diff --git a/data/disambiguation_data/padiweb_disambiguation/data_lang.json b/data/disambiguation_data/padiweb_disambiguation/data_lang.json
new file mode 100644
index 0000000000000000000000000000000000000000..62981767258f0c7baa517d1ccd2dffbeb2bf208a
--- /dev/null
+++ b/data/disambiguation_data/padiweb_disambiguation/data_lang.json
@@ -0,0 +1 @@
+{"289": "en", "504": "en", "262": "en", "276": "en", "510": "tl", "29": "en", "15": "en", "114": "en", "100": "en", "128": "en", "470": "en", "316": "en", "302": "en", "464": "en", "458": "en", "459": "en", "303": "en", "465": "en", "471": "en", "317": "en", "129": "en", "101": "en", "115": "en", "14": "en", "28": "en", "277": "en", "511": "en", "505": "en", "263": "en", "288": "en", "513": "en", "275": "en", "261": "en", "507": "en", "249": "en", "16": "en", "103": "en", "117": "en", "498": "en", "467": "en", "301": "en", "315": "en", "473": "en", "329": "en", "328": "en", "314": "en", "472": "en", "466": "en", "300": "en", "499": "en", "116": "en", "102": "en", "17": "en", "248": "en", "260": "en", "506": "en", "512": "en", "274": "en", "258": "en", "270": "en", "516": "en", "502": "en", "264": "en", "13": "en", "106": "en", "112": "en", "489": "en", "338": "ro", "304": "en", "462": "en", "476": "en", "310": "en", "477": "en", "311": "en", "305": "ro", "463": "en", "339": "en", "488": "en", "113": "en", "107": "en", "12": "en", "503": "en", "265": "en", "271": "en", "517": "en", "259": "en", "298": "en", "529": "en", "267": "en", "501": "en", "515": "en", "273": "en", "10": "en", "38": "en", "139": "en", "111": "en", "105": "en", "449": "en", "313": "en", "475": "en", "461": "en", "307": "en", "460": "en", "306": "en", "312": "en", "474": "en", "448": "en", "104": "en", "110": "en", "138": "en", "39": "en", "11": "en", "514": "en", "272": "en", "266": "en", "500": "en", "528": "en", "299": "en", "201": "en", "215": "en", "229": "en", "76": "en", "188": "en", "62": "en", "89": "en", "177": "en", "163": "en", "375": "en", "413": "en", "407": "en", "361": "en", "349": "en", "348": "en", "406": "en", "360": "en", "374": "en", "412": "en", "162": "en", "88": "en", "176": "en", "63": "en", "77": "en", "189": "en", "228": "en", "214": "en", "200": "en", "216": "en", "202": "en", "49": "en", "61": "en", "75": "en", "160": "en", "174": "en", "148": "en", "389": "en", "362": "en", "404": "en", "410": "en", "376": "en", "438": "en", "439": "en", "411": "en", "377": "en", "363": "en", "405": "en", "388": "en", "149": "en", "175": "en", "161": "en", "74": "en", "60": "en", "48": "en", "203": "en", "217": "en", "213": "en", "207": "en", "64": "tl", "70": "en", "58": "en", "159": "en", "165": "en", "171": "en", "398": "en", "429": "en", "401": "en", "367": "en", "373": "en", "415": "en", "372": "en", "414": "en", "400": "en", "366": "en", "428": "en", "399": "en", "170": "en", "164": "en", "158": "en", "59": "en", "71": "en", "65": "en", "206": "en", "212": "en", "238": "en", "204": "en", "210": "en", "73": "en", "67": "en", "199": "en", "9": "en", "172": "es", "98": "en", "166": "en", "358": "en", "416": "en", "370": "en", "364": "en", "402": "en", "365": "en", "403": "en", "417": "en", "371": "en", "359": "en", "99": "en", "167": "en", "173": "es", "8": "en", "66": "en", "198": "en", "72": "en", "211": "en", "205": "en", "239": "en", "220": "en", "234": "en", "208": "en", "195": "en", "181": "en", "57": "en", "5": "en", "43": "en", "156": "en", "142": "en", "94": "en", "80": "en", "397": "en", "383": "en", "354": "en", "432": "en", "426": "en", "340": "ro", "368": "en", "369": "en", "427": "en", "341": "ro", "355": "en", "433": "en", "382": "en", "396": "en", "81": "en", "95": "en", "143": "en", "157": "en", "42": "en", "56": "en", "4": "en", "180": "en", "194": "en", "209": "en", "235": "en", "221": "en", "237": "en", "223": "en", "182": "en", "196": "en", "68": "en", "40": "en", "6": "en", "54": "en", "141": "en", "155": "en", "83": "en", "169": "en", "97": "en", "380": "en", "394": "en", "343": "en", "425": "en", "431": "en", "357": "en", "419": "en", "418": "en", "430": "en", "356": "en", "342": "ro", "424": "en", "395": "en", "381": "en", "168": "en", "96": "en", "82": "en", "154": "en", "140": "en", "7": "en", "55": "en", "41": "en", "197": "en", "69": "en", "183": "en", "222": "en", "236": "en", "232": "en", "226": "en", "45": "en", "51": "en", "3": "en", "187": "en", "79": "en", "193": "en", "178": "en", "86": "en", "92": "en", "144": "en", "150": "en", "385": "en", "391": "en", "408": "en", "420": "en", "346": "ro", "352": "en", "434": "en", "353": "en", "435": "en", "421": "en", "347": "en", "409": "en", "390": "en", "384": "en", "151": "en", "145": "en", "93": "en", "179": "en", "87": "en", "192": "en", "186": "en", "78": "en", "50": "en", "2": "en", "44": "en", "227": "en", "233": "en", "219": "en", "225": "en", "231": "en", "0": "en", "52": "en", "46": "en", "190": "en", "184": "en", "91": "en", "85": "en", "153": "en", "147": "en", "392": "en", "386": "en", "379": "en", "437": "en", "351": "en", "345": "en", "423": "en", "344": "ro", "422": "en", "436": "en", "350": "en", "378": "en", "387": "en", "393": "en", "146": "en", "152": "en", "84": "en", "90": "en", "185": "en", "191": "en", "47": "en", "1": "en", "53": "en", "230": "en", "224": "en", "218": "en", "280": "en", "294": "en", "525": "en", "243": "en", "257": "en", "531": "en", "519": "en", "34": "en", "20": "en", "135": "en", "121": "en", "109": "en", "492": "en", "486": "en", "451": "en", "337": "en", "323": "en", "445": "en", "479": "en", "478": "en", "322": "en", "444": "en", "450": "en", "336": "en", "487": "en", "493": "en", "108": "en", "120": "en", "134": "en", "21": "en", "35": "en", "518": "en", "256": "en", "530": "en", "524": "en", "242": "en", "295": "en", "281": "en", "297": "en", "283": "en", "254": "en", "240": "en", "526": "en", "268": "en", "23": "en", "37": "en", "122": "en", "136": "en", "485": "en", "491": "en", "446": "en", "320": "en", "334": "en", "452": "en", "308": "en", "309": "ro", "335": "en", "453": "en", "447": "en", "321": "en", "490": "en", "484": "en", "137": "en", "123": "en", "36": "en", "22": "en", "269": "en", "241": "en", "527": "en", "255": "en", "282": "en", "296": "en", "292": "en", "286": "en", "279": "en", "251": "en", "523": "en", "245": "en", "26": "en", "32": "en", "127": "en", "133": "en", "480": "en", "494": "en", "319": "en", "325": "en", "443": "en", "457": "en", "331": "en", "456": "en", "330": "en", "324": "en", "442": "en", "318": "en", "495": "en", "481": "en", "132": "en", "126": "en", "33": "en", "27": "en", "522": "en", "244": "en", "250": "en", "278": "en", "287": "en", "293": "en", "285": "en", "291": "en", "508": "en", "246": "en", "520": "en", "252": "en", "31": "en", "25": "en", "19": "en", "118": "en", "130": "en", "124": "en", "497": "en", "483": "en", "468": "en", "332": "en", "454": "en", "440": "en", "326": "en", "441": "en", "327": "en", "333": "en", "455": "en", "469": "en", "482": "en", "496": "en", "125": "en", "131": "en", "119": "en", "18": "en", "24": "en", "30": "en", "253": "en", "247": "en", "521": "en", "509": "en", "290": "en", "284": "en"}
\ No newline at end of file
diff --git a/data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db b/data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db
similarity index 100%
rename from data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db
rename to data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db
diff --git a/data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db b/data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db
similarity index 100%
rename from data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db
rename to data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db
diff --git a/data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db b/data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db
similarity index 100%
rename from data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db
rename to data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db
diff --git a/data/graph_exp_july_19/selected.json b/data/graph_data/graph_exp_july_19/selected.json
similarity index 100%
rename from data/graph_exp_july_19/selected.json
rename to data/graph_data/graph_exp_july_19/selected.json
diff --git a/data/graph_exp_may_25/selected.json b/data/graph_data/graph_exp_may_25/selected.json
similarity index 100%
rename from data/graph_exp_may_25/selected.json
rename to data/graph_data/graph_exp_may_25/selected.json
diff --git a/eval_disambiguation.py b/eval_disambiguation.py
new file mode 100644
index 0000000000000000000000000000000000000000..0a719c3357cf9e9b5aaa4be030dbdaf8b54ca39e
--- /dev/null
+++ b/eval_disambiguation.py
@@ -0,0 +1,69 @@
+# coding = utf-8
+
+import argparse
+import sys
+import numpy as np
+from numpy import inf
+import glob,re,sys,os,json
+import pandas as pd
+from strpython.eval.disambiguation import *
+import logging
+for _ in ("boto", "elasticsearch", "urllib3"):
+    logging.getLogger(_).setLevel(logging.CRITICAL)
+
+
+parser= argparse.ArgumentParser()
+
+parser.add_argument("corpus_name",default="padiweb",help="Corpus you want to evaluate",choices=["padiweb","agromada"])
+parser.add_argument("measure",default="accuracy",help="Performance measure you want to compute",choices=["accuracy","accuracy_k","mean_distance_error"])
+parser.add_argument("-k",type=float,default=1,help="K value for the accuracy@k computation")
+
+args= parser.parse_args()
+
+if args.corpus_name == "padiweb":
+    corpus_dir="data/disambiguation_data/padiweb_disambiguation"
+    data_lang = json.load(open("data/disambiguation_data/padiweb_disambiguation/data_lang.json"))
+
+else:
+    corpus_dir = "data/disambiguation_data/mada_disambiguisation"
+    data_lang = json.load(open("/Users/jacquesfize/LOD_DATASETS/raw_bvlac/associated_lang.json"))
+
+data_lang = {int(k): v for k, v in data_lang.items()}
+
+corpus_files=glob.glob("{0}/*.csv".format(corpus_dir))
+
+acc_MC,acc_GEO,acc_wiki=[],[],[]
+i=0
+
+for fn in corpus_files:
+    i+=1
+    id_=int(re.findall(r"\d+",fn)[-1])
+    #sys.stdout.write("\r{0}/{1}".format(i,len(fns)))
+    try:
+        df=pd.read_csv(fn)
+        lang=data_lang[id_]
+        acc_MC.append(efficiencyMostCommon(df,lang,args.measure,args.k))
+        acc_GEO.append(efficiencyGeodict(df,lang,args.measure,args.k))
+        acc_wiki.append(efficiencyWiki(df,lang,args.measure,args.k))
+    except Exception as e:
+        print(e)
+    acc_GEO=np.array(acc_GEO)
+    acc_GEO[acc_GEO == inf] = 0
+    acc_GEO=acc_GEO.tolist()
+    sys.stdout.write("\r{0}/{1} -- {5}Wiki : {2} | {5}MC : {3} | {5}GEO : {4}".format(
+        i,
+        len(corpus_files),
+        np.mean(np.nan_to_num(acc_wiki)),
+        np.mean(np.nan_to_num(acc_MC)),
+        np.mean(np.nan_to_num(acc_GEO)),
+        args.measure
+        )
+    )
+
+
+# In[63]:
+
+
+print("\naccGEO",np.mean(np.nan_to_num(acc_GEO)))
+print("acc_MC",np.mean(np.nan_to_num(acc_MC)))
+print("accWiki",np.mean(np.nan_to_num(acc_wiki)))
diff --git a/generate_data_csv.py b/generate_data_csv.py
index 28127de14def73f900ccfbff5f42d1c33900a199..dfcc9ee74b8a7f22d38b7c9dd453b50d48095705 100644
--- a/generate_data_csv.py
+++ b/generate_data_csv.py
@@ -5,7 +5,6 @@ import argparse,glob, string,time,re
 
 from progressbar import ProgressBar, Timer, Bar, ETA, Counter
 
-from strpython.helpers.boundary import get_all_shapes
 from strpython.models.str import STR
 from strpython.nlp.disambiguator.geodict_gaurav import *
 from strpython.pipeline import *
@@ -62,10 +61,13 @@ print("Parameters entered : ",args)
 
 if os.path.exists(args.csv_input_dir):
     files_glob= glob.glob(args.csv_input_dir+"/*.csv")
+if not files_glob:
+    files_glob = glob.glob(args.csv_input_dir + "/*.txt")
 else:
     exit()
 
-
+if not os.path.exists(args.graphs_output_dir):
+    os.makedirs(args.graphs_output_dir)
 start = time.time()
 
 associated_es={}
@@ -92,8 +94,7 @@ for k,v in associated_es.items():
     for k2 in v:
         all_es.add(k2)
 
-#logging.info("Get All Shapes from Database for all ES")
-#all_shapes=get_all_shapes(list(all_es))
+
 
 i=0
 def foo_(x):
@@ -116,7 +117,7 @@ with ProgressBar(max_value=len(files_glob),
         #     print("BUG",df)
         df["label"]=df.GID.apply(foo_)
         df = df.rename(columns={"GID": "id"})
-        str_=STR.from_pandas(df,[],all_shapes).build()
+        str_=STR.from_pandas(df,[]).build()
         nx.write_gexf(str_, args.graphs_output_dir + "/{0}.gexf".format(id_))
         i+=1
         pg.update(i)
diff --git a/notebooks/Eval.ipynb b/notebooks/Eval.ipynb
index f5096dac998463eb6ad959beb2fda3fcc0d4645e..d0a24d70435bb8ce1948dacef73ae12fa18395d9 100644
--- a/notebooks/Eval.ipynb
+++ b/notebooks/Eval.ipynb
@@ -22,13 +22,10 @@
      "data": {
       "text/html": [
        "<script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window.Plotly) {{require(['plotly'],function(plotly) {window.Plotly=plotly;});}}</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window.Plotly) {{require(['plotly'],function(plotly) {window.Plotly=plotly;});}}</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     },
     {
      "name": "stdout",
@@ -78204,560 +78201,12 @@
    "outputs": [
     {
      "data": {
-      "application/vnd.plotly.v1+json": {
-       "data": [
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8571428571428571,
