
,
sigma_inter_set
=
0.
5
+
+
step
,
sigma_inter_set
=
0.
1
+
step
,
sigma
=
0.5
+
step
,
sigma
=
0.5
+
step
,
sigma_sumBn_species
=
0.
5
+
step
,
sigma_sumBn_species
=
0.
1
+
step
,
sigma_logD_species
=
0.
5
+
step
)
sigma_logD_species
=
0.
3
+
step
)
return
(
init
)
return
(
init
)
},
},
...
@@ -93,10 +93,8 @@ transformed parameters {
...
@@ -93,10 +93,8 @@ transformed parameters {
model {
model {
# constants for prior
# constants for prior
## real sigma0;
real sigma0;
sigma0 <- 10;
################################################################################
######################## growth model with STAN #############################
###############################################
###############################################
########### Hierarchical parameters ########
########### Hierarchical parameters ########
...
@@ -108,6 +106,12 @@ model {
...
@@ -108,6 +106,12 @@ model {
intercept_plot ~ normal(0,sigma_inter_plot);
intercept_plot ~ normal(0,sigma_inter_plot);
### set random effect
### set random effect
intercept_set ~ normal(0, sigma_inter_set);
intercept_set ~ normal(0, sigma_inter_set);
###############################################
########### Non-Hierarchical parameters ########
# slope and intercept
intercept ~ normal(0,sigma0);
mean_logD ~ normal(0,sigma0);
### biomes fixed param
### biomes fixed param
param_Tf ~ normal(0, sigma0);
param_Tf ~ normal(0, sigma0);
param_sumBn ~ normal(0,sigma0);
param_sumBn ~ normal(0,sigma0);
...
...
R/analysis/model.stan/model.stan.LOGLIN.ER.AD.Tf.fixed.biomes.R
View file @
af84e86f
...
@@ -13,23 +13,23 @@ load.model <- function(){
...
@@ -13,23 +13,23 @@ load.model <- function(){
step
<-
(
chain_id
-1
)
/
10
step
<-
(
chain_id
-1
)
/
10
init
<-
init
<-
list
(
intercept
=
0
+
step
,
list
(
intercept
=
0
+
step
,
intercept_species
=
rnorm
(
list
$
N_species
,
0
,
0.
5
+
step
),
intercept_species
=
rnorm
(
list
$
N_species
,
0
,
0.
3
+
step
),
param_sumBn_species
=
rnorm
(
list
$
N_species
,
0
,
0.
5
+
step
),
param_sumBn_species
=
rnorm
(
list
$
N_species
,
0
,
0.
1
+
step
),
param_logD_species
=
rnorm
(
list
$
N_species
,
0
,
0.
5
+
step
),
param_logD_species
=
rnorm
(
list
$
N_species
,
0
,
0.
3
+
step
),
intercept_plot
=
rnorm
(
list
$
N_plot
,
0
,
0.
5
+
step
),
intercept_plot
=
rnorm
(
list
$
N_plot
,
0
,
0.
3
+
step
),
intercept_set
=
rnorm
(
list
$
N_set
,
0
,
0.
5
+
step
),
intercept_set
=
rnorm
(
list
$
N_set
,
0
,
0.
1
+
step
),
mean_logD
=
2
/
3
+
step
,
mean_logD
=
(
2
/
3
-
0.1
)
+
step
,
param_Tf_biomes
=
rep
(
2
/
3
+
step
,
list
$
N_biomes
),
param_Tf_biomes
=
rep
(
-0.1
+
step
,
list
$
N_biomes
),
param_sumBn_biomes
=
rep
(
2
/
3
+
step
,
list
$
N_biomes
),
param_sumBn_biomes
=
rep
(
-0.1
+
step
,
list
$
N_biomes
),
param_sumTfBn_biomes
=
rep
(
2
/
3
+
step
,
list
$
N_biomes
),
param_sumTfBn_biomes
=
rep
(
-0.1
+
step
,
list
$
N_biomes
),
param_sumTnBn_biomes
=
rep
(
2
/
3
+
step
,
list
$
N_biomes
),
param_sumTnBn_biomes
=
rep
(
-0.1
+
step
,
list
$
N_biomes
),
param_sumTnTfBn_abs_biomes
=
rep
(
2
/
3
+
step
,
list
$
N_biomes
),
param_sumTnTfBn_abs_biomes
=
rep
(
-0.1
+
step
,
list
$
N_biomes
),
sigma_inter_species
=
0.
