Commit df7f493d authored by Dorchies David's avatar Dorchies David
Browse files

feat: add documentation page

parent 20e6f0eb
Pipeline #22617 failed with stage
in 1 minute and 25 seconds
......@@ -2,6 +2,11 @@
# Project-specific
# Rmd in Shiny
inst/app/www/*/*_files/
inst/app/www/*/*.html
# Man pages generated by Roxygen
man/*.Rd
/.vscode/
......
Package: irmara
Title: Interactive Reservoir MAnagement Risk Assessment
Version: 0.0.2
Version: 0.0.2.9000
Authors@R: person('David', 'Dorchies', email = 'david.dorchies@inrae.fr', role = c('cre', 'aut'))
Description: IRMaRA is a R Shiny interface providing probability of failure of flood and drought objective at key locations downstream of the 4 lakes regulating the Seine River.
License: AGPL-3
......@@ -21,7 +21,8 @@ Imports:
rvgest,
SGLdataGrabber,
shinyjs,
scales
scales,
markdown
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.1
......
......@@ -10,5 +10,6 @@ RUN mkdir /build_zone
ADD . /build_zone
WORKDIR /build_zone
RUN R -e 'remotes::install_local(upgrade="never")'
RUN R -e 'rmarkdown::render("inst/app/www/documentation/documentation.Rmd")'
EXPOSE 80
CMD R -e "options('shiny.port'=80,shiny.host='0.0.0.0');irmara::run_app()"
#' The application User-Interface
#'
#' @param request Internal parameter for `{shiny}`.
#'
#' @param request Internal parameter for `{shiny}`.
#' DO NOT REMOVE.
#' @import shiny
#' @noRd
......@@ -8,7 +8,7 @@ app_ui <- function(request) {
tagList(
# Leave this function for adding external resources
golem_add_external_resources(),
# List the first level UI elements here
# List the first level UI elements here
shinydashboardPlus::dashboardPage(
options = list(sidebarExpandOnHover = TRUE),
header = shinydashboardPlus::dashboardHeader(title = "Irmara"),
......@@ -17,19 +17,20 @@ app_ui <- function(request) {
shinydashboard::sidebarMenu(
# Setting id makes input$tabs give the tabName of currently-selected tab
id = "tabs",
shinydashboard::menuItem("Instant risk overview", tabName = "instant_risk_overview", icon = icon("dashboard")),
shinydashboard::menuItem("One objective focus", icon = icon("th"), tabName = "one_objective_focus"),
shinydashboard::menuItem("Ruleset comparison", icon = icon("bar-chart-o"), tabName = "ruleset_comparison")
shinydashboard::menuItem("Documentation", icon = icon("info-circle"), tabName = "documentation"),
shinydashboard::menuItem("Instant risk overview", icon = icon("chart-bar"), tabName = "instant_risk_overview"),
shinydashboard::menuItem("One objective focus", icon = icon("chart-area"), tabName = "one_objective_focus")
# shinydashboard::menuItem("Ruleset comparison", icon = icon("bar-chart-o"), tabName = "ruleset_comparison")
)
),
# Show the appropriate tab's content in the main body of our dashboard when we select it
body = shinydashboard::dashboardBody(
shinydashboard::tabItems(
shinydashboard::tabItem("documentation", mod_documentation_ui("documentation")),
shinydashboard::tabItem("instant_risk_overview", mod_instant_risk_overview_ui("instant_risk_overview")),
shinydashboard::tabItem("one_objective_focus", mod_one_objective_focus_ui("one_objective_focus")),
shinydashboard::tabItem("ruleset_comparison", mod_ruleset_comparison_ui("ruleset_comparison")
)
)
shinydashboard::tabItem("one_objective_focus", mod_one_objective_focus_ui("one_objective_focus"))
# shinydashboard::tabItem("ruleset_comparison", mod_ruleset_comparison_ui("ruleset_comparison"))
)
),
title = "Irmara"
)
......@@ -37,19 +38,19 @@ app_ui <- function(request) {
}
#' Add external Resources to the Application
#'
#' This function is internally used to add external
#' resources inside the Shiny application.
