diff --git a/merge.data.FRANCE.R b/merge.data.FRANCE.R index 277893a41e237382a76e042af5627d3bdd6a43b0..3a935444cf156cc2afb2d219b47116139b66b801 100644 --- a/merge.data.FRANCE.R +++ b/merge.data.FRANCE.R @@ -1,11 +1,12 @@ ############################################# MERGE FRENCH DATA +rm(list = ls()); source("./R/format.function.R") +library(reshape) -################################ READ DATA (test) -dataIFN.FRANCE <- read.csv("./data/raw/DataFrance/dataIFN.FRANCE.csv", stringsAsFactors = FALSE) +################################ READ DATA +data.france <- read.csv("./data/raw/DataFrance/dataIFN.FRANCE.csv", stringsAsFactors = FALSE) ### read IFN species names and clean -species.clean <- fun.clean.species.tab(read.csv("./data/raw/DataFrance/species.csv", - sep = "\t", stringsAsFactors = FALSE)) +species.clean <- fun.clean.species.tab(read.csv("./data/raw/DataFrance/species.csv", stringsAsFactors = FALSE)) ### read TRY data data.TRY.sd.update <- readRDS("./data/process/data.TRY.sd.update.rds") @@ -16,23 +17,22 @@ merge.TRY <- merge(species.clean, data.frame.TRY, by = "Latin_name") rm(species.clean, data.frame.TRY) +###################################### MASSAGE TRAIT DATA Compute maximum height per species plus sd from observed +###################################### height to add variables to the traits data base Because we have two heights, +###################################### then take the max of the two heights and then bootstrap +res.quant.boot <- t(sapply(levels(factor(data.france[["espar"]])), FUN = f.quantile.boot, + R = 1000, x = log10(data.france[["htot"]]), fac = factor(data.france[["espar"]]))) - - -######################################################################## Compute maximum height per species plus sd from observed height in NFI data to -######################################################################## add variables to the traits data base -res.quant.boot <- t(sapply(levels(factor(dataIFN.FRANCE[["espar"]])), FUN = f.quantile.boot, - R = 1000, x = log10(dataIFN.FRANCE[["htot"]]), fac = factor(dataIFN.FRANCE[["espar"]]))) ## create data base data.max.height <- data.frame(code = rownames(res.quant.boot), Max.height.mean = res.quant.boot[, 1], Max.height.sd = res.quant.boot[, 2], Max.height.nobs = res.quant.boot[, 3]) rm(res.quant.boot) ## write.csv(data.max.height,file='./data/process/data.max.height.csv') -############## merge TRY with max height +## merge TRY with max height merge.TRY <- merge(merge.TRY, data.max.height, by = "code") rm(data.max.height) -# use mean sd of max tree height over all species +## use mean sd of max tree height over all species merge.TRY$Max.height.sd.1 <- rep(mean(merge.TRY[["Max.height.sd"]], na.rm = TRUE), length = nrow(merge.TRY)) @@ -42,103 +42,88 @@ names.traits.data <- c("code", "Latin_name", "Leaf.N.mean", "Seed.mass.mean", "S "Seed.mass.sd.1", "SLA.sd.1", "Wood.Density.sd.1", "Leaf.Lifespan.sd.1", "Max.height.sd.1") data.traits <- merge.TRY[, names.traits.data] -names(data.traits) <- c("sp", "Latin_name", "Leaf.N.mean", "Seed.mass.mean", "SLA.mean", - "Wood.Density.mean", "Leaf.Lifespan.mean", "Max.height.mean", "Leaf.N.sd", "Seed.mass.sd", - "SLA.sd", "Wood.Density.sd", "Leaf.Lifespan.sd", "Max.height.sd") ## rename to have standard