5
+
step
,
sigma_inter_species
=
0.
3
+
step
,
sigma_inter_plot
=
0.
5
+
+
step
,
sigma_inter_plot
=
0.
3
+
+
step
,
sigma_inter_set
=
0.
5
+
+
step
,
sigma_inter_set
=
0.
1
+
+
step
,
sigma
=
0.5
+
step
,
sigma
=
0.5
+
step
,
sigma_sumBn_species
=
0.
5
+
step
,
sigma_sumBn_species
=
0.
1
+
step
,
sigma_logD_species
=
0.
5
+
step
)
sigma_logD_species
=
0.
3
+
step
)
return
(
init
)
return
(
init
)
},
},
...
@@ -95,10 +95,8 @@ transformed parameters {
...
@@ -95,10 +95,8 @@ transformed parameters {
model {
model {
# constants for prior
# constants for prior
## real sigma0;
real sigma0;
sigma0 <- 10;
################################################################################
######################## growth model with STAN #############################
###############################################
###############################################
########### Hierarchical parameters ########
########### Hierarchical parameters ########
...
@@ -110,28 +108,18 @@ model {
...
@@ -110,28 +108,18 @@ model {
intercept_plot ~ normal(0,sigma_inter_plot);
intercept_plot ~ normal(0,sigma_inter_plot);
### set random effect
### set random effect
intercept_set ~ normal(0, sigma_inter_set);
intercept_set ~ normal(0, sigma_inter_set);
### biomes fixed param
## param_Tf_biomes ~ normal(0, sigma0);
## param_sumBn_biomes ~ normal(0,sigma0);
## param_sumTfBn_biomes ~ normal(0 ,sigma0);
## param_sumTnBn_biomes ~ normal(0 ,sigma0);
## param_sumTnTfBn_abs_biomes ~ normal(0 , sigma0);
###############################################
###############################################
########### Non-Hierarchical parameters ########
########### Non-Hierarchical parameters ########
# constant for prior
## sigma0 <- 10;
# slope and intercept
# slope and intercept
## intercept ~ normal(0,sigma0);
intercept ~ normal(0,sigma0);
## mean_logD ~ normal(0,sigma0);
mean_logD ~ normal(0,sigma0);
## # sigma
### biomes fixed param
## sigma_inter_species~ uniform(0,6);
param_Tf_biomes ~ normal(0, sigma0);
## sigma_inter_set~ uniform(0,6);
param_sumBn_biomes ~ normal(0,sigma0);
## sigma_inter_plot~ uniform(0,6);
param_sumTfBn_biomes ~ normal(0 ,sigma0);
## sigma_inter_tree~ uniform(0,6);
param_sumTnBn_biomes ~ normal(0 ,sigma0);
## sigma_logD_species~ uniform(0,6);
param_sumTnTfBn_abs_biomes ~ normal(0 , sigma0);
## sigma_sumBn_species~ uniform(0,6);
## sigma~ uniform(0,6);
###############################################
###############################################
############ Likelihood ###################
############ Likelihood ###################
...
...
R/analysis/model.stan/model.stan.LOGLIN.ER.AD.Tf.fixed.oneset.R
View file @
af84e86f
...
@@ -90,9 +90,6 @@ model {
...
@@ -90,9 +90,6 @@ model {
real sigma0;
real sigma0;
sigma0 <- 10;
sigma0 <- 10;
################################################################################
######################## growth model with STAN #############################
###############################################
###############################################
########### Hierarchical parameters ########
########### Hierarchical parameters ########
### species random param
### species random param
...
@@ -101,6 +98,9 @@ model {
...