#'
#'
#' This function is internally used to add external
#' resources inside the Shiny application.
#'
#' @import shiny
#' @importFrom golem add_resource_path activate_js favicon bundle_resources
#' @noRd
golem_add_external_resources <- function(){
add_resource_path(
'www', app_sys('app/www')
)
tags$head(
favicon(),
bundle_resources(
......@@ -57,7 +58,7 @@ golem_add_external_resources <- function(){
app_title = 'irmara'
)
# Add here other external resources
# for example, you can add shinyalert::useShinyalert()
# for example, you can add shinyalert::useShinyalert()
)
}
#' documentation UI Function
#'
#' @description A shiny Module.
#'
#' @param id,input,output,session Internal parameters for {shiny}.
#'
#' @noRd
#'
#' @importFrom shiny NS tagList
mod_documentation_ui <- function(id){
ns <- NS(id)
tagList(
tags$iframe(src = 'www/documentation/documentation.html',
width = '100%', style="height: 90vh;",
frameborder = 0, scrolling = 'auto')
)
}
#' documentation Server Functions
#'
#' @noRd
mod_documentation_server <- function(id){
moduleServer( id, function(input, output, session){
ns <- session$ns
})
}
## To be copied in the UI
# mod_documentation_ui("documentation_ui_1")
## To be copied in the server
# mod_documentation_server("documentation_ui_1")
@techreport{baderCalculLimitesVolumes2016,
title = {{Calcul des limites de volumes d'eau \`a respecter dans des r\'eservoirs implant\'es en parall\`ele sur un r\'eseau hydrographique, pour permettre la meilleure satisfaction future d'un objectif commun de gestion \`a l'aval (soutien d'\'etiage ou laminage de crue) : logiciel VGEST - Application au cas du bassin de la Seine (Am\'elioration et extension de la m\'ethode pr\'ec\'edemment d\'evelopp\'ee dans le cadre du programme Climaware)}},
shorttitle = {{Calcul des limites de volumes d'eau \`a respecter dans des r\'eservoirs implant\'es en parall\`ele sur un r\'eseau hydrographique, pour permettre la meilleure satisfaction future d'un objectif commun de gestion \`a l'aval (soutien d'\'etiage ou laminage de crue)}},
author = {Bader, Jean-Claude and Dorchies, D.},
year = {2016},
pages = {93 p. multigr.},
address = {{Montpellier}},
institution = {{IRD}},
annotation = {Accession Number: fdi:010070461},
file = {C\:\\Users\\david.dorchies\\Zotero\\storage\\YJH4BAAQ\\Bader et Dorchies - 2016 - Calcul des limites de volumes d'eau à respecter da.pdf},
keywords = {AIDE A LA DECISION,BESOIN EN EAU,COURS D'EAU,DEBIT,ETIAGE,GESTION DE L'EAU,LOGICIEL D'APPLICATION,METHODOLOGIE,RESERVOIR,RESSOURCES EN EAU,UTILISATION DE L'EAU},
language = {fre},
lccn = {062EVAEAU , 122APPLIC}
}
@article{baderConsignesGestionBarrage1992,
title = {Consignes de Gestion Du Barrage \`a Vocation Multiple de {{Manantali}}: D\'etermination Des Cotes Limites \`a Respecter Dans La Retenue [{{Multiple}} Use Management of {{Manantali Dam}}: Determination of Limiting Storage Levels]},
author = {Bader, J.-C.},
year = {1992},
volume = {7},
pages = {3--12},
issn = {0246-1528},
journal = {Hydrologie Continentale},
number = {1}
}
@phdthesis{dehayEtudeImpactChangement2012,
title = {{Etude de l'impact du changement climatique sur la gestion des lacs-r\'eservoirs de la Seine}},
author = {Dehay, F.},
year = {2012},
pages = {74},
abstract = {Dans le cadre du projet europ\'een Climaware, une mod\'elisation du bassin versant de la Seine avec pour exutoire Paris a \'et\'e r\'ealis\'ee afin d'\'etudier l'effet du changement climatique sur les r\`egles de gestion des quatre lacs-r\'eservoirs de la Seine (lac Aube, lac Marne, lac Seine, lac Panneci\`ere). Il s'agit du mod\`ele TGR de type GR, dans un premier temps r\'ealis\'e et cal\'e sans prendre en compte les quatre lacs-r\'eservoirs. Suivant certaines conditions, telles que la courbe de gestion de ces lacs et leurs volumes maximum et minimum admissibles, il a fallu les int\'egrer au mod\`ele. Diff\'erents cas ont d\^u \^etre d\'etermin\'es auparavant, selon les particularit\'es des lacs. Il faut reproduire au mieux les effets des lacs, leur courbe de volume et les d\'ebits dans les rivi\`eres, afin d'avoir un mod\`ele le plus exact possible. Les chroniques de d\'ebits utilis\'ees pour son calage sont celles des d\'ebits naturalis\'es, d\'ebits mesur\'es desquels l'influence des lacs a \'et\'e effac\'ee. Les autres actions anthropiques (pr\'el\`evements AEP\ldots ) sont pr\'esentes. Les indicateurs de performance indiquant que le mod\`ele \'etait suffisamment proche de la r\'ealit\'e, il a alors \'et\'e possible de passer \`a la phase suivante, c'est-\`a-dire la mod\'elisation avec les for\c{c}ages des mod\`eles climatiques du GIEC (Groupe d'experts Intergouvernemental sur l'Evolution du Climat). Ces simulations doivent permettre d'\'etablir une tendance de l'effet des lacs en temps futur par rapport au temps pr\'esent. Pour cela, quatorze ensembles de donn\'ees fournies par le GIEC (sept en temps pr\'esent et sept en temps futur) ont \'et\'e utilis\'ees dans les simulations. De ces simulations, il semble apparaitre que le futur sera plus sec que le pr\'esent, avec des crues mieux absorb\'ees et des \'etiages plus s\'ev\`eres, que les d\'epassements du d\'ebit de r\'ef\'erence diminuent sur les rivi\`eres Aube et Marne, et que, si leurs causes restent inchang\'ees pour la Marne, elles \'evoluent pour les autres lacs.},
file = {C\:\\Users\\david.dorchies\\Zotero\\storage\\ZV8PCCIB\\Dehay - 2012 - Etude de l'impact du changement climatique sur la .pdf;C\:\\Users\\david.dorchies\\Zotero\\storage\\4NWNXZKR\\hal-02597326.html},
language = {fr},
school = {Dipl\^ome d'ing\'enieur de l'ENGEES ,Strasbourg},
type = {{other}}
}
@article{dorchiesClimateChangeImpacts2014,
title = {Climate Change Impacts on Multi-Objective Reservoir Management: Case Study on the {{Seine River}} Basin, {{France}}},
shorttitle = {Climate Change Impacts on Multi-Objective Reservoir Management},
author = {Dorchies, David and Thirel, Guillaume and {Jay-Allemand}, Maxime and Chauveau, Mathilde and Dehay, Florine and Bourgin, Pierre-Yves and Perrin, Charles and Jost, Claudine and Rizzoli, Jean-Louis and Demerliac, St{\'e}phane and Th{\'e}pot, R{\'e}gis},
year = {2014},
month = jul,
volume = {12},
pages = {265--283},
issn = {1571-5124},
doi = {10.1080/15715124.2013.865636},
abstract = {Adaptation strategies will be needed to cope with the hydrological consequences of projected climate change. In this perspective, the management of many artificial reservoirs will have to be adapted to continue to fulfil downstream objectives (e.g. flow regulation). This study evaluates the sustainability of the management rules of the artificial reservoirs on the Seine River basin, France, under climate change scenarios. The Seine River basin at Paris (43,800 km2) has major socio-economic stakes for France, and the consequences of droughts and floods may be dramatic. In this context, four large multi-purpose reservoirs were built on the basin during the twentieth century for low-flow augmentation and flood alleviation. A hydrological modelling chain was designed to explicitly account for reservoir management rules. It was calibrated in current conditions and then fed by the outputs of seven climate models in present and future conditions, forced by the A1B IPCC scenario, downscaled using a weather-type method and statistically bias-corrected. The results show that the hydrological model performs quite well in current conditions. The simulations made in present and future conditions indicate a decrease in water availability and summer low flows, but no significant trends in high flows. Simulations also indicate that there is room for progress in the current multi-purpose management of reservoirs and that it would be useful to define proper adaptation strategies.},
annotation = {00002},
file = {C\:\\Users\\david.dorchies\\Zotero\\storage\\IXAF3NWQ\\Dorchies et al. - 2014 - Climate change impacts on multi-objective reservoi.pdf;C\:\\Users\\david.dorchies\\Zotero\\storage\\9TFDSBU5\\15715124.2013.html},
journal = {International Journal of River Basin Management},
number = {3}
}
@article{dorchiesClimateChangeImpacts2016,
title = {Climate Change Impacts on Water Resources and Reservoir Management in the {{Seine}} River Basin ({{France}})},
author = {Dorchies, David and Thirel, Guillaume and Perrin, Charles and Bader, Jean-Claude and Thepot, R{\'e}gis and Rizzoli, Jean-Louis and Jost, Claudine and Demerliac, St{\'e}phane},
year = {2016},
month = oct,
pages = {32--37},
issn = {0018-6368, 1958-5551},
doi = {10.1051/lhb/2016047},
file = {C\:\\Users\\david.dorchies\\Zotero\\storage\\M2MAKRGI\\Dorchies et al. - 2016 - Climate change impacts on water resources and rese.pdf},
journal = {La Houille Blanche},
number = {5}
}
@online{lamontagne_synthetic_2017,
title = {Synthetic streamflow generation},