-          0.8571428571428571,
-          1,
-          0.8571428571428571,
-          0.8571428571428571,
-          0.9047619047619048,
-          1,
-          0.19047619047619047,
-          0.42857142857142855,
-          0.9523809523809523,
-          0.85,
-          0.5789473684210527,
-          0.5263157894736842,
-          0.9047619047619048,
-          0.8571428571428571,
-          0.47368421052631576,
-          0.8095238095238095,
-          0.5789473684210527,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.6,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.14285714285714285,
-          1,
-          0.3,
-          0.7619047619047619,
-          0.14285714285714285,
-          0.5789473684210527,
-          0.7,
-          0.9523809523809523,
-          0.8571428571428571,
-          0.6470588235294118,
-          0.7142857142857143,
-          1,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.42857142857142855,
-          0.7368421052631579,
-          1,
-          0.5789473684210527,
-          0.21052631578947367,
-          0.35294117647058826,
-          0.8095238095238095,
-          0.8095238095238095,
-          0.47619047619047616,
-          0.9047619047619048,
-          0.42857142857142855,
-          0.7894736842105263
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          426,
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.9047619047619048,
-          0.7894736842105263
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c2_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8571428571428571,
-          0.5238095238095238,
-          1,
-          0.09523809523809523,
-          0.7142857142857143,
-          0.38095238095238093,
-          0.7142857142857143,
-          0.3333333333333333,
-          0.42857142857142855,
-          0.9523809523809523,
-          0.8,
-          0.5789473684210527,
-          0.5263157894736842,
-          0.9047619047619048,
-          0.7142857142857143,
-          0.47368421052631576,
-          0.8095238095238095,
-          0.5789473684210527,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.5,
-          0.8095238095238095,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.14285714285714285,
-          0.8571428571428571,
-          0.3,
-          0.2857142857142857,
-          0.14285714285714285,
-          0.5789473684210527,
-          0.4,
-          0.9047619047619048,
-          0.8571428571428571,
-          0.29411764705882354,
-          0.47619047619047616,
-          1,
-          0.5714285714285714,
-          0.9047619047619048,
-          0.42857142857142855,
-          0.7368421052631579,
-          0.8095238095238095,
-          0.5789473684210527,
-          0.42105263157894735,
-          0.5294117647058824,
-          0.7619047619047619,
-          0.2857142857142857,
-          0.42857142857142855,
-          0.8095238095238095,
-          0.42857142857142855,
-          0.47368421052631576
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c2_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          346,
-          359,
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.9047619047619048,
-          0.8095238095238095,
-          0.47368421052631576
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c3_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8571428571428571,
-          0,
-          1,
-          0,
-          0.047619047619047616,
-          0,
-          0.14285714285714285,
-          0.3333333333333333,
-          0,
-          0.8571428571428571,
-          0.3,
-          0.5789473684210527,
-          0.3157894736842105,
-          0.5714285714285714,
-          0.47619047619047616,
-          0,
-          0,
-          0.5789473684210527,
-          0.6190476190476191,
-          0.5238095238095238,
-          0.55,
-          0.5714285714285714,
-          0.7619047619047619,
-          0.6666666666666666,
-          0,
-          0.8095238095238095,
-          0.3,
-          0.047619047619047616,
-          0.14285714285714285,
-          0.5789473684210527,
-          0.2,
-          0.3333333333333333,
-          0.19047619047619047,
-          0.6470588235294118,
-          0.14285714285714285,
-          0.38095238095238093,
-          0,
-          0,
-          0.14285714285714285,
-          0.6842105263157895,
-          0.5714285714285714,
-          0.5789473684210527,
-          0.21052631578947367,
-          0.35294117647058826,
-          0.3333333333333333,
-          0.2857142857142857,
-          0.42857142857142855,
-          0.3333333333333333,
-          0,
-          0.3157894736842105
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c3_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          92,
-          236,
-          424,
-          429,
-          476,
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.8571428571428571,
-          0.8095238095238095,
-          0.6842105263157895,
-          0.5789473684210527,
-          0.42857142857142855,
-          0.3333333333333333,
-          0.3157894736842105
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)"
-         },
-         "mode": "markers",
-         "name": "c4_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8571428571428571,
-          0,
-          0.9523809523809523,
-          0,
-          0.42857142857142855,
-          0,
-          0.2857142857142857,
-          0.19047619047619047,
-          0,
-          0.9047619047619048,
-          0,
-          0.5789473684210527,
-          0.3157894736842105,
-          0.5714285714285714,
-          0,
-          0,
-          0.42857142857142855,
-          0.5789473684210527,
-          0.2857142857142857,
-          0.47619047619047616,
-          0.05,
-          0.5238095238095238,
-          0,
-          0.3333333333333333,
-          0,
-          0.8095238095238095,
-          0.3,
-          0.09523809523809523,
-          0.14285714285714285,
-          0.5789473684210527,
-          0.15,
-          0.38095238095238093,
-          0,
-          0.29411764705882354,
-          0,
-          0.7142857142857143,
-          0.09523809523809523,
-          0.23809523809523808,
-          0.38095238095238093,
-          0.6842105263157895,
-          0.5238095238095238,
-          0.5789473684210527,
-          0.21052631578947367,
-          0.29411764705882354,
-          0.3333333333333333,
-          0.2857142857142857,
-          0.2857142857142857,
-          0.38095238095238093,
-          0,
-          0.5263157894736842
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)",
-          "width": 4
-         },
-         "name": "c4_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          92,
-          236,
-          346,
-          424,
-          429,
-          527
-         ],
-         "y": [
-          0.9523809523809523,
-          0.9047619047619048,
-          0.8095238095238095,
-          0.7142857142857143,
-          0.6842105263157895,
-          0.5789473684210527,
-          0.5263157894736842
-         ]
-        }
-       ],
-       "layout": {}
-      },
       "text/html": [
        "<div id=\"5d7747b6-3632-4162-86d6-602766bb766c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"5d7747b6-3632-4162-86d6-602766bb766c\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.8571428571428571, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.42857142857142855, 0.9523809523809523, 0.85, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.8571428571428571, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9047619047619048, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 1.0, 0.3, 0.7619047619047619, 0.14285714285714285, 0.5789473684210527, 0.7, 0.9523809523809523, 0.8571428571428571, 0.6470588235294118, 0.7142857142857143, 1.0, 0.9047619047619048, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 1.0, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.8095238095238095, 0.8095238095238095, 0.47619047619047616, 0.9047619047619048, 0.42857142857142855, 0.7894736842105263], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7894736842105263], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.5238095238095238, 1.0, 0.09523809523809523, 0.7142857142857143, 0.38095238095238093, 0.7142857142857143, 0.3333333333333333, 0.42857142857142855, 0.9523809523809523, 0.8, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.7142857142857143, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.5, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 0.8571428571428571, 0.3, 0.2857142857142857, 0.14285714285714285, 0.5789473684210527, 0.4, 0.9047619047619048, 0.8571428571428571, 0.29411764705882354, 0.47619047619047616, 1.0, 0.5714285714285714, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 0.8095238095238095, 0.5789473684210527, 0.42105263157894735, 0.5294117647058824, 0.7619047619047619, 0.2857142857142857, 0.42857142857142855, 0.8095238095238095, 0.42857142857142855, 0.47368421052631576], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.47368421052631576], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 1.0, 0.0, 0.047619047619047616, 0.0, 0.14285714285714285, 0.3333333333333333, 0.0, 0.8571428571428571, 0.3, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.47619047619047616, 0.0, 0.0, 0.5789473684210527, 0.6190476190476191, 0.5238095238095238, 0.55, 0.5714285714285714, 0.7619047619047619, 0.6666666666666666, 0.0, 0.8095238095238095, 0.3, 0.047619047619047616, 0.14285714285714285, 0.5789473684210527, 0.2, 0.3333333333333333, 0.19047619047619047, 0.6470588235294118, 0.14285714285714285, 0.38095238095238093, 0.0, 0.0, 0.14285714285714285, 0.6842105263157895, 0.5714285714285714, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.3333333333333333, 0.2857142857142857, 0.42857142857142855, 0.3333333333333333, 0.0, 0.3157894736842105], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 424.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.8095238095238095, 0.6842105263157895, 0.5789473684210527, 0.42857142857142855, 0.3333333333333333, 0.3157894736842105], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 0.9523809523809523, 0.0, 0.42857142857142855, 0.0, 0.2857142857142857, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.0, 0.0, 0.42857142857142855, 0.5789473684210527, 0.2857142857142857, 0.47619047619047616, 0.05, 0.5238095238095238, 0.0, 0.3333333333333333, 0.0, 0.8095238095238095, 0.3, 0.09523809523809523, 0.14285714285714285, 0.5789473684210527, 0.15, 0.38095238095238093, 0.0, 0.29411764705882354, 0.0, 0.7142857142857143, 0.09523809523809523, 0.23809523809523808, 0.38095238095238093, 0.6842105263157895, 0.5238095238095238, 0.5789473684210527, 0.21052631578947367, 0.29411764705882354, 0.3333333333333333, 0.2857142857142857, 0.2857142857142857, 0.38095238095238093, 0.0, 0.5263157894736842], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 424.0, 429.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.6842105263157895, 0.5789473684210527, 0.5263157894736842], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<div id=\"5d7747b6-3632-4162-86d6-602766bb766c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"5d7747b6-3632-4162-86d6-602766bb766c\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.8571428571428571, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.42857142857142855, 0.9523809523809523, 0.85, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.8571428571428571, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9047619047619048, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 1.0, 0.3, 0.7619047619047619, 0.14285714285714285, 0.5789473684210527, 0.7, 0.9523809523809523, 0.8571428571428571, 0.6470588235294118, 0.7142857142857143, 1.0, 0.9047619047619048, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 1.0, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.8095238095238095, 0.8095238095238095, 0.47619047619047616, 0.9047619047619048, 0.42857142857142855, 0.7894736842105263], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7894736842105263], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.5238095238095238, 1.0, 0.09523809523809523, 0.7142857142857143, 0.38095238095238093, 0.7142857142857143, 0.3333333333333333, 0.42857142857142855, 0.9523809523809523, 0.8, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.7142857142857143, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.5, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 0.8571428571428571, 0.3, 0.2857142857142857, 0.14285714285714285, 0.5789473684210527, 0.4, 0.9047619047619048, 0.8571428571428571, 0.29411764705882354, 0.47619047619047616, 1.0, 0.5714285714285714, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 0.8095238095238095, 0.5789473684210527, 0.42105263157894735, 0.5294117647058824, 0.7619047619047619, 0.2857142857142857, 0.42857142857142855, 0.8095238095238095, 0.42857142857142855, 0.47368421052631576], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.47368421052631576], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 1.0, 0.0, 0.047619047619047616, 0.0, 0.14285714285714285, 0.3333333333333333, 0.0, 0.8571428571428571, 0.3, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.47619047619047616, 0.0, 0.0, 0.5789473684210527, 0.6190476190476191, 0.5238095238095238, 0.55, 0.5714285714285714, 0.7619047619047619, 0.6666666666666666, 0.0, 0.8095238095238095, 0.3, 0.047619047619047616, 0.14285714285714285, 0.5789473684210527, 0.2, 0.3333333333333333, 0.19047619047619047, 0.6470588235294118, 0.14285714285714285, 0.38095238095238093, 0.0, 0.0, 0.14285714285714285, 0.6842105263157895, 0.5714285714285714, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.3333333333333333, 0.2857142857142857, 0.42857142857142855, 0.3333333333333333, 0.0, 0.3157894736842105], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 424.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.8095238095238095, 0.6842105263157895, 0.5789473684210527, 0.42857142857142855, 0.3333333333333333, 0.3157894736842105], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 0.9523809523809523, 0.0, 0.42857142857142855, 0.0, 0.2857142857142857, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.0, 0.0, 0.42857142857142855, 0.5789473684210527, 0.2857142857142857, 0.47619047619047616, 0.05, 0.5238095238095238, 0.0, 0.3333333333333333, 0.0, 0.8095238095238095, 0.3, 0.09523809523809523, 0.14285714285714285, 0.5789473684210527, 0.15, 0.38095238095238093, 0.0, 0.29411764705882354, 0.0, 0.7142857142857143, 0.09523809523809523, 0.23809523809523808, 0.38095238095238093, 0.6842105263157895, 0.5238095238095238, 0.5789473684210527, 0.21052631578947367, 0.29411764705882354, 0.3333333333333333, 0.2857142857142857, 0.2857142857142857, 0.38095238095238093, 0.0, 0.5263157894736842], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 424.0, 429.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.6842105263157895, 0.5789473684210527, 0.5263157894736842], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -78789,552 +78238,12 @@