@@ -101,6 +98,9 @@ model {
intercept_species ~ normal(0, sigma_inter_species);
intercept_species ~ normal(0, sigma_inter_species);
### plot random param
### plot random param
intercept_plot ~ normal(0,sigma_inter_plot);
intercept_plot ~ normal(0,sigma_inter_plot);
### fixed param
intercept ~ normal(0,sigma0);
mean_logD ~ normal(0,sigma0);
### biomes fixed param
### biomes fixed param
param_Tf ~ normal(0, sigma0);
param_Tf ~ normal(0, sigma0);
param_sumBn ~ normal(0,sigma0);
param_sumBn ~ normal(0,sigma0);
...
@@ -108,7 +108,6 @@ model {
...
@@ -108,7 +108,6 @@ model {
param_sumTnBn ~ normal(0 ,sigma0);
param_sumTnBn ~ normal(0 ,sigma0);
param_sumTnTfBn_abs ~ normal(0 , sigma0);
param_sumTnTfBn_abs ~ normal(0 , sigma0);
###############################################
###############################################
############ Likelihood ###################
############ Likelihood ###################
logG ~ normal(theo_g,sigma);
logG ~ normal(theo_g,sigma);
...
...
R/analysis/stan.run.R
View file @
af84e86f
...
@@ -26,16 +26,16 @@ fun.call.stan.parallel.and.save <- function(stan.model, list.stan, path.out,
...
@@ -26,16 +26,16 @@ fun.call.stan.parallel.and.save <- function(stan.model, list.stan, path.out,
var.sample
){
var.sample
){
start
<-
Sys.time
()
start
<-
Sys.time
()
set_cppo
(
mode
=
"fast"
)
set_cppo
(
mode
=
"fast"
)
inits
<-
stan.model
$
init.fun
(
chain
_id
,
inits
<-
list
(
stan.model
$
init.fun
(
chain
s
,
list.stan
)
list.stan
)
)
stan.output
<-
stan
(
model_code
=
stan.model
$
stan
,
stan.output
<-
stan
(
model_code
=
stan.model
$
stan
,
data
=
list.stan
,
data
=
list.stan
,
pars
=
stan.model
$
pars
,
pars
=
stan.model
$
pars
,
init
=
'random'
,
init
=
inits
,
iter
=
iter
,
iter
=
iter
,
warmup
=
warmup
,
warmup
=
warmup
,
chains
=
chains
,
chains
=
chains
,
chain_id
=
chain_id
,
##
chain_id = chain_id,
thin
=
thin
,
thin
=
thin
,
verbose
=
FALSE
)
verbose
=
FALSE
)
end
<-
Sys.time
()
end
<-
Sys.time
()
...
@@ -57,7 +57,7 @@ fun.call.stan.and.save <- function(stan.model, list.stan, path.out,
...
@@ -57,7 +57,7 @@ fun.call.stan.and.save <- function(stan.model, list.stan, path.out,
stan.output
<-
stan
(
model_code
=
stan.model
$
stan
,
stan.output
<-
stan
(
model_code
=
stan.model
$
stan
,
data
=
list.stan
,
data
=
list.stan
,
pars
=
stan.model
$
pars
,
pars
=
stan.model
$
pars
,
init
=
'random'
,
init
=
inits
,
iter
=
iter
,
iter
=
iter
,
warmup
=
warmup
,
warmup
=
warmup
,
chains
=
chains
,
chains
=
chains
,
...
...
R/analysis/test.stan.R
View file @
af84e86f
### test stan
### test stan
## I changed the coding of the random effect with norm(0,10*sigma it seems more slow!
## I changed the coding of the random effect
## with norm(0,10*sigma it seems more slow!
## PROBLEM WITH STANDARDIZED VARIABLE DO I NEED TO INCLUDE AN INTERCEPT??
## PROBLEM WITH STANDARDIZED VARIABLE DO I NEED TO INCLUDE AN INTERCEPT??
## VERY BAD CONVERGENCE ???
## VERY BAD CONVERGENCE ???
...
@@ -12,11 +13,12 @@ source('R/analysis/stan.run.R')
...
@@ -12,11 +13,12 @@ source('R/analysis/stan.run.R')
### TEST simple model on France only
### TEST simple model on France only
df.lmer
<-
load.data.for.lmer
(
trait
=
'SLA'
,
fname
=
'data.all.no.log.rds'
,
cat.TF
=
FALSE
,
df.lmer
<-
load.data.for.lmer
(
trait
=
'SLA'
,
sample.size
=
NA
,
fname
=
'data.all.no.log.rds'
,
var.sample
=
NA
,
cat.TF
=
FALSE
,
sample.vec.TF.