variables name +names(data.traits) <- c("espar", "latin_name", "leafN.mean", "seedmass.mean", "SLA.mean", + "wooddensity.mean", "leaflifespan.mean", "maxheight.mean", "leafN.sd", "seedmass.sd", + "SLA.sd", "wooddensity.sd", "leaflifespan.sd", "maxheight.sd") rm(merge.TRY, names.traits.data) +########################################## FORMAT INDIVIDUAL TREE DATA change unit and names of variables to be the same +########################################## in all data for the tree +data.france$G <- data.france[["ir5"]]/5 * 2 ## diameter growth in mm per year +data.france$year <- rep(5, nrow(data.france)) ## number of year between measurement +data.france$D <- data.france[["c13"]]/pi ## diameter in cm +data.france$sp <- as.character(data.france[["espar"]]); data.france$espar <- NULL ## species code +data.france$plot.id <- (data.france[["idp"]]); data.france$idp <- NULL ## plot code +data.france$tree.id <- paste(data.france[["plot.id"]], data.france[["a"]], sep = "_") ## tree unique id +data.france$weights <- data.france[["w"]]/10000 +data.france$obs.id <- 1:nrow(data.france) ## There is only obs per tree.id, so this is superfluous - - -################################################################ FORMAT INDIVIDUAL TREE DATA - -## change unit and names of variables to be the same in all data for the tree -dataIFN.FRANCE$G <- dataIFN.FRANCE[["ir5"]]/5 * 2 ##diameter growth in mm per year -dataIFN.FRANCE$year <- rep(5, length(dataIFN.FRANCE[["ir5"]])) ## number of year between measurement -dataIFN.FRANCE$D <- dataIFN.FRANCE[["c13"]]/pi ## diameter in cm -dataIFN.FRANCE$dead <- dataIFN.FRANCE[["dead"]] ## dummy variable for dead tree 0 alive 1 dead -dataIFN.FRANCE$sp <- as.character(dataIFN.FRANCE[["espar"]]) ## species code -dataIFN.FRANCE$plot <- (dataIFN.FRANCE[["idp"]]) ## plot code -dataIFN.FRANCE$htot <- (dataIFN.FRANCE[["htot"]]) ## height of tree in m -dataIFN.FRANCE$tree.id <- paste(dataIFN.FRANCE[["idp"]], dataIFN.FRANCE[["a"]], sep = ".") ## tree unique id - - -#### change coordinates system of x y to be in lat long WGS84 +######################## change coordinates system of x y to be in lat long WGS84 library(sp) library(dismo) library(rgdal) -data.sp <- dataIFN.FRANCE[, c("idp", "xl93", "yl93")] +data.sp <- data.france[, c("idp", "xl93", "yl93")] coordinates(data.sp) <- c("xl93", "yl93") ## EPSG CODE 2154 proj4string(data.sp) <- CRS("+init=epsg:2154") # define projection system of our data ## EPSG CODE 2154 summary(data.sp) data.sp2 <- spTransform(data.sp, CRS("+init=epsg:4326")) ## change projection in WGS84 lat lon -dataIFN.FRANCE$Lon <- coordinates(data.sp2)[, "xl93"] -dataIFN.FRANCE$Lat <- coordinates(data.sp2)[, "yl93"] +data.france$Lon <- coordinates(data.sp2)[, "xl93"] +data.france$Lat <- coordinates(data.sp2)[, "yl93"] rm(data.sp, data.sp2) ## ## plot on world map library(rworldmap) newmap <- getMap(resolution = 'coarse') ## # different resolutions available plot(newmap) ## points(data.sp2,cex=0.2,col='red') -############################ merge greco to have no ecoregion with low number of observation +###################### ECOREGION - merge greco to have no ecoregion with low number of observation ## merge A and B Grand Ouest cristallin and oceanique and Center semi-oceanique ## merge G