    "outputs": [
     {
      "data": {
-      "application/vnd.plotly.v1+json": {
-       "data": [
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.7894736842105263,
-          0.9523809523809523,
-          1,
-          0.8571428571428571,
-          0.8571428571428571,
-          0.9047619047619048,
-          1,
-          0.19047619047619047,
-          0.6666666666666666,
-          0.9047619047619048,
-          0.9523809523809523,
-          0.7,
-          0.7368421052631579,
-          0.9523809523809523,
-          0.8571428571428571,
-          0.5714285714285714,
-          0.8,
-          0.7,
-          0.9523809523809523,
-          0.9047619047619048,
-          0.7,
-          0.9523809523809523,
-          0.8571428571428571,
-          0.9047619047619048,
-          0.19047619047619047,
-          0.9047619047619048,
-          0.3,
-          0.8571428571428571,
-          0.19047619047619047,
-          0.7,
-          0.7619047619047619,
-          1,
-          0.9523809523809523,
-          0.7894736842105263,
-          0.7142857142857143,
-          0.9523809523809523,
-          0.9523809523809523,
-          0.9047619047619048,
-          0.5714285714285714,
-          0.7368421052631579,
-          1,
-          0.7,
-          0.25,
-          0.75,
-          0.8571428571428571,
-          0.7368421052631579,
-          0.5714285714285714,
-          1,
-          0.38095238095238093,
-          1
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          527
-         ],
-         "y": [
-          1
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c2_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.7894736842105263,
-          0.6190476190476191,
-          1,
-          0.14285714285714285,
-          0.7619047619047619,
-          0.5714285714285714,
-          0.8095238095238095,
-          0.42857142857142855,
-          0.7142857142857143,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.7,
-          0.7894736842105263,
-          0.9523809523809523,
-          0.7619047619047619,
-          0.5714285714285714,
-          0.75,
-          0.7,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.6,
-          0.9523809523809523,
-          0.8571428571428571,
-          0.9047619047619048,
-          0.23809523809523808,
-          0.8571428571428571,
-          0.3,
-          0.38095238095238093,
-          0.38095238095238093,
-          0.7,
-          0.38095238095238093,
-          0.9523809523809523,
-          0.9523809523809523,
-          0.3684210526315789,
-          0.5238095238095238,
-          0.9047619047619048,
-          0.7619047619047619,
-          0.9523809523809523,
-          0.5714285714285714,
-          0.7368421052631579,
-          0.8095238095238095,
-          0.7,
-          0.45,
-          0.8,
-          0.7619047619047619,
-          0.3157894736842105,
-          0.5238095238095238,
-          0.9047619047619048,
-          0.5714285714285714,
-          0.7142857142857143
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c2_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          359,
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.9523809523809523,
-          0.9047619047619048,
-          0.7142857142857143
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c3_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.7894736842105263,
-          0,
-          1,
-          0.047619047619047616,
-          0.047619047619047616,
-          0,
-          0.047619047619047616,
-          0.42857142857142855,
-          0.047619047619047616,
-          0.9047619047619048,
-          0.3333333333333333,
-          0.7,
-          0.5263157894736842,
-          0.5238095238095238,
-          0.5238095238095238,
-          0,
-          0.25,
-          0.7,
-          0.6190476190476191,
-          0.38095238095238093,
-          0.6,
-          0.9047619047619048,
-          0.7142857142857143,
-          0.7142857142857143,
-          0,
-          0.8095238095238095,
-          0.3,
-          0.14285714285714285,
-          0.19047619047619047,
-          0.7,
-          0.2857142857142857,
-          0.3333333333333333,
-          0.2857142857142857,
-          0.7894736842105263,
-          0.19047619047619047,
-          0.38095238095238093,
-          0,
-          0,
-          0.19047619047619047,
-          0.631578947368421,
-          0.5238095238095238,
-          0.7,
-          0.25,
-          0.65,
-          0.3333333333333333,
-          0.3157894736842105,
-          0.5238095238095238,
-          0.38095238095238093,
-          0,
-          0.6666666666666666
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c3_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          211,
-          236,
-          304,
-          429,
-          527
-         ],
-         "y": [
-          1,
-          0.9047619047619048,
-          0.8095238095238095,
-          0.7894736842105263,
-          0.7,
-          0.6666666666666666
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)"
-         },
-         "mode": "markers",
-         "name": "c4_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.7894736842105263,
-          0,
-          0.9523809523809523,
-          0,
-          0.5714285714285714,
-          0,
-          0.19047619047619047,
-          0.19047619047619047,
-          0,
-          0.9047619047619048,
-          0,
-          0.7,
-          0.5263157894736842,
-          0.42857142857142855,
-          0,
-          0,
-          0.2,
-          0.7,
-          0.23809523809523808,
-          0.5238095238095238,
-          0.1,
-          0.2857142857142857,
-          0.14285714285714285,
-          0.42857142857142855,
-          0,
-          0.8095238095238095,
-          0.3,
-          0.19047619047619047,
-          0.19047619047619047,
-          0.7,
-          0.19047619047619047,
-          0.38095238095238093,
-          0,
-          0.3157894736842105,
-          0,
-          0.7142857142857143,
-          0.047619047619047616,
-          0.23809523809523808,
-          0.5238095238095238,
-          0.631578947368421,
-          0.5238095238095238,
-          0.7,
-          0.25,
-          0.65,
-          0.3333333333333333,
-          0.3157894736842105,
-          0.3333333333333333,
-          0.5714285714285714,
-          0.19047619047619047,
-          0.5714285714285714
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)",
-          "width": 4
-         },
-         "name": "c4_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          92,
-          236,
-          346,
-          429,
-          439,
-          527
-         ],
-         "y": [
-          0.9523809523809523,
-          0.9047619047619048,
-          0.8095238095238095,
-          0.7142857142857143,
-          0.7,
-          0.65,
-          0.5714285714285714
-         ]
-        }
-       ],
-       "layout": {}
-      },
       "text/html": [
        "<div id=\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.9523809523809523, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.6666666666666666, 0.9047619047619048, 0.9523809523809523, 0.7, 0.7368421052631579, 0.9523809523809523, 0.8571428571428571, 0.5714285714285714, 0.8, 0.7, 0.9523809523809523, 0.9047619047619048, 0.7, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.19047619047619047, 0.9047619047619048, 0.3, 0.8571428571428571, 0.19047619047619047, 0.7, 0.7619047619047619, 1.0, 0.9523809523809523, 0.7894736842105263, 0.7142857142857143, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.5714285714285714, 0.7368421052631579, 1.0, 0.7, 0.25, 0.75, 0.8571428571428571, 0.7368421052631579, 0.5714285714285714, 1.0, 0.38095238095238093, 1.0], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [527.0], \"y\": [1.0], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.6190476190476191, 1.0, 0.14285714285714285, 0.7619047619047619, 0.5714285714285714, 0.8095238095238095, 0.42857142857142855, 0.7142857142857143, 0.9047619047619048, 0.9047619047619048, 0.7, 0.7894736842105263, 0.9523809523809523, 0.7619047619047619, 0.5714285714285714, 0.75, 0.7, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.23809523809523808, 0.8571428571428571, 0.3, 0.38095238095238093, 0.38095238095238093, 0.7, 0.38095238095238093, 0.9523809523809523, 0.9523809523809523, 0.3684210526315789, 0.5238095238095238, 0.9047619047619048, 0.7619047619047619, 0.9523809523809523, 0.5714285714285714, 0.7368421052631579, 0.8095238095238095, 0.7, 0.45, 0.8, 0.7619047619047619, 0.3157894736842105, 0.5238095238095238, 0.9047619047619048, 0.5714285714285714, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9523809523809523, 0.9047619047619048, 0.7142857142857143], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 1.0, 0.047619047619047616, 0.047619047619047616, 0.0, 0.047619047619047616, 0.42857142857142855, 0.047619047619047616, 0.9047619047619048, 0.3333333333333333, 0.7, 0.5263157894736842, 0.5238095238095238, 0.5238095238095238, 0.0, 0.25, 0.7, 0.6190476190476191, 0.38095238095238093, 0.6, 0.9047619047619048, 0.7142857142857143, 0.7142857142857143, 0.0, 0.8095238095238095, 0.3, 0.14285714285714285, 0.19047619047619047, 0.7, 0.2857142857142857, 0.3333333333333333, 0.2857142857142857, 0.7894736842105263, 0.19047619047619047, 0.38095238095238093, 0.0, 0.0, 0.19047619047619047, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.5238095238095238, 0.38095238095238093, 0.0, 0.6666666666666666], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 211.0, 236.0, 304.0, 429.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.7894736842105263, 0.7, 0.6666666666666666], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 0.9523809523809523, 0.0, 0.5714285714285714, 0.0, 0.19047619047619047, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.7, 0.5263157894736842, 0.42857142857142855, 0.0, 0.0, 0.2, 0.7, 0.23809523809523808, 0.5238095238095238, 0.1, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.0, 0.8095238095238095, 0.3, 0.19047619047619047, 0.19047619047619047, 0.7, 0.19047619047619047, 0.38095238095238093, 0.0, 0.3157894736842105, 0.0, 0.7142857142857143, 0.047619047619047616, 0.23809523809523808, 0.5238095238095238, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.3333333333333333, 0.5714285714285714, 0.19047619047619047, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 429.0, 439.