=
FALSE
,
sample.size
=
500
,
select.set.
=
'France'
)
var.sample
=
'ecocode'
,
sample.vec.TF.
=
FALSE
)
stan.list
<-
fun.turn.in.list.for.jags.stan
(
df.lmer
,
stan.list
<-
fun.turn.in.list.for.jags.stan
(
df.lmer
,
cat.TF
=
FALSE
)
cat.TF
=
FALSE
)
...
@@ -26,8 +28,12 @@ source('R/analysis/model.stan/model.stan.LOGLIN.size.fixed.R', local = TRUE)
...
@@ -26,8 +28,12 @@ source('R/analysis/model.stan/model.stan.LOGLIN.size.fixed.R', local = TRUE)
fun.init.stan
<-
function
(
chain_id
=
1
,
stan.list
){
fun.init.stan
<-
function
(
chain_id
=
1
,
stan.list
){
init
<-
list
(
intercept
=
0
+
(
chain_id
-1
)
/
10
,
init
<-
list
(
intercept
=
0
+
(
chain_id
-1
)
/
10
,
intercept_species
=
rnorm
(
stan.list
$
N_species
,
0
,
0.5
+
(
chain_id
-1
)
/
10
),
intercept_species
=
rnorm
(
stan.list
$
N_species
,
intercept_plot
=
rnorm
(
stan.list
$
N_plot
,
0
,
0.5
+
(
chain_id
-1
)
/
10
),
0
,
0.5
+
(
chain_id
-1
)
/
10
),
intercept_plot
=
rnorm
(
stan.list
$
N_plot
,
0
,
0.5
+
(
chain_id
-1
)
/
10
),
mean_logD
=
2
/
3
+
(
chain_id
-1
)
/
10
,
mean_logD
=
2
/
3
+
(
chain_id
-1
)
/
10
,
sigma_inter_species
=
0.5
+
(
chain_id
-1
)
/
10
,
sigma_inter_species
=
0.5
+
(
chain_id
-1
)
/
10
,
sigma_inter_plot
=
0.5
+
+
(
chain_id
-1
)
/
10
,
sigma_inter_plot
=
0.5
+
+
(
chain_id
-1
)
/
10
,
...
@@ -48,33 +54,12 @@ system.time( stan.output <- stan(model_code = model$stan,
...
@@ -48,33 +54,12 @@ system.time( stan.output <- stan(model_code = model$stan,
chains
=
3
,
chains
=
3
,
verbose
=
FALSE
))
verbose
=
FALSE
))
source
(
'R/analysis/model.stan/model.stan.LOGLIN.ER.AD.Tf.fixed.
oneset
.R'
,
local
=
TRUE
)
source
(
'R/analysis/model.stan/model.stan.LOGLIN.ER.AD.Tf.fixed.
biomes
.R'
,
local
=
TRUE
)
model
<-
load.model
()
model
<-
load.model
()
fun.init.stan
<-
function
(
chain_id
=
1
,
stan.list
){
inits
<-
list
(
model
$
init.fun
(
1
,
stan.list
),
step
<-
(
chain_id
-1
)
/
10
model
$
init.fun
(
2
,
stan.list
),
init
<-
list
(
intercept
=
0
+
step
,
model
$
init.fun
(
3
,
stan.list
))
intercept_species
=
rnorm
(
stan.list
$
N_species
,
0
,
0.5
+
step
),
param_sumBn_species
=
rnorm
(
stan.list
$
N_species
,
0
,
0.5
+
step
),
param_logD_species
=
rnorm
(
stan.list
$
N_species
,
0
,
0.5
+
step
),
intercept_plot
=
rnorm
(
stan.list
$
N_plot
,
0
,
0.5
+
step
),
mean_logD
=
2
/
3
+
step
,
param_Tf
=
2
/
3
+
step
,
param_sumBn
=
2
/
3
+
step
,
param_sumTfBn
=
2
/
3
+
step
,
param_sumTnBn
=
2
/
3
+
step
,
param_sumTnTfBn_abs
=
2
/
3
+
step
,
sigma_inter_species
=
0.5
+
step
,
sigma_inter_plot
=
0.5
+
+
step
,
sigma
=
0.5
+
step
,
sigma_sumBn_species
=
0.5
+
step
,
sigma_logD_species
=
0.5
+
step
)
}
inits
<-
list
(
fun.init.stan
(
1
,
stan.list
),
fun.init.stan
(
2
,
stan.list
),
fun.init.stan
(
3
,
stan.list
))
library
(
rstan
)
library
(
rstan
)
...