url = {https://waterprogramming.wordpress.com/2017/02/07/synthetic-streamflow-generation/},
abstract = {A recent research focus of our group has been the development and use of synthetic streamflow generators.  There are many tools one might use to generate synthetic streamflows and it may not be obv…},
titleaddon = {Water Programming: A Collaborative Research Blog},
author = {Lamontagne, Jon},
urldate = {2020-11-01},
date = {2017-02-07},
langid = {english},
file = {Snapshot:C\:\\Users\\david.dorchies\\Zotero\\storage\\72FIK27E\\synthetic-streamflow-generation.html:text/html}
}
@article{giuliani_scalable_2018,
title = {Scalable Multiobjective Control for Large-Scale Water Resources Systems Under Uncertainty},
volume = {26},
issn = {1558-0865},
doi = {10.1109/TCST.2017.2705162},
abstract = {Advances in modeling and control have always played an important role in supporting water resources systems planning and management. Changes in climate and society are now introducing additional challenges for controlling these systems, motivating the emergence of complex, integrated simulation models to explore key causal relationships and dependences related to uncontrolled sources of variability. In this brief, we contribute a massively parallel implementation of the evolutionary multiobjective direct policy search method for controlling large-scale water resources systems under uncertainty. The method combines direct policy search with nonlinear approximating networks and a hierarchical parallelization of the Borg multiobjective evolutionary algorithm. This computational framework successfully identifies control policies that address both the presence of multidimensional tradeoffs and severe uncertainties in the system dynamics and policy performance. We demonstrate the approach on a challenging real-world application, represented by the optimal control of a network of four multipurpose water reservoirs in the Red River basin in Northern Vietnam, under observed and synthetically generated hydrologic conditions. Results show that the reliability of the computational framework in finding near-optimal solutions increases with the number of islands in the adopted hierarchical parallelization scheme. This setting reduces the vulnerabilities of the designed solutions to the system's uncertainty and improves the discovery of robust control policies addressing key system performance tradeoffs.},
pages = {1492--1499},
number = {4},
journaltitle = {{IEEE} Transactions on Control Systems Technology},
author = {Giuliani, M. and Quinn, J. D. and Herman, J. D. and Castelletti, A. and Reed, P. M.},
date = {2018-07},
note = {Conference Name: {IEEE} Transactions on Control Systems Technology},
keywords = {Water resources, Optimization, hydrology, Optimal control, Stochastic processes, Linear programming, water supply, robust control, rivers, adopted hierarchical parallelization scheme, Borg multiobjective evolutionary algorithm, complex simulation models, computational framework, environmental management, evolutionary computation, evolutionary multiobjective direct policy search method, integrated simulation models, large-scale water resources systems, massively parallel implementation, Multiobjective control, multipurpose water reservoirs, optimal control, Pareto optimisation, policy performance, reservoirs, robust control policies, scalable multiobjective control, Search problems, system dynamics, system performance tradeoffs, Uncertainty, water resources systems, water resources systems planning},
file = {Giuliani et al. - 2018 - Scalable Multiobjective Control for Large-Scale Wa.pdf:C\:\\Users\\david.dorchies\\Zotero\\storage\\XDP5CMZD\\Giuliani et al. - 2018 - Scalable Multiobjective Control for Large-Scale Wa.pdf:application/pdf;IEEE Xplore Abstract Record:C\:\\Users\\david.dorchies\\Zotero\\storage\\GVAMBJUG\\7959085.html:text/html}
}
@article{zatarain_salazar_balancing_2017,
title = {Balancing exploration, uncertainty and computational demands in many objective reservoir optimization},
volume = {109},
issn = {0309-1708},
url = {http://www.sciencedirect.com/science/article/pii/S0309170817305419},
doi = {10.1016/j.advwatres.2017.09.014},
abstract = {Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search ({EMODPS}) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm ({MOEA}) to support {EMODPS}. Our analysis focuses on the Lower Susquehanna River Basin ({LSRB}) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using {EMODPS} with different parallel configurations of the Borg {MOEA}, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using {EMODPS}.},