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.7, 0.65, 0.5714285714285714], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<div id=\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.9523809523809523, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.6666666666666666, 0.9047619047619048, 0.9523809523809523, 0.7, 0.7368421052631579, 0.9523809523809523, 0.8571428571428571, 0.5714285714285714, 0.8, 0.7, 0.9523809523809523, 0.9047619047619048, 0.7, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.19047619047619047, 0.9047619047619048, 0.3, 0.8571428571428571, 0.19047619047619047, 0.7, 0.7619047619047619, 1.0, 0.9523809523809523, 0.7894736842105263, 0.7142857142857143, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.5714285714285714, 0.7368421052631579, 1.0, 0.7, 0.25, 0.75, 0.8571428571428571, 0.7368421052631579, 0.5714285714285714, 1.0, 0.38095238095238093, 1.0], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [527.0], \"y\": [1.0], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.6190476190476191, 1.0, 0.14285714285714285, 0.7619047619047619, 0.5714285714285714, 0.8095238095238095, 0.42857142857142855, 0.7142857142857143, 0.9047619047619048, 0.9047619047619048, 0.7, 0.7894736842105263, 0.9523809523809523, 0.7619047619047619, 0.5714285714285714, 0.75, 0.7, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.23809523809523808, 0.8571428571428571, 0.3, 0.38095238095238093, 0.38095238095238093, 0.7, 0.38095238095238093, 0.9523809523809523, 0.9523809523809523, 0.3684210526315789, 0.5238095238095238, 0.9047619047619048, 0.7619047619047619, 0.9523809523809523, 0.5714285714285714, 0.7368421052631579, 0.8095238095238095, 0.7, 0.45, 0.8, 0.7619047619047619, 0.3157894736842105, 0.5238095238095238, 0.9047619047619048, 0.5714285714285714, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9523809523809523, 0.9047619047619048, 0.7142857142857143], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 1.0, 0.047619047619047616, 0.047619047619047616, 0.0, 0.047619047619047616, 0.42857142857142855, 0.047619047619047616, 0.9047619047619048, 0.3333333333333333, 0.7, 0.5263157894736842, 0.5238095238095238, 0.5238095238095238, 0.0, 0.25, 0.7, 0.6190476190476191, 0.38095238095238093, 0.6, 0.9047619047619048, 0.7142857142857143, 0.7142857142857143, 0.0, 0.8095238095238095, 0.3, 0.14285714285714285, 0.19047619047619047, 0.7, 0.2857142857142857, 0.3333333333333333, 0.2857142857142857, 0.7894736842105263, 0.19047619047619047, 0.38095238095238093, 0.0, 0.0, 0.19047619047619047, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.5238095238095238, 0.38095238095238093, 0.0, 0.6666666666666666], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 211.0, 236.0, 304.0, 429.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.7894736842105263, 0.7, 0.6666666666666666], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 0.9523809523809523, 0.0, 0.5714285714285714, 0.0, 0.19047619047619047, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.7, 0.5263157894736842, 0.42857142857142855, 0.0, 0.0, 0.2, 0.7, 0.23809523809523808, 0.5238095238095238, 0.1, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.0, 0.8095238095238095, 0.3, 0.19047619047619047, 0.19047619047619047, 0.7, 0.19047619047619047, 0.38095238095238093, 0.0, 0.3157894736842105, 0.0, 0.7142857142857143, 0.047619047619047616, 0.23809523809523808, 0.5238095238095238, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.3333333333333333, 0.5714285714285714, 0.19047619047619047, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 429.0, 439.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.7, 0.65, 0.5714285714285714], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -79361,552 +78270,12 @@
    "outputs": [
     {
      "data": {
-      "application/vnd.plotly.v1+json": {
-       "data": [
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.6666666666666666,
-          0.9523809523809523,
-          0.8571428571428571,
-          1,
-          1,
-          0.9523809523809523,
-          0.9523809523809523,
-          0.14285714285714285,
-          0.42857142857142855,
-          0.9047619047619048,
-          0.8095238095238095,
-          0.38095238095238093,
-          0.8095238095238095,
-          0.9047619047619048,
-          0,
-          0.5238095238095238,
-          0.6,
-          0.7,
-          1,
-          0.9523809523809523,
-          0.8571428571428571,
-          0.8571428571428571,
-          0.5714285714285714,
-          0.9047619047619048,
-          0,
-          0.8823529411764706,
-          0.3,
-          0.42857142857142855,
-          0.47368421052631576,
-          0.8571428571428571,
-          0.6,
-          1,
-          1,
-          0.8571428571428571,
-          0.7142857142857143,
-          0.9047619047619048,
-          0.7619047619047619,
-          0.8095238095238095,
-          0.8571428571428571,
-          0.5789473684210527,
-          0.9047619047619048,
-          0.7,
-          0.42857142857142855,
-          0.7619047619047619,
-          0.5714285714285714,
-          0.2857142857142857,
-          0.35,
-          0.7619047619047619,
-          0.19047619047619047,
-          0.7142857142857143
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          300,
-          426,
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.9047619047619048,
-          0.7619047619047619,
-          0.7142857142857143
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c2_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8571428571428571,
-          1,
-          0.8571428571428571,
-          0.9523809523809523,
-          1,
-          0.6666666666666666,
-          0.7619047619047619,
-          0.8571428571428571,
-          0.8095238095238095,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.8571428571428571,
-          0.9047619047619048,
-          0.9047619047619048,
-          0.9523809523809523,
-          0.5238095238095238,
-          0.65,
-          0.7,
-          1,
-          0.9523809523809523,
-          0.7142857142857143,
-          0.8095238095238095,
-          0.7619047619047619,
-          0.9523809523809523,
-          0.38095238095238093,
-          0.8823529411764706,
-          0.5,
-          0.7142857142857143,
-          0.7894736842105263,
-          0.8571428571428571,
-          0.5,
-          1,
-          0.7619047619047619,
-          0.42857142857142855,
-          0.6190476190476191,
-          0.9523809523809523,
-          0.9523809523809523,
-          0.9047619047619048,
-          0.8571428571428571,
-          0.7894736842105263,
-          0.9523809523809523,
-          0.7,
-          0.8571428571428571,
-          0.8095238095238095,
-          1,
-          0.2857142857142857,
-          0.7,
-          0.7142857142857143,
-          0.8571428571428571,
-          0.5714285714285714
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c2_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          453,
-          503,
-          527
-         ],
-         "y": [
-          1,
-          0.8571428571428571,
-          0.5714285714285714
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c3_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.6666666666666666,
-          0,
-          0.8571428571428571,
-          0.6666666666666666,
-          0.047619047619047616,
-          0,
-          0,
-          0.42857142857142855,
-          0.09523809523809523,
-          0.9047619047619048,
-          0.19047619047619047,
-          0.6190476190476191,
-          0.8095238095238095,
-          0.7619047619047619,
-          0.38095238095238093,
-          0,
-          0.4,
-          0.7,
-          0.7142857142857143,
-          0.6190476190476191,
-          0.8095238095238095,
-          0.6190476190476191,
-          0.19047619047619047,
-          0.7619047619047619,
-          0,
-          0.8823529411764706,
-          0.3,
-          0,
-          0.5263157894736842,
-          0.8571428571428571,
-          0.2,
-          0.3333333333333333,
-          0.14285714285714285,
-          0.7142857142857143,
-          0.047619047619047616,
-          0.3333333333333333,
-          0,
-          0,
-          0.3333333333333333,
-          0.5789473684210527,
-          0.8095238095238095,
-          0.7,
-          0.42857142857142855,
-          0.7142857142857143,
-          0.8571428571428571,
-          0.2857142857142857,
-          0.55,
-          0.09523809523809523,
-          0.6666666666666666,
-          0.5714285714285714
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c3_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          92,
-          236,
-          453,
-          503,
-          527
-         ],
-         "y": [
-          0.9047619047619048,
-          0.8823529411764706,
-          0.8571428571428571,
-          0.6666666666666666,
-          0.5714285714285714
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)"
-         },
-         "mode": "markers",
-         "name": "c4_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.6666666666666666,
-          0,
-          0.7619047619047619,
-          0.23809523809523808,
-          0.8095238095238095,
-          0,
-          0.23809523809523808,
-          0.14285714285714285,
-          0.047619047619047616,
-          0.9047619047619048,
-          0,
-          0.38095238095238093,
-          0.42857142857142855,
-          0.14285714285714285,
-          0,
-          0,
-          0.15,
-          0.7,
-          0.23809523809523808,
-          0.5714285714285714,
-          0.23809523809523808,
-          0.3333333333333333,
-          0,
-          0.47619047619047616,
-          0,
-          0.8823529411764706,
-          0.3,
-          0.047619047619047616,
-          0.47368421052631576,
-          0.8571428571428571,
-          0.05,
-          0.3333333333333333,
-          0.09523809523809523,
-          0.09523809523809523,
-          0,
-          0.7142857142857143,
-          0.09523809523809523,
-          0.14285714285714285,
-          0.8571428571428571,
-          0.5789473684210527,
-          0.42857142857142855,
-          0.7,
-          0.42857142857142855,
-          0.7619047619047619,
-          0.6190476190476191,
-          0.2857142857142857,
-          0.35,
-          0.14285714285714285,
-          0.38095238095238093,
-          0.38095238095238093
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)",
-          "width": 4
-         },
-         "name": "c4_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          92,
-          236,
-          375,
-          439,
-          453,
-          527
-         ],
-         "y": [
-          0.9047619047619048,
-          0.8823529411764706,
-          0.8571428571428571,
-          0.7619047619047619,
-          0.6190476190476191,
-          0.38095238095238093
-         ]
-        }
-       ],
-       "layout": {}
-      },
       "text/html": [
        "<div id=\"034cf487-f711-46fe-b3a4-53b97e4c9d59\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"034cf487-f711-46fe-b3a4-53b97e4c9d59\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.9523809523809523, 0.8571428571428571, 1.0, 1.0, 0.9523809523809523, 0.9523809523809523, 0.14285714285714285, 0.42857142857142855, 0.9047619047619048, 0.8095238095238095, 0.38095238095238093, 0.8095238095238095, 0.9047619047619048, 0.0, 0.5238095238095238, 0.6, 0.7, 1.0, 0.9523809523809523, 0.8571428571428571, 0.8571428571428571, 0.5714285714285714, 0.9047619047619048, 0.0, 0.8823529411764706, 0.3, 0.42857142857142855, 0.47368421052631576, 0.8571428571428571, 0.6, 1.0, 1.0, 0.8571428571428571, 0.7142857142857143, 0.9047619047619048, 0.7619047619047619, 0.8095238095238095, 0.8571428571428571, 0.5789473684210527, 0.9047619047619048, 0.7, 0.42857142857142855, 0.7619047619047619, 0.5714285714285714, 0.2857142857142857, 0.35, 0.7619047619047619, 0.19047619047619047, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [300.0, 426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7619047619047619, 0.7142857142857143], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 1.0, 0.8571428571428571, 0.9523809523809523, 1.0, 0.6666666666666666, 0.7619047619047619, 0.8571428571428571, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.8571428571428571, 0.9047619047619048, 0.9047619047619048, 0.9523809523809523, 0.5238095238095238, 0.65, 0.7, 1.0, 0.9523809523809523, 0.7142857142857143, 0.8095238095238095, 0.7619047619047619, 0.9523809523809523, 0.38095238095238093, 0.8823529411764706, 0.5, 0.7142857142857143, 0.7894736842105263, 0.8571428571428571, 0.5, 1.0, 0.7619047619047619, 0.42857142857142855, 0.6190476190476191, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.8571428571428571, 0.7894736842105263, 0.9523809523809523, 0.7, 0.8571428571428571, 0.8095238095238095, 1.0, 0.2857142857142857, 0.7, 0.7142857142857143, 0.8571428571428571, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [453.0, 503.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.5714285714285714], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.8571428571428571, 0.6666666666666666, 0.047619047619047616, 0.0, 0.0, 0.42857142857142855, 0.09523809523809523, 0.9047619047619048, 0.19047619047619047, 0.6190476190476191, 0.8095238095238095, 0.7619047619047619, 0.38095238095238093, 0.0, 0.4, 0.7, 0.7142857142857143, 0.6190476190476191, 0.8095238095238095, 0.6190476190476191, 0.19047619047619047, 0.7619047619047619, 0.0, 0.8823529411764706, 0.3, 0.0, 0.5263157894736842, 0.8571428571428571, 0.2, 0.3333333333333333, 0.14285714285714285, 0.7142857142857143, 0.047619047619047616, 0.3333333333333333, 0.0, 0.0, 0.3333333333333333, 0.5789473684210527, 0.8095238095238095, 0.7, 0.42857142857142855, 0.7142857142857143, 0.8571428571428571, 0.2857142857142857, 0.55, 0.09523809523809523, 0.6666666666666666, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 453.0, 503.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.6666666666666666, 0.5714285714285714], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.7619047619047619, 0.23809523809523808, 0.8095238095238095, 0.0, 0.23809523809523808, 0.14285714285714285, 0.047619047619047616, 0.9047619047619048, 0.0, 0.38095238095238093, 0.42857142857142855, 0.14285714285714285, 0.0, 0.0, 0.15, 0.7, 0.23809523809523808, 0.5714285714285714, 0.23809523809523808, 0.3333333333333333, 0.0, 0.47619047619047616, 0.0, 0.8823529411764706, 0.3, 0.047619047619047616, 0.47368421052631576, 0.8571428571428571, 0.05, 0.3333333333333333, 0.09523809523809523, 0.09523809523809523, 0.0, 0.7142857142857143, 0.09523809523809523, 0.14285714285714285, 0.8571428571428571, 0.5789473684210527, 0.42857142857142855, 0.7, 0.42857142857142855, 0.7619047619047619, 0.6190476190476191, 0.2857142857142857, 0.35, 0.14285714285714285, 0.38095238095238093, 0.38095238095238093], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 375.0, 439.0, 453.