@@ -96,8 +81,35 @@ pairs(stan.output)
...
@@ -96,8 +81,35 @@ pairs(stan.output)
library
(
ggmcmc
)
library
(
ggmcmc
)
S
<-
ggs
(
stan.output
)
S
<-
ggs
(
stan.output2
)
extract
(
stan.output
,
permuted
=
FALSE
,
inc_warmup
=
FALSE
))
ggs_crosscorrelation
(
S
)
ggs_crosscorrelation
(
S
,
absolute_scale
=
FALSE
)
ggs_density
(
S
)
ggs_traceplot
(
S
)
ggs_running
(
S
)
ggs_autocorrelation
(
S
)
ggs_Rhat
(
S
)
ggs_geweke
(
S
)
ggs_caterpillar
(
S
)
#######
## read results of simul on cluster
source
(
"R/analysis/stan.output-fun.R"
)
stan.out.clust
<-
fun.merge.chain
(
path.out
=
"output/stan/all.no.log/SLA/species/LOGLIN.ER.AD.Tf.fixed.biomes/"
,
var.sample
=
'ecocode'
,
chains.vec
=
1
:
3
)
stan.out.clust
plot
(
stan.out.clust
)
pairs
(
stan.out.clust
)
traceplot
(
stan.out.clust
,
ask
=
TRUE
)
## base on traceplot the initial value seems to be
## a big problem for the lack of convergence
library
(
ggmcmc
)
S
<-
ggs
(
stan.out.clust
)
ggs_crosscorrelation
(
S
)
ggs_crosscorrelation
(
S
,
absolute_scale
=
FALSE
)
ggs_crosscorrelation
(
S
,
absolute_scale
=
FALSE
)
ggs_density
(
S
)
ggs_density
(
S
)
ggs_traceplot
(
S
)
ggs_traceplot
(
S
)
...
@@ -108,3 +120,23 @@ ggs_geweke(S)
...
@@ -108,3 +120,23 @@ ggs_geweke(S)
ggs_caterpillar
(
S
)
ggs_caterpillar
(
S
)
run.multiple.model.for.set.one.trait
(
model.files.stan.Tf.1
,
run.stan
,
'SLA'
,
type.filling
=
'species'
,
sample.size
=
10000
,
var.sample
=
'ecocode'
,
iter
=
1000
,
warmup
=
500
,
chains
=
1
,
chain_id
=
1
,
init.TF
=
FALSE
)
run.multiple.model.for.set.one.trait
(
model.files.stan.Tf.1
,
run.stan
,
'SLA'
,
type.filling
=
'species'
,
sample.size
=
1000
,
var.sample
=
'ecocode'
,
iter
=
1000
,
warmup
=
500
,
chains
=
3
,
parallel.TF
=
FALSE
,
init.TF
=
FALSE
)
out.stan3
<-
readRDS
(
'output/stan/all.no.log/SLA/species/LOGLIN.ER.AD.Tf.fixed.biomes/ecocode.results.stan.rds'
)
traceplot
(
out.stan3
,
ask
=
TRUE
)
plot
(
out.stan3
)
pairs
(
out.stan3
)
library
(
ggmcmc
)
S
<-
ggs
(
out.stan3
)
ggs_crosscorrelation
(
S
)
ggs_crosscorrelation
(
S
,
absolute_scale
=
FALSE
)
ggs_density
(
S
,
family
=
c
(
'param_sumBn_biomes'
))
R/process.data/test.tree.CWM-fun.R
View file @
af84e86f
...