pages = {196--210},
journaltitle = {Advances in Water Resources},
shortjournal = {Advances in Water Resources},
author = {Zatarain Salazar, Jazmin and Reed, Patrick M. and Quinn, Julianne D. and Giuliani, Matteo and Castelletti, Andrea},
urldate = {2020-11-01},
date = {2017-11-01},
langid = {english},
keywords = {Uncertainty, Direct policy search, Multi-objective evolutionary optimization, Multi-purpose reservoir control, Parallel strategies},
file = {Zatarain Salazar et al. - 2017 - Balancing exploration, uncertainty and computation.pdf:C\:\\Users\\david.dorchies\\Zotero\\storage\\4N5CAARW\\Zatarain Salazar et al. - 2017 - Balancing exploration, uncertainty and computation.pdf:application/pdf}
}
@article{quinn_rival_2017,
title = {Rival framings: A framework for discovering how problem formulation uncertainties shape risk management trade-offs in water resources systems},
volume = {53},
rights = {© 2017. American Geophysical Union. All Rights Reserved.},
issn = {1944-7973},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020524},
doi = {10.1002/2017WR020524},
shorttitle = {Rival framings},
abstract = {Managing water resources systems requires coordinated operation of system infrastructure to mitigate the impacts of hydrologic extremes while balancing conflicting multisectoral demands. Traditionally, recommended management strategies are derived by optimizing system operations under a single problem framing that is assumed to accurately represent the system objectives, tacitly ignoring the myriad of effects that could arise from simplifications and mathematical assumptions made when formulating the problem. This study illustrates the benefits of a rival framings framework in which analysts instead interrogate multiple competing hypotheses of how complex water management problems should be formulated. Analyzing rival framings helps discover unintended consequences resulting from inherent biases of alternative problem formulations. We illustrate this on the monsoonal Red River basin in Vietnam by optimizing operations of the system's four largest reservoirs under several different multiobjective problem framings. In each rival framing, we specify different quantitative representations of the system's objectives related to hydropower production, agricultural water supply, and flood protection of the capital city of Hanoi. We find that some formulations result in counterintuitive behavior. In particular, policies designed to minimize expected flood damages inadvertently increase the risk of catastrophic flood events in favor of hydropower production, while min-max objectives commonly used in robust optimization provide poor representations of system tradeoffs due to their instability. This study highlights the importance of carefully formulating and evaluating alternative mathematical abstractions of stakeholder objectives describing the multisectoral water demands and risks associated with hydrologic extremes.},
pages = {7208--7233},
number = {8},
journaltitle = {Water Resources Research},
author = {Quinn, J. D. and Reed, P. M. and Giuliani, M. and Castelletti, A.},
urldate = {2020-11-01},
date = {2017},
langid = {english},
note = {\_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR020524},
keywords = {multiobjective optimization, decision making under uncertainty, problem framing, reservoir operations},
file = {Quinn et al. - 2017 - Rival framings A framework for discovering how pr.pdf:C\:\\Users\\david.dorchies\\Zotero\\storage\\H8X4FHEP\\Quinn et al. - 2017 - Rival framings A framework for discovering how pr.pdf:application/pdf;Snapshot:C\:\\Users\\david.dorchies\\Zotero\\storage\\3FYSR5AH\\2017WR020524.html:text/html}
}
@article{gudmundsson_technical_2012,
title = {Technical Note: Downscaling {RCM} precipitation to the station scale using statistical transformations – a comparison of methods},
volume = {16},
issn = {1607-7938},
url = {https://hess.copernicus.org/articles/16/3383/2012/},
doi = {10.5194/hess-16-3383-2012},
shorttitle = {Technical Note},