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.7619047619047619, 0.6190476190476191, 0.38095238095238093], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<div id=\"034cf487-f711-46fe-b3a4-53b97e4c9d59\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"034cf487-f711-46fe-b3a4-53b97e4c9d59\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.9523809523809523, 0.8571428571428571, 1.0, 1.0, 0.9523809523809523, 0.9523809523809523, 0.14285714285714285, 0.42857142857142855, 0.9047619047619048, 0.8095238095238095, 0.38095238095238093, 0.8095238095238095, 0.9047619047619048, 0.0, 0.5238095238095238, 0.6, 0.7, 1.0, 0.9523809523809523, 0.8571428571428571, 0.8571428571428571, 0.5714285714285714, 0.9047619047619048, 0.0, 0.8823529411764706, 0.3, 0.42857142857142855, 0.47368421052631576, 0.8571428571428571, 0.6, 1.0, 1.0, 0.8571428571428571, 0.7142857142857143, 0.9047619047619048, 0.7619047619047619, 0.8095238095238095, 0.8571428571428571, 0.5789473684210527, 0.9047619047619048, 0.7, 0.42857142857142855, 0.7619047619047619, 0.5714285714285714, 0.2857142857142857, 0.35, 0.7619047619047619, 0.19047619047619047, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [300.0, 426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7619047619047619, 0.7142857142857143], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 1.0, 0.8571428571428571, 0.9523809523809523, 1.0, 0.6666666666666666, 0.7619047619047619, 0.8571428571428571, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.8571428571428571, 0.9047619047619048, 0.9047619047619048, 0.9523809523809523, 0.5238095238095238, 0.65, 0.7, 1.0, 0.9523809523809523, 0.7142857142857143, 0.8095238095238095, 0.7619047619047619, 0.9523809523809523, 0.38095238095238093, 0.8823529411764706, 0.5, 0.7142857142857143, 0.7894736842105263, 0.8571428571428571, 0.5, 1.0, 0.7619047619047619, 0.42857142857142855, 0.6190476190476191, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.8571428571428571, 0.7894736842105263, 0.9523809523809523, 0.7, 0.8571428571428571, 0.8095238095238095, 1.0, 0.2857142857142857, 0.7, 0.7142857142857143, 0.8571428571428571, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [453.0, 503.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.5714285714285714], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.8571428571428571, 0.6666666666666666, 0.047619047619047616, 0.0, 0.0, 0.42857142857142855, 0.09523809523809523, 0.9047619047619048, 0.19047619047619047, 0.6190476190476191, 0.8095238095238095, 0.7619047619047619, 0.38095238095238093, 0.0, 0.4, 0.7, 0.7142857142857143, 0.6190476190476191, 0.8095238095238095, 0.6190476190476191, 0.19047619047619047, 0.7619047619047619, 0.0, 0.8823529411764706, 0.3, 0.0, 0.5263157894736842, 0.8571428571428571, 0.2, 0.3333333333333333, 0.14285714285714285, 0.7142857142857143, 0.047619047619047616, 0.3333333333333333, 0.0, 0.0, 0.3333333333333333, 0.5789473684210527, 0.8095238095238095, 0.7, 0.42857142857142855, 0.7142857142857143, 0.8571428571428571, 0.2857142857142857, 0.55, 0.09523809523809523, 0.6666666666666666, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 453.0, 503.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.6666666666666666, 0.5714285714285714], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.7619047619047619, 0.23809523809523808, 0.8095238095238095, 0.0, 0.23809523809523808, 0.14285714285714285, 0.047619047619047616, 0.9047619047619048, 0.0, 0.38095238095238093, 0.42857142857142855, 0.14285714285714285, 0.0, 0.0, 0.15, 0.7, 0.23809523809523808, 0.5714285714285714, 0.23809523809523808, 0.3333333333333333, 0.0, 0.47619047619047616, 0.0, 0.8823529411764706, 0.3, 0.047619047619047616, 0.47368421052631576, 0.8571428571428571, 0.05, 0.3333333333333333, 0.09523809523809523, 0.09523809523809523, 0.0, 0.7142857142857143, 0.09523809523809523, 0.14285714285714285, 0.8571428571428571, 0.5789473684210527, 0.42857142857142855, 0.7, 0.42857142857142855, 0.7619047619047619, 0.6190476190476191, 0.2857142857142857, 0.35, 0.14285714285714285, 0.38095238095238093, 0.38095238095238093], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 375.0, 439.0, 453.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.7619047619047619, 0.6190476190476191, 0.38095238095238093], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -79937,550 +78306,12 @@
    "outputs": [
     {
      "data": {
-      "application/vnd.plotly.v1+json": {
-       "data": [
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8333333333333334,
-          1,
-          1,
-          0.8333333333333334,
-          0.8333333333333334,
-          0.8333333333333334,
-          1,
-          0.2222222222222222,
-          0.8333333333333334,
-          1,
-          1,
-          0.8333333333333334,
-          0.7777777777777778,
-          1,
-          0.8888888888888888,
-          0.6666666666666666,
-          0.8333333333333334,
-          0.8333333333333334,
-          1,
-          1,
-          0.7777777777777778,
-          1,
-          1,
-          1,
-          0.2222222222222222,
-          1,
-          0.3333333333333333,
-          0.9444444444444444,
-          0.2222222222222222,
-          0.7222222222222222,
-          0.8888888888888888,
-          1,
-          1,
-          0.9444444444444444,
-          0.8333333333333334,
-          1,
-          0.9444444444444444,
-          1,
-          0.6666666666666666,
-          0.8333333333333334,
-          0.9444444444444444,
-          0.8333333333333334,
-          0.2777777777777778,
-          0.5,
-          0.8888888888888888,
-          0.8333333333333334,
-          0.8333333333333334,
-          1,
-          0.7222222222222222,
-          0.8888888888888888
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.8888888888888888
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c2_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8333333333333334,
-          0.7777777777777778,
-          1,
-          0.2777777777777778,
-          0.7222222222222222,
-          0.6111111111111112,
-          0.7777777777777778,
-          0.5,
-          0.8333333333333334,
-          0.8888888888888888,
-          1,
-          0.7777777777777778,
-          0.7777777777777778,
-          1,
-          0.6666666666666666,
-          0.6666666666666666,
-          0.5555555555555556,
-          0.8333333333333334,
-          0.9444444444444444,
-          1,
-          0.6111111111111112,
-          0.8888888888888888,
-          1,
-          1,
-          0.4444444444444444,
-          0.9444444444444444,
-          0.3333333333333333,
-          0.3333333333333333,
-          0.2222222222222222,
-          0.7222222222222222,
-          0.5,
-          1,
-          1,
-          0.3888888888888889,
-          0.5,
-          1,
-          0.7222222222222222,
-          0.9444444444444444,
-          0.6666666666666666,
-          0.8333333333333334,
-          0.7777777777777778,
-          0.8333333333333334,
-          0.4444444444444444,
-          0.7777777777777778,
-          0.8333333333333334,
-          0.2777777777777778,
-          0.6111111111111112,
-          0.8888888888888888,
-          0.8333333333333334,
-          0.3888888888888889
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c2_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          346,
-          359,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          1,
-          0.9444444444444444,
-          0.8888888888888888,
-          0.8333333333333334,
-          0.3888888888888889
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c3_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8333333333333334,
-          0,
-          1,
-          0.16666666666666666,
-          0,
-          0,
-          0.2222222222222222,
-          0.5,
-          0,
-          0.8333333333333334,
-          0.3333333333333333,
-          0.7777777777777778,
-          0.5,
-          0.7222222222222222,
-          0.5,
-          0,
-          0.16666666666666666,
-          0.8333333333333334,
-          0.6111111111111112,
-          0.5,
-          0.7222222222222222,
-          0.7222222222222222,
-          0.9444444444444444,
-          0.9444444444444444,
-          0,
-          0.9444444444444444,
-          0.3333333333333333,
-          0.05555555555555555,
-          0.2222222222222222,
-          0.7222222222222222,
-          0.3333333333333333,
-          0.3333333333333333,
-          0.05555555555555555,
-          0.9444444444444444,
-          0.05555555555555555,
-          0.3888888888888889,
-          0,
-          0,
-          0.2222222222222222,
-          0.6666666666666666,
-          0.5,
-          0.8333333333333334,
-          0.2777777777777778,
-          0.5,
-          0.3333333333333333,
-          0.2777777777777778,
-          0.6111111111111112,
-          0.4444444444444444,
-          0.05555555555555555,
-          0.3333333333333333
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c3_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          304,
-          429,
-          476,
-          499,
-          527
-         ],
-         "y": [
-          1,
-          0.9444444444444444,
-          0.8333333333333334,
-          0.6111111111111112,
-          0.4444444444444444,
-          0.3333333333333333
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)"
-         },
-         "mode": "markers",
-         "name": "c4_val ",
-         "type": "scatter",
-         "x": [
-          2,
-          7,
-          14,
-          27,
-          45,
-          47,
-          53,
-          57,
-          62,
-          92,
-          94,
-          101,
-          105,
-          125,
-          128,
-          141,
-          150,
-          155,
-          156,
-          174,
-          203,
-          211,
-          213,
-          221,
-          233,
-          236,
-          237,
-          249,
-          252,
-          264,
-          285,
-          290,
-          300,
-          304,
-          341,
-          346,
-          350,
-          359,
-          375,
-          424,
-          426,
-          429,
-          433,
-          439,
-          453,
-          456,
-          476,
-          499,
-          503,
-          527
-         ],
-         "y": [
-          0.8333333333333334,
-          0,
-          1,
-          0,
-          0.6111111111111112,
-          0,
-          0.3333333333333333,
-          0.2222222222222222,
-          0,
-          0.8888888888888888,
-          0,
-          0.7777777777777778,
-          0.5,
-          0.5555555555555556,
-          0,
-          0,
-          0.16666666666666666,
-          0.8333333333333334,
-          0.3333333333333333,
-          0.4444444444444444,
-          0.05555555555555555,
-          0.5,
-          0.05555555555555555,
-          0.5,
-          0,
-          0.9444444444444444,
-          0.3333333333333333,
-          0.1111111111111111,
-          0.2222222222222222,
-          0.7222222222222222,
-          0.2777777777777778,
-          0.3888888888888889,
-          0,
-          0.2777777777777778,
-          0,
-          0.7777777777777778,
-          0.16666666666666666,
-          0.2777777777777778,
-          0.6111111111111112,
-          0.6666666666666666,
-          0.6111111111111112,
-          0.8333333333333334,
-          0.2777777777777778,
-          0.5,
-          0.3333333333333333,
-          0.2777777777777778,
-          0.5555555555555556,
-          0.3888888888888889,
-          0.05555555555555555,
-          0.6111111111111112
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)",
-          "width": 4
-         },
-         "name": "c4_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          14,
-          236,
-          429,
-          527
-         ],
-         "y": [
-          1,
-          0.9444444444444444,
-          0.8333333333333334,
-          0.6111111111111112
-         ]
-        }
-       ],
-       "layout": {}
-      },
       "text/html": [