@@ -8,7 +8,9 @@ load.processed.data <- function(path, file.name = "data.tree.tot.no.std.csv"){
...
@@ -8,7 +8,9 @@ load.processed.data <- function(path, file.name = "data.tree.tot.no.std.csv"){
require
(
data.table
)
require
(
data.table
)
fname
<-
file.path
(
path
,
file.name
)
fname
<-
file.path
(
path
,
file.name
)
if
(
file.exists
(
fname
)){
if
(
file.exists
(
fname
)){
cat
(
'loading file'
,
path
,
file.name
)
data
<-
fread
(
fname
,
stringsAsFactors
=
FALSE
)
data
<-
fread
(
fname
,
stringsAsFactors
=
FALSE
)
print
(
warnings
())
return
(
data
)
return
(
data
)
}
else
{
return
(
NULL
)}
}
else
{
return
(
NULL
)}
}
}
...
...
launch.cluster/launch_all_data.lmer.bash
View file @
af84e86f
...
@@ -6,11 +6,11 @@ mkdir -p trait.workshop
...
@@ -6,11 +6,11 @@ mkdir -p trait.workshop
for
trait
in
"'SLA'"
"'Leaf.N'"
"'Wood.density'"
"'Max.height'"
"'Seed.mass'"
;
do
for
trait
in
"'SLA'"
"'Leaf.N'"
"'Wood.density'"
"'Max.height'"
"'Seed.mass'"
;
do
echo
"/usr/local/R/R-3.
0
.1/bin/Rscript -e
\"
source('R/analysis/lmer.run.R'); load.and.save.data.for.lmer(
$trait
);print('done')
\"
"
>
trait.workshop/data1
$trait
.sh
echo
"/usr/local/R/R-3.
1
.1/bin/Rscript -e
\"
source('R/analysis/lmer.run.R'); load.and.save.data.for.lmer(
$trait
);print('done')
\"
"
>
trait.workshop/data1
$trait
.sh
qsub trait.workshop/data1
$trait
.sh
-l
nodes
=
1:ppn
=
1,mem
=
8gb
-N
"data1
$trait
"
-q
opt32G
-j
oe
qsub trait.workshop/data1
$trait
.sh
-l
nodes
=
1:ppn
=
1,mem
=
8gb
-N
"data1
$trait
"
-q
opt32G
-j
oe
echo
"/usr/local/R/R-3.
0
.1/bin/Rscript -e
\"
source('R/analysis/lmer.run.R'); load.and.save.data.for.lmer(
$trait
, fname = 'data.all.log.rds');print('done')
\"
"
>
trait.workshop/data3
$trait
.sh
echo
"/usr/local/R/R-3.
1
.1/bin/Rscript -e
\"
source('R/analysis/lmer.run.R'); load.and.save.data.for.lmer(
$trait
, fname = 'data.all.log.rds');print('done')
\"
"
>
trait.workshop/data3
$trait
.sh
qsub trait.workshop/data3
$trait
.sh
-l
nodes
=
1:ppn
=
1,mem
=
8gb
-N
"data3
$trait
"
-q
opt32G
-j
oe
qsub trait.workshop/data3
$trait
.sh
-l
nodes
=
1:ppn
=
1,mem
=
8gb
-N
"data3
$trait
"
-q
opt32G
-j
oe
done
done
...
...
launch.cluster/launch_all_jags.init.bash
0 → 100644
View file @
af84e86f
#!/bin/bash
# Georges Kunstler 14/05/2014
# read one variable
export
LD_LIBRARY_PATH
=
/usr/lib64/R/library
mkdir
-p
trait.workshop
iter
=
50000
warmup
=
5000
thin
=
50
# test parameter
nbargs
=
$#
echo
"number of arguments="
$nbargs
if
[
$nbargs
-ne
1
]
then
echo
"need one and only one argument"
echo
" usage :"
echo
" ./launch_all_lmer.sh sample.size"
exit
100
fi
samplesize
=
$1
#
for
trait
in
"'SLA'"
"'Wood.density'"
"'Max.height'"
"'Seed.mass'"
"'Leaf.N'"
;
do
echo
"/usr/local/R/R-3.1.1/bin/Rscript -e
\"
source('R/analysis/jags.run.R'); run.multiple.model.for.set.one.trait(c(model.files.jags.Tf.1), run.jags,
$trait
,type.filling='species', sample.size =
$samplesize
, var.sample = 'ecocode.id',iter =
$iter
, warmup =
$warmup
, chains = 3, thin =
$thin
, init.TF = TRUE);print('done')
\"
"
>
trait.workshop/speciesjags
${
trait
}
.sh
qsub trait.workshop/speciesjags
${
trait
}
.sh
-l
nodes
=
1:ppn
=
1,mem
=
8gb
-N
"jags
${
trait
}
"
-q
opt32G
-j
oe
done
launch.cluster/launch_all_stan.bash
View file @
af84e86f
...