abstract = {Abstract. The impact of climate change on water resources is usually assessed at the local scale. However, regional climate models ({RCMs}) are known to exhibit systematic biases in precipitation. Hence, {RCM} simulations need to be post-processed in order to produce reliable estimates of local scale climate. Popular post-processing approaches are based on statistical transformations, which attempt to adjust the distribution of modelled data such that it closely resembles the observed climatology. However, the diversity of suggested methods renders the selection of optimal techniques difficult and therefore there is a need for clarification. In this paper, statistical transformations for post-processing {RCM} output are reviewed and classified into (1) distribution derived transformations, (2) parametric transformations and (3) nonparametric transformations, each differing with respect to their underlying assumptions. A real world application, using observations of 82 precipitation stations in Norway, showed that nonparametric transformations have the highest skill in systematically reducing biases in {RCM} precipitation.},
pages = {3383--3390},
number = {9},
journaltitle = {Hydrology and Earth System Sciences},
shortjournal = {Hydrol. Earth Syst. Sci.},
author = {Gudmundsson, L. and Bremnes, J. B. and Haugen, J. E. and Engen-Skaugen, T.},
urldate = {2020-12-01},
date = {2012-09-21},
langid = {english},
file = {Gudmundsson et al. - 2012 - Technical Note Downscaling RCM precipitation to t.pdf:C\:\\Users\\david.dorchies\\Zotero\\storage\\6QZDBHE6\\Gudmundsson et al. - 2012 - Technical Note Downscaling RCM precipitation to t.pdf:application/pdf}
}
@article{boe_statistical_2007,
title = {Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies},
volume = {27},
rights = {Copyright © 2007 Royal Meteorological Society},
issn = {1097-0088},
url = {https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1602},
doi = {https://doi.org/10.1002/joc.1602},
abstract = {Two downscaling methods designed for the study of the hydrological impact of climate change on the Seine basin in France are tested for present climate. First, a multivariate statistical downscaling ({SD}) methodology based on weather typing and conditional resampling is described. Then, a bias correction technique for dynamical downscaling based on quantile–quantile mapping is introduced. To evaluate the end-to-end {SD} methodology, the atmospheric forcing derived from the large-scale circulation ({LSC}) of the {ERA}40 reanalysis by {SD} is used to force a hydrological model. Simulated discharges reproduce historical values reasonably well. Next, the dynamical and statistical approaches are compared using the Météo–France {ARPEGE} general circulation model in a variable resolution configuration (resolution around 60 km over France). The {ARPEGE} simulation is downscaled using the two methodologies, and hydrological simulations are performed. Regarding downscaled temperature and precipitation, the statistical approach is more efficient in reproducing the temporal and spatial autocorrelation properties. The simulated river discharges from the two approaches are nevertheless very similar: the two methods reproduce well the seasonal cycle and the daily distribution of streamflows. Finally, the results of the study are discussed from a practical impact study perspective. Copyright © 2007 Royal Meteorological Society},
pages = {1643--1655},
number = {12},
journaltitle = {International Journal of Climatology},
author = {Boé, J. and Terray, L. and Habets, F. and Martin, E.},
urldate = {2020-12-02},
date = {2007},
langid = {english},
note = {\_eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.1602},
keywords = {bias correction, climate change, dynamical downscaling, hydrological impacts, regional climate, statistical downscaling},
file = {Snapshot:C\:\\Users\\david.dorchies\\Zotero\\storage\\XZV3AGYE\\joc.html:text/html}
}
\ No newline at end of file
---
title: "IRMaRA: Interactive Reservoir MAnagement Risk Assessment"
author: David Dorchies, Jean-Claude Bader, Quan Dau
date: vEGU2021 - 2021, April the 27<sup>th</sup>
output:
html_document:
toc: true
self_contained: no
css:
- "pagedown_inrae.css"
bibliography: IRMaRA.bib
---
# Introduction
Interactive Reservoir MAnagement Risk Assessment (IRMaRA) is a R Shiny interface providing probability of failure of flood and drought objective at key locations downstream of the 4 lakes regulating the Seine River based on the current storage of the reservoirs and the climatology of the basin.