        "<div id=\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 1.0, 0.2222222222222222, 0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.7777777777777778, 1.0, 0.8888888888888888, 0.6666666666666666, 0.8333333333333334, 0.8333333333333334, 1.0, 1.0, 0.7777777777777778, 1.0, 1.0, 1.0, 0.2222222222222222, 1.0, 0.3333333333333333, 0.9444444444444444, 0.2222222222222222, 0.7222222222222222, 0.8888888888888888, 1.0, 1.0, 0.9444444444444444, 0.8333333333333334, 1.0, 0.9444444444444444, 1.0, 0.6666666666666666, 0.8333333333333334, 0.9444444444444444, 0.8333333333333334, 0.2777777777777778, 0.5, 0.8888888888888888, 0.8333333333333334, 0.8333333333333334, 1.0, 0.7222222222222222, 0.8888888888888888], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [499.0, 527.0], \"y\": [1.0, 0.8888888888888888], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.7777777777777778, 1.0, 0.2777777777777778, 0.7222222222222222, 0.6111111111111112, 0.7777777777777778, 0.5, 0.8333333333333334, 0.8888888888888888, 1.0, 0.7777777777777778, 0.7777777777777778, 1.0, 0.6666666666666666, 0.6666666666666666, 0.5555555555555556, 0.8333333333333334, 0.9444444444444444, 1.0, 0.6111111111111112, 0.8888888888888888, 1.0, 1.0, 0.4444444444444444, 0.9444444444444444, 0.3333333333333333, 0.3333333333333333, 0.2222222222222222, 0.7222222222222222, 0.5, 1.0, 1.0, 0.3888888888888889, 0.5, 1.0, 0.7222222222222222, 0.9444444444444444, 0.6666666666666666, 0.8333333333333334, 0.7777777777777778, 0.8333333333333334, 0.4444444444444444, 0.7777777777777778, 0.8333333333333334, 0.2777777777777778, 0.6111111111111112, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 503.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.16666666666666666, 0.0, 0.0, 0.2222222222222222, 0.5, 0.0, 0.8333333333333334, 0.3333333333333333, 0.7777777777777778, 0.5, 0.7222222222222222, 0.5, 0.0, 0.16666666666666666, 0.8333333333333334, 0.6111111111111112, 0.5, 0.7222222222222222, 0.7222222222222222, 0.9444444444444444, 0.9444444444444444, 0.0, 0.9444444444444444, 0.3333333333333333, 0.05555555555555555, 0.2222222222222222, 0.7222222222222222, 0.3333333333333333, 0.3333333333333333, 0.05555555555555555, 0.9444444444444444, 0.05555555555555555, 0.3888888888888889, 0.0, 0.0, 0.2222222222222222, 0.6666666666666666, 0.5, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.6111111111111112, 0.4444444444444444, 0.05555555555555555, 0.3333333333333333], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 304.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112, 0.4444444444444444, 0.3333333333333333], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.0, 0.6111111111111112, 0.0, 0.3333333333333333, 0.2222222222222222, 0.0, 0.8888888888888888, 0.0, 0.7777777777777778, 0.5, 0.5555555555555556, 0.0, 0.0, 0.16666666666666666, 0.8333333333333334, 0.3333333333333333, 0.4444444444444444, 0.05555555555555555, 0.5, 0.05555555555555555, 0.5, 0.0, 0.9444444444444444, 0.3333333333333333, 0.1111111111111111, 0.2222222222222222, 0.7222222222222222, 0.2777777777777778, 0.3888888888888889, 0.0, 0.2777777777777778, 0.0, 0.7777777777777778, 0.16666666666666666, 0.2777777777777778, 0.6111111111111112, 0.6666666666666666, 0.6111111111111112, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.5555555555555556, 0.3888888888888889, 0.05555555555555555, 0.6111111111111112], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 236.0, 429.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<div id=\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 1.0, 0.2222222222222222, 0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.7777777777777778, 1.0, 0.8888888888888888, 0.6666666666666666, 0.8333333333333334, 0.8333333333333334, 1.0, 1.0, 0.7777777777777778, 1.0, 1.0, 1.0, 0.2222222222222222, 1.0, 0.3333333333333333, 0.9444444444444444, 0.2222222222222222, 0.7222222222222222, 0.8888888888888888, 1.0, 1.0, 0.9444444444444444, 0.8333333333333334, 1.0, 0.9444444444444444, 1.0, 0.6666666666666666, 0.8333333333333334, 0.9444444444444444, 0.8333333333333334, 0.2777777777777778, 0.5, 0.8888888888888888, 0.8333333333333334, 0.8333333333333334, 1.0, 0.7222222222222222, 0.8888888888888888], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [499.0, 527.0], \"y\": [1.0, 0.8888888888888888], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.7777777777777778, 1.0, 0.2777777777777778, 0.7222222222222222, 0.6111111111111112, 0.7777777777777778, 0.5, 0.8333333333333334, 0.8888888888888888, 1.0, 0.7777777777777778, 0.7777777777777778, 1.0, 0.6666666666666666, 0.6666666666666666, 0.5555555555555556, 0.8333333333333334, 0.9444444444444444, 1.0, 0.6111111111111112, 0.8888888888888888, 1.0, 1.0, 0.4444444444444444, 0.9444444444444444, 0.3333333333333333, 0.3333333333333333, 0.2222222222222222, 0.7222222222222222, 0.5, 1.0, 1.0, 0.3888888888888889, 0.5, 1.0, 0.7222222222222222, 0.9444444444444444, 0.6666666666666666, 0.8333333333333334, 0.7777777777777778, 0.8333333333333334, 0.4444444444444444, 0.7777777777777778, 0.8333333333333334, 0.2777777777777778, 0.6111111111111112, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 503.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.16666666666666666, 0.0, 0.0, 0.2222222222222222, 0.5, 0.0, 0.8333333333333334, 0.3333333333333333, 0.7777777777777778, 0.5, 0.7222222222222222, 0.5, 0.0, 0.16666666666666666, 0.8333333333333334, 0.6111111111111112, 0.5, 0.7222222222222222, 0.7222222222222222, 0.9444444444444444, 0.9444444444444444, 0.0, 0.9444444444444444, 0.3333333333333333, 0.05555555555555555, 0.2222222222222222, 0.7222222222222222, 0.3333333333333333, 0.3333333333333333, 0.05555555555555555, 0.9444444444444444, 0.05555555555555555, 0.3888888888888889, 0.0, 0.0, 0.2222222222222222, 0.6666666666666666, 0.5, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.6111111111111112, 0.4444444444444444, 0.05555555555555555, 0.3333333333333333], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 304.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112, 0.4444444444444444, 0.3333333333333333], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.0, 0.6111111111111112, 0.0, 0.3333333333333333, 0.2222222222222222, 0.0, 0.8888888888888888, 0.0, 0.7777777777777778, 0.5, 0.5555555555555556, 0.0, 0.0, 0.16666666666666666, 0.8333333333333334, 0.3333333333333333, 0.4444444444444444, 0.05555555555555555, 0.5, 0.05555555555555555, 0.5, 0.0, 0.9444444444444444, 0.3333333333333333, 0.1111111111111111, 0.2222222222222222, 0.7222222222222222, 0.2777777777777778, 0.3888888888888889, 0.0, 0.2777777777777778, 0.0, 0.7777777777777778, 0.16666666666666666, 0.2777777777777778, 0.6111111111111112, 0.6666666666666666, 0.6111111111111112, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.5555555555555556, 0.3888888888888889, 0.05555555555555555, 0.6111111111111112], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 236.0, 429.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -80512,7 +78343,6 @@
     {
      "ename": "KeyError",
      "evalue": "('n', 'occurred at index 0')",
-     "output_type": "error",
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
@@ -80539,7 +78369,8 @@
       "\u001b[0;32mpandas/src/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13742)\u001b[0;34m()\u001b[0m\n",
       "\u001b[0;32mpandas/src/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13696)\u001b[0;34m()\u001b[0m\n",
       "\u001b[0;31mKeyError\u001b[0m: ('n', 'occurred at index 0')"
-     ]
+     ],
+     "output_type": "error"
     }
    ],
    "source": [
@@ -81492,369 +79323,12 @@
    "outputs": [
     {
      "data": {
-      "application/vnd.plotly.v1+json": {
-       "data": [
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1_val ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.92,
-          0.9266666666666666,
-          0.47333333333333333,
-          0.9266666666666666,
-          0.92,
-          0.7866666666666666,
-          0.7278911564625851,
-          0.7687074829931972,
-          0.5486111111111112,
-          0.8294573643410853,
-          0.44,
-          0.7933333333333333,
-          0.82,
-          0.92,
-          0.9266666666666666,
-          0.52,
-          1,
-          0.5333333333333333,
-          0.92,
-          0.9266666666666666,
-          0.9266666666666666,
-          0.9251700680272109,
-          0.9509803921568627,
-          0.4557823129251701,
-          0.9888888888888889,
-          0.4666666666666667,
-          0.9251700680272109
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_regionHED",
-          "normalHED",
-          "normalMCS"
-         ],
-         "y": [
-          1,
-          0.9888888888888889,
-          0.9251700680272109
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c2_val ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.72,
-          0.78,
-          0.48,
-          0.8333333333333334,
-          0.82,
-          0.7066666666666667,
-          0.8843537414965986,
-          0.9115646258503401,
-          0.6527777777777778,
-          0.875968992248062,
-          0.48,
-          0.9266666666666666,
-          0.9266666666666666,
-          0.7733333333333333,
-          0.8333333333333334,
-          0.5,
-          0.7530864197530864,
-          0.5266666666666666,
-          0.8733333333333333,
-          0.84,
-          0.7466666666666667,
-          0.8095238095238095,
-          0.7843137254901961,
-          0.38095238095238093,
-          0.7444444444444445,
-          0.47333333333333333,
-          0.8503401360544217
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c2_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_countryVEO",
-          "gen_regionMCS",
-          "normalMCS"
-         ],
-         "y": [
-          0.9266666666666666,
-          0.8733333333333333,
-          0.8503401360544217
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c3_val ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.44,
-          0.46,
-          0.26,
-          0.49333333333333335,
-          0.4866666666666667,
-          0.41333333333333333,
-          0.4897959183673469,
-          0.5306122448979592,
-          0.3541666666666667,
-          0.5193798449612403,
-          0.22,
-          0.5066666666666667,
-          0.5333333333333333,
-          0.4666666666666667,
-          0.5133333333333333,
-          0.29333333333333333,
-          0.37037037037037035,
-          0.28,
-          0.52,
-          0.5066666666666667,
-          0.46,
-          0.47619047619047616,
-          0.37254901960784315,
-          0.2653061224489796,
-          0.35555555555555557,
-          0.26666666666666666,
-          0.4897959183673469
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c3_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_countryVEO",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalMCS"
-         ],
-         "y": [
-          0.5333333333333333,
-          0.52,
-          0.5066666666666667,
-          0.4897959183673469
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)"
-         },
-         "mode": "markers",
-         "name": "c4_val ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.4,
-          0.44,
-          0.24666666666666667,
-          0.44,
-          0.4533333333333333,
-          0.28,
-          0.3673469387755102,
-          0.3945578231292517,
-          0.2569444444444444,
-          0.40310077519379844,
-          0.19333333333333333,
-          0.42,
-          0.44,
-          0.4066666666666667,
-          0.43333333333333335,
-          0.24,
-          0.2839506172839506,
-          0.2733333333333333,
-          0.44666666666666666,
-          0.44,
-          0.4066666666666667,
-          0.43537414965986393,
-          0.3431372549019608,
-          0.22448979591836735,
-          0.34444444444444444,
-          0.26,
-          0.42857142857142855
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)",
-          "width": 4
-         },
-         "name": "c4_val Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "extension_1VEO",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOWSE",
-          "normalMCS"
-         ],
-         "y": [
-          0.4533333333333333,
-          0.44666666666666666,
-          0.44,
-          0.43537414965986393,
-          0.42857142857142855
-         ]
-        }
-       ],
-       "layout": {
-        "margin": {
-         "b": 160
-        },
-        "xaxis": {
-         "tickangle": 45
-        }
-       }
-      },
       "text/html": [