D E Vosges Jura massif cemtral (low mountain) merge H and I Alpes and ## Pyrenees Merge J and K Corse and Mediteraneen -dataIFN.FRANCE$GRECO <- substr(dataIFN.FRANCE[["SER"]], 1, 1) ## get GRECO from SER (smaller division by keeping only the first letter - -GRECO.temp <- dataIFN.FRANCE[["GRECO"]] +GRECO.temp <- substr(data.france[["SER"]], 1, 1) ## get GRECO from SER (smaller division by keeping only the first letter) GRECO.temp <- sub("[AB]", "AB", GRECO.temp) GRECO.temp <- sub("[GDE]", "GDE", GRECO.temp) GRECO.temp <- sub("[HI]", "HI", GRECO.temp) GRECO.temp <- sub("[JK]", "JK", GRECO.temp) -## plot(dataIFN.FRANCE[['xl93']],dataIFN.FRANCE[['yl93']],col=unclass(factor(GRECO.temp))) -## add NEW GRECO variable to data base -dataIFN.FRANCE$ecocode <- GRECO.temp ## a single code for each ecoregion - -## variable percent dead compute numer of dead per plot to remove plot with -## disturbance -perc.dead <- tapply(dataIFN.FRANCE[["dead"]], INDEX = dataIFN.FRANCE[["idp"]], FUN = function.perc.dead) -## VARIABLE TO SELECT PLOT WITH NOT BIG DISTURBANCE KEEP OFTHER VARIABLES IF -## AVAILABLE (disturbance record) -dataIFN.FRANCE <- merge(dataIFN.FRANCE, data.frame(idp = as.numeric(names(perc.dead)), +## plot(data.france[['xl93']],data.france[['yl93']],col=unclass(factor(GRECO.temp))) +data.france$ecocode <- GRECO.temp ## a single code for each ecoregion + + +###################### PERCENT DEAD variable percent dead/cannot do with since dead variable is +###################### missing compute numer of dead per plot to remove plot with disturbance +perc.dead <- tapply(data.france[["dead"]], INDEX = data.france[["plot.id"]], FUN = function.perc.dead2) + +data.france <- merge(data.france, data.frame(plot.id = as.numeric(names(perc.dead)), perc.dead = perc.dead), sort = FALSE) ########################################################################################### PLOT SELECTION FOR THE ANALYSIS -## dataIFN.FRANCE <- subset(dataIFN.FRANCE,subset= dataIFN.FRANCE[['YEAR']] != -## 2005)## year 2005 bad data according to IFN -dataIFN.FRANCE <- subset(dataIFN.FRANCE, subset = dataIFN.FRANCE[["plisi"]] == 0) # no plot on forest edge -dataIFN.FRANCE <- subset(dataIFN.FRANCE, subset = dataIFN.FRANCE[["dc"]] == 0) # no harvesting -dataIFN.FRANCE <- subset(dataIFN.FRANCE, subset = dataIFN.FRANCE[["tplant"]] == 0) # no plantation -dataIFN.FRANCE <- subset(dataIFN.FRANCE, subset = !is.na(dataIFN.FRANCE[["SER"]])) # missing SER - -#################################### SELECT GOOD COLUMNS +## data.france <- subset(data.france,subset= data.france[['YEAR']] != 2005) ## year 2005 bad data according to IFN +data.france <- subset(data.france, subset = data.france[["plisi"]] == 0) ## no plot on forest edge +data.france <- subset(data.france, subset = data.france[["dc"]] == 0) ## no harvesting +data.france <- subset(data.france, subset = data.france[["tplant"]] == 0) ## no plantation +data.france <- subset(data.france, subset = !is.na(data.france[["SER"]])) ## missing SER +## SELECT GOOD COLUMNS ## names of variables for abiotic conditions vec.abio.var.names <- c("MAT", "SAP", "sgdd", "WB.s", "WB.y", "WS.s", "WS.y") ## other var vec.basic.var <- c("tree.id", "sp", "plot", "ecocode", "D", "G", "dead", "year", "htot", "Lon", "Lat", "perc.dead") -data.tree <- subset(dataIFN.FRANCE, select = c(vec.basic.var, vec.abio.var.names)) - - - +data.tree <- subset(data.france, select = c(vec.basic.var, vec.abio.var.names)) +############################################## +#################### GENERATE ONE OBJECT PER ECOREGION - COMPUTE MATRIX OF COMPETITION INDEX WITH SUM OF BA PER SPECIES IN EACH PLOT in +#################### m^2/ha without the target species - - -################################################################################################################## COMPUTE MATRIX OF COMPETITION INDEX WITH SUM OF BA PER SPECIES IN EACH PLOT in -################################################################################################################## m^2/ha without the target species - -data.BA.SP <- BA.SP.FUN(id.tree = as.vector(dataIFN.FRANCE[["tree.id"]]), diam = as.vector(dataIFN.FRANCE[["D"]]), - sp = as.vector(dataIFN.FRANCE[["sp"]]), id.plot = as.vector(dataIFN.FRANCE[["idp"]]), - weights = as.vector(dataIFN.FRANCE[["w"]])/10000, weight.full.plot = 1/(pi * +data.BA.SP <- BA.SP.FUN(id.tree = as.vector(data.france[["tree.id"]]), diam = as.vector(data.france[["D"]]), + sp = as.vector(data.france[["sp"]]), id.plot = as.vector(data.france[["idp"]]), + weights = as.vector(data.france[["w"]])/10000, weight.full.plot = 1/(pi * (c(15))^2)) ## change NA and <0 data for 0 @@ -146,7 +131,7 @@ data.BA.SP[which(is.na(data.BA.SP), arr.ind = TRUE)] <- 0 data.BA.SP[, -1][which(data.BA.SP[, -1] < 0, arr.ind = TRUE)] <- 0 ### CHECK IF sp and sp name for column are the same -if (sum(!(names(data.BA.SP)[-1] %in% unique(dataIFN.FRANCE[["sp"]]))) > 0) stop("competition index sp name not the same as in data.tree") +if (sum(!(names(data.BA.SP)[-1] %in% unique(data.france[["sp"]]))) > 0) stop("competition index sp name not the same as in data.tree") #### compute BA tot for all competitors @@ -154,13 +139,12 @@ BATOT.COMPET <- apply(data.BA.SP[, -1], MARGIN = 1, FUN = sum, na.rm = TRUE) data.BA.SP$BATOT.COMPET <- BATOT.COMPET ### create data frame names(data.BA.SP) <- c("tree.id", names(data.BA.SP)[-1]) -data.BA.sp <- merge(data.frame(tree.id = dataIFN.FRANCE[["tree.id"]], ecocode = dataIFN.FRANCE[["ecocode"]]), +data.BA.sp <- merge(data.frame(tree.id = data.france[["tree.id"]], ecocode = data.france[["ecocode"]]), data.BA.SP, by = "tree.id", sort = FALSE) ## test if (sum(!data.BA.sp[["tree.id"]] == data.tree[["tree.id"]]) > 0) stop("competition index not in the same order than data.tree") - ## save everything as a list list.FRANCE <- list(data.tree = data.tree, data.BA.SP = data.BA.sp, data.traits = data.traits) save(list.FRANCE, file = "./data/process/list.FRANCE.Rdata") diff --git a/merge.data.SWISS.R b/merge.data.SWISS.R index eb7ba34e585922074b14ae36c480002ad88bbb56..1e975b98d7c6bd9b91f4be6c527170565b598b48 100644 --- a/merge.data.SWISS.R +++ b/merge.data.SWISS.R @@ -94,7 +94,6 @@ data.swiss <- merge(data.swiss, data.frame(siteid = data.climate$CLNR, swb = dat MAT = data.climate$tave_68, MAP = data.climate$MAP, stringsAsFactors =FALSE), sort = F, all.x = T) rm(data.climate) -############################################## ############################################## #################### GENERATE ONE OBJECT PER ECOREGION # vector of ecoregion name