This application highlights the outputs of the software 'VGEST' [@baderConsignesGestionBarrage1992] [@baderCalculLimitesVolumes2016] which optimises reservoir operation for one objective of flood alleviation or low flow replenishment. 'VGEST' computes the minimum (resp. maximum) storage in the reservoir to best meet the objective of maintaining the flow above a low-flow (resp. below a high-flow) threshold in the future.
Resulting time series of reservoir storage is statistically analysed in order to compute the risk rate of an objective to fail in the future considering the day of the year, the current storage state of the reservoir and the climatology used as input of 'VGEST'.
# Main features
Two visualisation modes are available:
## Instant risk overview
This feature shows risk rates of failing objectives in the future considering the current storage state of the reservoir, the policy constraints and the date. The bar plot show the first ten objectives sorted by decreasing order of failure risk rate.
The storage state of the reservoir can be filled in 3 ways:
- "manual": the user freely adjust the storage of each reservoir
- "objective curve": reservoir storages are filled in respect with the value of the theoretical objective curves followed by the EPTB Seine Grands Lacs (See e.g. https://www.seinegrandslacs.fr/quatre-lacs-reservoirs/lac-reservoir-seine for the lake Seine)
- "real time value": reservoir storages are filled with real time state of the reservoir available at this URL: https://www.seinegrandslacs.fr/quatre-lacs-reservoirs-au-coeur-dun-bassin
## One objective focus
This feature shows a heat map of the failure risk rates for each possible storage state in function of the day of the year for one particular objective and a chosen policy constraints.
The chart also displays the theoretical filling curve.
# The Seine River basin
Four reservoir control the flows of the Seine River basin (See map below). There objectives are to maintain the flow between defined low-flow and high-flow thresholds at 9 monitoring stations (red dots on the map).
![The Seine River basin (after @dorchiesClimateChangeImpacts2014)](map_seine_basin.png)
# About this application
This application is developed as part of the IN-WOP project (http://www.waterjpi.eu/joint-calls/joint-call-2018-waterworks-2017/booklet/in-wop) by the mixed research unit G-EAU (https://g-eau.fr)
## Source codes
The source used for running IRMarA (including 'VGEST' Pascal sources and R-packages) are available on the GIT repository of the project: https://gitlab.irstea.fr/in-wop
## Licence
[![CC BY-NC-ND 4.0](https://mirrors.creativecommons.org/presskit/buttons/88x31/svg/by-nc-nd.eu.svg)](https://creativecommons.org/licenses/by-nc-nd/4.0/)
The website http://irmara.g-eau.fr by David Dorchies, Jean-Claude Bader and Quan Dau is licensed under a [Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/) License.