        "<div id=\"a348649e-26f5-447c-b526-ea244b9f3e2a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"a348649e-26f5-447c-b526-ea244b9f3e2a\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.92, 0.9266666666666666, 0.47333333333333333, 0.9266666666666666, 0.92, 0.7866666666666666, 0.7278911564625851, 0.7687074829931972, 0.5486111111111112, 0.8294573643410853, 0.44, 0.7933333333333333, 0.82, 0.92, 0.9266666666666666, 0.52, 1.0, 0.5333333333333333, 0.92, 0.9266666666666666, 0.9266666666666666, 0.9251700680272109, 0.9509803921568627, 0.4557823129251701, 0.9888888888888889, 0.4666666666666667, 0.9251700680272109], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionHED\", \"normalHED\", \"normalMCS\"], \"y\": [1.0, 0.9888888888888889, 0.9251700680272109], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.72, 0.78, 0.48, 0.8333333333333334, 0.82, 0.7066666666666667, 0.8843537414965986, 0.9115646258503401, 0.6527777777777778, 0.875968992248062, 0.48, 0.9266666666666666, 0.9266666666666666, 0.7733333333333333, 0.8333333333333334, 0.5, 0.7530864197530864, 0.5266666666666666, 0.8733333333333333, 0.84, 0.7466666666666667, 0.8095238095238095, 0.7843137254901961, 0.38095238095238093, 0.7444444444444445, 0.47333333333333333, 0.8503401360544217], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.9266666666666666, 0.8733333333333333, 0.8503401360544217], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.44, 0.46, 0.26, 0.49333333333333335, 0.4866666666666667, 0.41333333333333333, 0.4897959183673469, 0.5306122448979592, 0.3541666666666667, 0.5193798449612403, 0.22, 0.5066666666666667, 0.5333333333333333, 0.4666666666666667, 0.5133333333333333, 0.29333333333333333, 0.37037037037037035, 0.28, 0.52, 0.5066666666666667, 0.46, 0.47619047619047616, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.4897959183673469], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5333333333333333, 0.52, 0.5066666666666667, 0.4897959183673469], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.4, 0.44, 0.24666666666666667, 0.44, 0.4533333333333333, 0.28, 0.3673469387755102, 0.3945578231292517, 0.2569444444444444, 0.40310077519379844, 0.19333333333333333, 0.42, 0.44, 0.4066666666666667, 0.43333333333333335, 0.24, 0.2839506172839506, 0.2733333333333333, 0.44666666666666666, 0.44, 0.4066666666666667, 0.43537414965986393, 0.3431372549019608, 0.22448979591836735, 0.34444444444444444, 0.26, 0.42857142857142855], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [\"extension_1VEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOWSE\", \"normalMCS\"], \"y\": [0.4533333333333333, 0.44666666666666666, 0.44, 0.43537414965986393, 0.42857142857142855], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<div id=\"a348649e-26f5-447c-b526-ea244b9f3e2a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"a348649e-26f5-447c-b526-ea244b9f3e2a\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.92, 0.9266666666666666, 0.47333333333333333, 0.9266666666666666, 0.92, 0.7866666666666666, 0.7278911564625851, 0.7687074829931972, 0.5486111111111112, 0.8294573643410853, 0.44, 0.7933333333333333, 0.82, 0.92, 0.9266666666666666, 0.52, 1.0, 0.5333333333333333, 0.92, 0.9266666666666666, 0.9266666666666666, 0.9251700680272109, 0.9509803921568627, 0.4557823129251701, 0.9888888888888889, 0.4666666666666667, 0.9251700680272109], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionHED\", \"normalHED\", \"normalMCS\"], \"y\": [1.0, 0.9888888888888889, 0.9251700680272109], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.72, 0.78, 0.48, 0.8333333333333334, 0.82, 0.7066666666666667, 0.8843537414965986, 0.9115646258503401, 0.6527777777777778, 0.875968992248062, 0.48, 0.9266666666666666, 0.9266666666666666, 0.7733333333333333, 0.8333333333333334, 0.5, 0.7530864197530864, 0.5266666666666666, 0.8733333333333333, 0.84, 0.7466666666666667, 0.8095238095238095, 0.7843137254901961, 0.38095238095238093, 0.7444444444444445, 0.47333333333333333, 0.8503401360544217], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.9266666666666666, 0.8733333333333333, 0.8503401360544217], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.44, 0.46, 0.26, 0.49333333333333335, 0.4866666666666667, 0.41333333333333333, 0.4897959183673469, 0.5306122448979592, 0.3541666666666667, 0.5193798449612403, 0.22, 0.5066666666666667, 0.5333333333333333, 0.4666666666666667, 0.5133333333333333, 0.29333333333333333, 0.37037037037037035, 0.28, 0.52, 0.5066666666666667, 0.46, 0.47619047619047616, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.4897959183673469], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5333333333333333, 0.52, 0.5066666666666667, 0.4897959183673469], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.4, 0.44, 0.24666666666666667, 0.44, 0.4533333333333333, 0.28, 0.3673469387755102, 0.3945578231292517, 0.2569444444444444, 0.40310077519379844, 0.19333333333333333, 0.42, 0.44, 0.4066666666666667, 0.43333333333333335, 0.24, 0.2839506172839506, 0.2733333333333333, 0.44666666666666666, 0.44, 0.4066666666666667, 0.43537414965986393, 0.3431372549019608, 0.22448979591836735, 0.34444444444444444, 0.26, 0.42857142857142855], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [\"extension_1VEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOWSE\", \"normalMCS\"], \"y\": [0.4533333333333333, 0.44666666666666666, 0.44, 0.43537414965986393, 0.42857142857142855], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -81892,359 +79366,12 @@
    "outputs": [
     {
      "data": {
-      "application/vnd.plotly.v1+json": {
-       "data": [
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1*c2 ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.6933333333333334,
-          0.7533333333333333,
-          0.4666666666666667,
-          0.8133333333333334,
-          0.8,
-          0.6733333333333333,
-          0.6802721088435374,
-          0.7142857142857143,
-          0.4513888888888889,
-          0.7441860465116279,
-          0.44,
-          0.7466666666666667,
-          0.7733333333333333,
-          0.7333333333333333,
-          0.8,
-          0.44666666666666666,
-          0.7530864197530864,
-          0.5133333333333333,
-          0.8466666666666667,
-          0.82,
-          0.72,
-          0.782312925170068,
-          0.7745098039215687,
-          0.3673469387755102,
-          0.7444444444444445,
-          0.46,
-          0.8367346938775511
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.3712, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1*c2 Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_regionMCS",
-          "normalMCS"
-         ],
-         "y": [
-          0.8466666666666667,
-          0.8367346938775511
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1*c2*c3 ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.41333333333333333,
-          0.42,
-          0.26,
-          0.4533333333333333,
-          0.44666666666666666,
-          0.38666666666666666,
-          0.41496598639455784,
-          0.4421768707482993,
-          0.3055555555555556,
-          0.4496124031007752,
-          0.21333333333333335,
-          0.4533333333333333,
-          0.4666666666666667,
-          0.44,
-          0.47333333333333333,
-          0.28,
-          0.37037037037037035,
-          0.28,
-          0.4866666666666667,
-          0.4666666666666667,
-          0.43333333333333335,
-          0.43537414965986393,
-          0.3431372549019608,
-          0.2653061224489796,
-          0.35555555555555557,
-          0.26666666666666666,
-          0.46938775510204084
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1*c2*c3 Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_regionMCS",
-          "normalMCS"
-         ],
-         "y": [
-          0.4866666666666667,
-          0.46938775510204084
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)"
-         },
-         "mode": "markers",
-         "name": "c1*c3 ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.43333333333333335,
-          0.4533333333333333,
-          0.26,
-          0.4866666666666667,
-          0.48,
-          0.4,
-          0.42857142857142855,
-          0.46938775510204084,
-          0.3194444444444444,
-          0.46511627906976744,
-          0.21333333333333335,
-          0.47333333333333333,
-          0.4866666666666667,
-          0.46,
-          0.5066666666666667,
-          0.28,
-          0.37037037037037035,
-          0.28,
-          0.5133333333333333,
-          0.5,
-          0.4533333333333333,
-          0.46938775510204084,
-          0.37254901960784315,
-          0.2653061224489796,
-          0.35555555555555557,
-          0.26666666666666666,
-          0.48299319727891155
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)",
-          "width": 4
-         },
-         "name": "c1*c3 Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalMCS"
-         ],
-         "y": [
-          0.5133333333333333,
-          0.5,
-          0.48299319727891155
-         ]
-        },
-        {
-         "marker": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)"
-         },
-         "mode": "markers",
-         "name": "c2*c3 ",
-         "type": "scatter",
-         "x": [
-          "extension_1BOC",
-          "extension_1BOWSE",
-          "extension_1JACCARD",
-          "extension_1MCS",
-          "extension_1VEO",
-          "extension_1WLSUBTREE",
-          "gen_countryBOC",
-          "gen_countryBOWSE",
-          "gen_countryGREEDY",
-          "gen_countryHED",
-          "gen_countryJACCARD",
-          "gen_countryMCS",
-          "gen_countryVEO",
-          "gen_regionBOC",
-          "gen_regionBOWSE",
-          "gen_regionGREEDY",
-          "gen_regionHED",
-          "gen_regionJACCARD",
-          "gen_regionMCS",
-          "gen_regionVEO",
-          "normalBOC",
-          "normalBOWSE",
-          "normalGED",
-          "normalGREEDY",
-          "normalHED",
-          "normalJACCARD",
-          "normalMCS"
-         ],
-         "y": [
-          0.42,
-          0.4266666666666667,
-          0.26,
-          0.46,
-          0.4533333333333333,
-          0.4,
-          0.47619047619047616,
-          0.5034013605442177,
-          0.3402777777777778,
-          0.5038759689922481,
-          0.22,
-          0.4866666666666667,
-          0.5133333333333333,
-          0.44666666666666666,
-          0.48,
-          0.29333333333333333,
-          0.37037037037037035,
-          0.28,
-          0.49333333333333335,
-          0.47333333333333333,
-          0.44,
-          0.4421768707482993,
-          0.3431372549019608,
-          0.2653061224489796,
-          0.35555555555555557,
-          0.26666666666666666,
-          0.47619047619047616
-         ]
-        },
-        {
-         "line": {
-          "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)",
-          "width": 4
-         },
-         "name": "c2*c3 Pareto Frontier",
-         "type": "scatter",
-         "x": [
-          "gen_countryVEO",
-          "gen_regionMCS",
-          "normalMCS"
-         ],
-         "y": [
-          0.5133333333333333,
-          0.49333333333333335,
-          0.47619047619047616
-         ]
-        }
-       ],
-       "layout": {
-        "margin": {
-         "b": 160
-        },
-        "xaxis": {
-         "tickangle": 45
-        }
-       }
-      },
       "text/html": [
        "<div id=\"6f987a48-a826-4d65-943d-e729c755f1b8\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"6f987a48-a826-4d65-943d-e729c755f1b8\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.6933333333333334, 0.7533333333333333, 0.4666666666666667, 0.8133333333333334, 0.8, 0.6733333333333333, 0.6802721088435374, 0.7142857142857143, 0.4513888888888889, 0.7441860465116279, 0.44, 0.7466666666666667, 0.7733333333333333, 0.7333333333333333, 0.8, 0.44666666666666666, 0.7530864197530864, 0.5133333333333333, 0.8466666666666667, 0.82, 0.72, 0.782312925170068, 0.7745098039215687, 0.3673469387755102, 0.7444444444444445, 0.46, 0.8367346938775511], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1*c2 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.8466666666666667, 0.8367346938775511], \"name\": \"c1*c2 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.41333333333333333, 0.42, 0.26, 0.4533333333333333, 0.44666666666666666, 0.38666666666666666, 0.41496598639455784, 0.4421768707482993, 0.3055555555555556, 0.4496124031007752, 0.21333333333333335, 0.4533333333333333, 0.4666666666666667, 0.44, 0.47333333333333333, 0.28, 0.37037037037037035, 0.28, 0.4866666666666667, 0.4666666666666667, 0.43333333333333335, 0.43537414965986393, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.46938775510204084], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c1*c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.4866666666666667, 0.46938775510204084], \"name\": \"c1*c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.43333333333333335, 0.4533333333333333, 0.26, 0.4866666666666667, 0.48, 0.4, 0.42857142857142855, 0.46938775510204084, 0.3194444444444444, 0.46511627906976744, 0.21333333333333335, 0.47333333333333333, 0.4866666666666667, 0.46, 0.5066666666666667, 0.28, 0.37037037037037035, 0.28, 0.5133333333333333, 0.5, 0.4533333333333333, 0.46938775510204084, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.48299319727891155], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c1*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.5, 0.48299319727891155], \"name\": \"c1*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.42, 0.4266666666666667, 0.26, 0.46, 0.4533333333333333, 0.4, 0.47619047619047616, 0.5034013605442177, 0.3402777777777778, 0.5038759689922481, 0.22, 0.4866666666666667, 0.5133333333333333, 0.44666666666666666, 0.48, 0.29333333333333333, 0.37037037037037035, 0.28, 0.49333333333333335, 0.47333333333333333, 0.44, 0.4421768707482993, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.47619047619047616], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.49333333333333335, 0.47619047619047616], \"name\": \"c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
-      ],
-      "text/vnd.plotly.v1+html": [