@@ -5,8 +5,8 @@ export LD_LIBRARY_PATH=/usr/lib64/R/library
...
@@ -5,8 +5,8 @@ export LD_LIBRARY_PATH=/usr/lib64/R/library
mkdir
-p
trait.workshop
mkdir
-p
trait.workshop
iter
=
1
000
iter
=
2
000
warmup
=
5
00
warmup
=
10
00
# test parameter
# test parameter
nbargs
=
$#
nbargs
=
$#
echo
"number of arguments="
$nbargs
echo
"number of arguments="
$nbargs
...
...
scripts/format.data/BCI.R
View file @
af84e86f
...
@@ -5,6 +5,7 @@
...
@@ -5,6 +5,7 @@
rm
(
list
=
ls
())
rm
(
list
=
ls
())
source
(
"R/format.data/format-fun.R"
)
source
(
"R/format.data/format-fun.R"
)
dir.create
(
"output/formatted/BCI"
,
recursive
=
TRUE
,
showWarnings
=
FALSE
)
dir.create
(
"output/formatted/BCI"
,
recursive
=
TRUE
,
showWarnings
=
FALSE
)
library
(
reshape
,
quietly
=
TRUE
)
library
(
reshape
,
quietly
=
TRUE
)
### READ DATA read individuals tree data Requires careful formatting of 7 census
### READ DATA read individuals tree data Requires careful formatting of 7 census
## datasets The raw data is such that, once a tree dies in census X, then it no
## datasets The raw data is such that, once a tree dies in census X, then it no
...
@@ -15,8 +16,8 @@ data.bci1 <- read.csv("data/raw/BCI/stem.data/BCI.all.plots.census.allstems.1.cs
...
@@ -15,8 +16,8 @@ data.bci1 <- read.csv("data/raw/BCI/stem.data/BCI.all.plots.census.allstems.1.cs
print
(
table
(
data.bci1
$
Stem
))
print
(
table
(
data.bci1
$
Stem
))
print
(
sum
(
is.na
(
data.bci1
$
Stem
)))
print
(
sum
(
is.na
(
data.bci1
$
Stem
)))
data.bci1
$
Date1
<-
data.bci1
$
Date
;
data.bci1
$
Date
<-
NULL
data.bci1
$
Date1
<-
data.bci1
$
Date
;
data.bci1
$
Date
<-
NULL
data.bci1
$
DBH1
<-
data.bci1
$
DBH
;
data.bci1
$
DBH
<-
NULL
data.bci1
$
DBH1
<-
data.bci1
$
DBH
;
data.bci1
$
DBH
<-
NULL
data.bci1
$
HOM1
<-
data.bci1
$
HOM
;
data.bci1
$
HOM
<-
NULL
data.bci1
$
HOM1
<-
data.bci1
$
HOM
;
data.bci1
$
HOM
<-
NULL
...
...
scripts/format.data/Sweden.R
View file @
af84e86f
#!/usr/bin/env Rscript
#!/usr/bin/env Rscript
### MERGE sweden DATA
### MERGE sweden DATA
source
(
"R/format.data/format-fun.R"
)
;
source
(
"R/format.data/format-fun.R"
)
library
(
reshape
,
quietly
=
TRUE
)
;
d
library
(
reshape
,
quietly
=
TRUE
)
ir.create
(
"output/formatted/Sweden"
,
recursive
=
TRUE
,
showWarnings
=
FALSE
)
d
ir.create
(
"