# References
/* DISCLAIMER : Ce travail s'appuie sur le template bénévolement produit par T. Vroylandt pour les scouts de france et mis à disposition de la communauté (tvroylandt/sgdf_pagedown)
/* Code adapté par D. Carayon (INRAE) */
@import url('https://fonts.googleapis.com/css2?family=Raleway:wght@500&display=swap');
@font-face {
font-family: "AvenirNext LT Pro Cn";
src: url('Linotype - Avenir Next LT Pro Condensed.ttf');
}
@font-face {
font-family: "AvenirNext LT Pro Cn";
font-style: italic;
src: url('Linotype - Avenir Next LT Pro Condensed Italic.ttf');
}
@font-face {
font-family: "AvenirNext LT Pro Cn";
font-weight: bold;
src: url('Linotype - Avenir Next LT Pro Bold Condensed.ttf');
}
/* paragaphe et liste */
p, ul {
color: #000000;
font-family: "AvenirNext LT Pro Cn";
text-align: justify;
font-size: 12pt;
}
/* titres */
h1, h2, h3, h4 {
color: #00a3a6;
font-family: "Raleway";
font-weight: bold;
}
h2 {
font-size: 22pt;
}
/* tableaux - avec gt */
/* titres */
th {
background-color: #00a3a6 !important;
color: #FFFFFF !important;
font-family: "Calibri" !important;
font-weight: bold !important;
text-align: center;
border-width:1px;
border-style:solid;
border-color:black;
border-collapse:collapse;
font-size: 10pt;
}
/* colonnes de group */
.gt_group_heading {
color: #00a3a6 !important;
font-family: "Calibri" !important;
font-weight: bold !important;
border-collapse:collapse;
}
table {
border-width:1px;
border-style:solid;
border-color:black;
border-collapse:collapse;
break-inside: avoid;
}
/* contenu */
td {
color: #000000;
font-family: "Calibri";
border-width:1px;
border-style:solid;
text-align: center;
border-color:black;
border-collapse:collapse;
font-size: 10pt;
}
/* eviter les tableaux multipages */
.gt_table{
break-inside: avoid;
}
/* numerotation pages */
.pagedjs_margin-content{
color: #275662;
font-family: "Calibri";
font-weight: bold;
}
/* ---------------------- */
/* pour l'affichage web - debug*/
/* on def les variables */
:root {
--background: whitesmoke;
--pagedjs-width: 210mm;
--pagedjs-height: 297mm;
--color-paper: white;
--color-mbox: rgba(0, 0, 0, 0.2);
--running-title-width: 2.5in;
--screen-pages-spacing: 5mm;
}
/* two pages in a row if possible on screen */
@media screen {
body {
background-color: var(--background);
margin: var(--screen-pages-spacing) auto 0 auto;
}
.pagedjs_pages {
display: flex;
max-width: calc(var(--pagedjs-width) * 2);
flex: 0;
flex-wrap: wrap;
margin: 0 auto;
}
.pagedjs_page {
background-color: var(--color-paper);
box-shadow: 0 0 0 1px var(--color-mbox);
flex-shrink: 0;
flex-grow: 0;
margin: auto auto var(--screen-pages-spacing) auto;
}
}
/* when a row can hold two pages, start first page on the right */
@media screen and (min-width: 12.32in) {
.pagedjs_page {
margin: auto 0 var(--screen-pages-spacing) 0;
}
.pagedjs_first_page {
margin-left: var(--pagedjs-width);
}
}
/* ---------------------- */
/* page size */
@page {
size: 210mm 297mm; /* var(--pagedjs-width) doesn't work in browser when printing */
}
@page :blank {
}
/* compteur de pages */
/* + footer picto */
@page chapter{
@bottom-center {
content: counter(page);
margin: 0 0 0 0;
background-color: #ffffff;
background-image: url(footer_picto_inrae.png);
background-repeat: no-repeat;
background-position: center;
background-size: contain;
}
}
/* Exception H1 pour le titre */
h1.title {
break-after: avoid;
color: #284c59;
text-align: left;
margin-left: 0cm;
font-size: 30pt;
}
h2.author {
margin-block-start: 0cm;
break-after: avoid;
color: #00a3a6;
position: absolute;
left: -1.75cm;
bottom: 0cm;
text-align: left;
font-size: 12pt;
}
h2.date {
break-after: avoid;
color: #00a3a6;
position: absolute;
bottom: -0.5cm;