-       "<div id=\"6f987a48-a826-4d65-943d-e729c755f1b8\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"6f987a48-a826-4d65-943d-e729c755f1b8\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.6933333333333334, 0.7533333333333333, 0.4666666666666667, 0.8133333333333334, 0.8, 0.6733333333333333, 0.6802721088435374, 0.7142857142857143, 0.4513888888888889, 0.7441860465116279, 0.44, 0.7466666666666667, 0.7733333333333333, 0.7333333333333333, 0.8, 0.44666666666666666, 0.7530864197530864, 0.5133333333333333, 0.8466666666666667, 0.82, 0.72, 0.782312925170068, 0.7745098039215687, 0.3673469387755102, 0.7444444444444445, 0.46, 0.8367346938775511], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1*c2 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.8466666666666667, 0.8367346938775511], \"name\": \"c1*c2 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.41333333333333333, 0.42, 0.26, 0.4533333333333333, 0.44666666666666666, 0.38666666666666666, 0.41496598639455784, 0.4421768707482993, 0.3055555555555556, 0.4496124031007752, 0.21333333333333335, 0.4533333333333333, 0.4666666666666667, 0.44, 0.47333333333333333, 0.28, 0.37037037037037035, 0.28, 0.4866666666666667, 0.4666666666666667, 0.43333333333333335, 0.43537414965986393, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.46938775510204084], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c1*c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.4866666666666667, 0.46938775510204084], \"name\": \"c1*c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.43333333333333335, 0.4533333333333333, 0.26, 0.4866666666666667, 0.48, 0.4, 0.42857142857142855, 0.46938775510204084, 0.3194444444444444, 0.46511627906976744, 0.21333333333333335, 0.47333333333333333, 0.4866666666666667, 0.46, 0.5066666666666667, 0.28, 0.37037037037037035, 0.28, 0.5133333333333333, 0.5, 0.4533333333333333, 0.46938775510204084, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.48299319727891155], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c1*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.5, 0.48299319727891155], \"name\": \"c1*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.42, 0.4266666666666667, 0.26, 0.46, 0.4533333333333333, 0.4, 0.47619047619047616, 0.5034013605442177, 0.3402777777777778, 0.5038759689922481, 0.22, 0.4866666666666667, 0.5133333333333333, 0.44666666666666666, 0.48, 0.29333333333333333, 0.37037037037037035, 0.28, 0.49333333333333335, 0.47333333333333333, 0.44, 0.4421768707482993, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.47619047619047616], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.49333333333333335, 0.47619047619047616], \"name\": \"c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -82556,9 +79683,9 @@
   },
   "varInspector": {
    "cols": {
-    "lenName": 16,
-    "lenType": 16,
-    "lenVar": 40
+    "lenName": 16.0,
+    "lenType": 16.0,
+    "lenVar": 40.0
    },
    "kernels_config": {
     "python": {
diff --git a/notebooks/EvalDesambiguisationPADIWEB.ipynb b/notebooks/EvalDesambiguisationPADIWEB.ipynb
index 83ab07b833c92b0800b57eb2ce03f2ec1c482def..189ca41d2ee687c5ceed5c474a554606e6fcfdb3 100644
--- a/notebooks/EvalDesambiguisationPADIWEB.ipynb
+++ b/notebooks/EvalDesambiguisationPADIWEB.ipynb
@@ -5,8 +5,8 @@
    "execution_count": 1,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T12:57:56.566077Z",
-     "start_time": "2018-06-19T12:57:56.076820Z"
+     "end_time": "2018-08-27T15:11:06.231565Z",
+     "start_time": "2018-08-27T15:11:05.795641Z"
     }
    },
    "outputs": [],
@@ -20,8 +20,8 @@
    "execution_count": 2,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T12:57:56.766774Z",
-     "start_time": "2018-06-19T12:57:56.761060Z"
+     "end_time": "2018-08-27T15:11:06.238529Z",
+     "start_time": "2018-08-27T15:11:06.233600Z"
     }
    },
    "outputs": [
@@ -42,15 +42,15 @@
    "execution_count": 3,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T12:58:25.165818Z",
-     "start_time": "2018-06-19T12:58:25.056576Z"
+     "end_time": "2018-08-27T15:11:06.330207Z",
+     "start_time": "2018-08-27T15:11:06.240613Z"
     }
    },
    "outputs": [],
    "source": [
     "from elasticsearch import Elasticsearch\n",
     "\n",
-    "from config.configuration import config\n",
+    "from strpython.config.configuration import config\n",
     "\n",
     "es = Elasticsearch(config.es_server)\n",
     "def get_data_by_geoname_id(id):\n",
@@ -67,12 +67,18 @@
    "execution_count": 4,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T12:58:25.614490Z",
-     "start_time": "2018-06-19T12:58:25.607038Z"
+     "end_time": "2018-08-27T15:11:06.346204Z",
+     "start_time": "2018-08-27T15:11:06.332072Z"
     }
    },
    "outputs": [],
    "source": [
+    "test=pd.read_csv(\"ens2.csv\")\n",
+    "def foo(x):\n",
+    "    try:\n",
+    "        test[test[\"sp_en\"] == x[\"id\"]].geonames_id.values[0]\n",
+    "    except:\n",
+    "        \"nan\"\n",
     "def parse_file(fn):\n",
     "    id_=int(re.findall(r\"\\d+\",fn)[-1])\n",
     "    lang=langdetect.detect(open(\"data/EPI_ELENA/raw_text/{0}.txt\".format(id_)).read())\n",
@@ -81,18 +87,41 @@
     "        df=df[(df[\"type\"]==\"location\") & (df[\"annotation\"]==\"correct\")]\n",
     "    except:\n",
     "        return\n",
+    "    df[\"geoname\"]=df[\"info\"].apply(lambda x:foo(x))\n",
     "    df[\"GID\"]=df[\"info\"].apply(lambda x:get_data_by_geoname_id(x[\"id\"])[\"id\"])\n",
     "    df[\"content\"]=df[\"content\"].apply(lambda x:re.sub(r\"\\s+\",\" \",x.strip()))\n",
-    "    return df,lang\n"
+    "    return df,lang\n",
+    "\n",
+    "def parse_file2(fn):\n",
+    "    id_=int(re.findall(r\"\\d+\",fn)[-1])\n",
+    "    lang=langdetect.detect(open(\"data/EPI_ELENA/raw_text/{0}.txt\".format(id_)).read())\n",
+    "    df=pd.read_json(fn,orient=\"index\")\n",
+    "    try:\n",
+    "        df=df[(df[\"type\"]==\"location\") & (df[\"annotation\"]==\"correct\")]\n",
+    "    except:\n",
+    "        return\n",
+    "    return df"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": null,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T13:00:51.545645Z",
-     "start_time": "2018-06-19T13:00:51.538149Z"
+     "end_time": "2018-08-27T15:08:33.366321Z",
+     "start_time": "2018-08-27T15:08:33.358349Z"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2018-08-27T15:11:06.356525Z",
+     "start_time": "2018-08-27T15:11:06.348143Z"
     }
    },
    "outputs": [],
@@ -107,8 +136,8 @@
    "execution_count": 6,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T12:58:56.147169Z",
-     "start_time": "2018-06-19T12:58:56.132754Z"
+     "end_time": "2018-08-27T15:11:06.370866Z",
+     "start_time": "2018-08-27T15:11:06.358409Z"
     }
    },
    "outputs": [],
@@ -118,19 +147,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 7,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:46:38.252413Z",
-     "start_time": "2018-06-03T18:46:35.836908Z"
+     "end_time": "2018-08-27T15:11:09.749290Z",
+     "start_time": "2018-08-27T15:11:06.373193Z"
     }
    },
    "outputs": [],
    "source": [
-    "%autoreload\n",
-    "from nlp.disambiguator.geodict_gaurav import GauravGeodict\n",
-    "from nlp.disambiguator.most_common import MostCommonDisambiguator\n",
-    "from nlp.disambiguator.wikipedia_cooc import WikipediaDisambiguator\n",
+    "\n",
+    "from strpython.nlp.disambiguator.geodict_gaurav import GauravGeodict\n",
+    "from strpython.nlp.disambiguator.most_common import MostCommonDisambiguator\n",
+    "from strpython.nlp.disambiguator.wikipedia_cooc import WikipediaDisambiguator\n",
     "disMost_common=MostCommonDisambiguator()\n",
     "disGaurav=GauravGeodict()\n",
     "disWiki=WikipediaDisambiguator()"
@@ -141,8 +170,8 @@
    "execution_count": 8,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:40:57.064904Z",
-     "start_time": "2018-06-03T18:40:57.043921Z"
+     "end_time": "2018-08-27T15:11:09.759142Z",
+     "start_time": "2018-08-27T15:11:09.751214Z"
     }
    },
    "outputs": [],
@@ -160,8 +189,8 @@
    "execution_count": 9,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:40:58.360243Z",
-     "start_time": "2018-06-03T18:40:58.203320Z"
+     "end_time": "2018-08-27T15:11:09.831909Z",
+     "start_time": "2018-08-27T15:11:09.760876Z"
     }
    },
    "outputs": [],
@@ -171,49 +200,49 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 10,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:46:54.196478Z",
-     "start_time": "2018-06-03T18:46:53.863582Z"
+     "end_time": "2018-08-27T15:11:10.512110Z",
+     "start_time": "2018-08-27T15:11:09.833822Z"
     }
    },
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Rivers State GD4106855 12.73152386775468\n",
-      "Kano GD4103071 21.675014816832682\n",
-      "Kano GD4103071 21.675014816832682\n",
-      "Lagos GD4468122 124.6205202335819\n",
-      "Lagos GD4468122 124.6205202335819\n",
-      "Port Harcourt GD791183 15.777445058883712\n"
-     ]
-    },
     {
      "data": {
       "text/plain": [
-       "0.6666666666666666"
+       "(    after annotation content  index  \\\n",
+       " 17    NaN    correct  Latvia    165   \n",
+       " 3     1.0    correct  Latvia     13   \n",
+       " 7     NaN    correct  Latvia     35   \n",
+       " \n",
+       "                                                  info  length      type  \\\n",
+       " 17  {'coordinates': [57, 25], 'countryCode': 'LV',...       1  location   \n",
+       " 3   {'coordinates': [57, 25], 'countryCode': 'LV',...       1  location   \n",
+       " 7   {'coordinates': [57, 25], 'countryCode': 'LV',...       1  location   \n",
+       " \n",
+       "     use_for_all geoname        GID  \n",
+       " 17          NaN    None  GD5551940  \n",
+       " 3           1.0    None  GD5551940  \n",
+       " 7           NaN    None  GD5551940  , 'en')"
       ]
      },
-     "execution_count": 19,
+     "execution_count": 10,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "df,lang=parse_file(fns[0])\n",
-    "accuracyMostCommon(df,lang)\n"
+    "parse_file(fns[0])\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 11,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:45:45.708459Z",
-     "start_time": "2018-06-03T18:45:45.679984Z"
+     "end_time": "2018-08-27T15:11:10.542154Z",
+     "start_time": "2018-08-27T15:11:10.514743Z"
     }
    },
    "outputs": [],
@@ -226,7 +255,7 @@
     "    return (df2.GID == df2.disambiguation).sum()/len(df2)\n",
     "def accuracyWiki(df,lang):\n",
     "    df2=df[-df[\"GID\"].isin([\"O\",\"NR\",\"o\"])][[\"content\",\"GID\"]]\n",
-    "    res_dis=disWiki.disambiguate(df2[\"content\"].unique(),lang)\n",
+    "    res_dis=disWiki.disambiguate_wiki(df2[\"content\"].unique(),lang)\n",
     "    df2[\"disambiguation\"]=df2.content.apply(lambda x:res_dis[x] if x in res_dis else \"0\")\n",
     "    return (df2.GID == df2.disambiguation).sum()/len(df2)\n",
     "#df\n",
@@ -235,11 +264,11 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 12,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:53:53.880676Z",
-     "start_time": "2018-06-03T18:48:05.294472Z"
+     "end_time": "2018-08-27T15:13:54.566181Z",
+     "start_time": "2018-08-27T15:11:10.544793Z"
     }
    },
    "outputs": [
@@ -247,10 +276,13 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
+      "/usr/local/lib/python3.6/site-packages/ipykernel_launcher.py:11: RuntimeWarning: invalid value encountered in long_scalars\n",
+      "  # This is added back by InteractiveShellApp.init_path()\n",
       "/usr/local/lib/python3.6/site-packages/pandas/core/ops.py:816: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
       "  result = getattr(x, name)(y)\n",
-      "/usr/local/lib/python3.6/site-packages/ipykernel_launcher.py:11: RuntimeWarning: invalid value encountered in long_scalars\n",
-      "  # This is added back by InteractiveShellApp.init_path()\n"
+      "GET http://localhost:9200/gazetteer/place/_search [status:400 request:0.006s]\n",
+      "GET http://localhost:9200/gazetteer/place/_search [status:400 request:0.004s]\n",
+      "GET http://localhost:9200/gazetteer/place/_search [status:400 request:0.003s]\n"
      ]
     }
    ],
@@ -270,21 +302,31 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 63,
+   "execution_count": 13,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-05-17T01:37:02.209200Z",
-     "start_time": "2018-05-17T01:37:02.200462Z"
+     "end_time": "2018-08-27T15:13:54.577715Z",
+     "start_time": "2018-08-27T15:13:54.568059Z"
     }
    },
    "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/usr/local/lib/python3.6/site-packages/numpy/core/fromnumeric.py:2957: RuntimeWarning: Mean of empty slice.\n",
+      "  out=out, **kwargs)\n",
+      "/usr/local/lib/python3.6/site-packages/numpy/core/_methods.py:80: RuntimeWarning: invalid value encountered in double_scalars\n",
+      "  ret = ret.dtype.type(ret / rcount)\n"
+     ]
+    },
     {
      "data": {
       "text/plain": [
-       "0.5139891137064413"
+       "nan"
       ]
      },
-     "execution_count": 63,
+     "execution_count": 13,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -296,21 +338,31 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 64,
+   "execution_count": 14,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-05-17T01:37:02.250591Z",
-     "start_time": "2018-05-17T01:37:02.246260Z"
+     "end_time": "2018-08-27T15:13:54.584996Z",
+     "start_time": "2018-08-27T15:13:54.579637Z"
     }
    },
    "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/usr/local/lib/python3.6/site-packages/numpy/core/fromnumeric.py:2957: RuntimeWarning: Mean of empty slice.\n",
+      "  out=out, **kwargs)\n",
+      "/usr/local/lib/python3.6/site-packages/numpy/core/_methods.py:80: RuntimeWarning: invalid value encountered in double_scalars\n",
+      "  ret = ret.dtype.type(ret / rcount)\n"
+     ]
+    },
     {
      "data": {
       "text/plain": [
-       "0.5267050989770068"
+       "nan"
       ]
      },
-     "execution_count": 64,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -321,21 +373,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 15,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-03T18:55:22.909028Z",
-     "start_time": "2018-06-03T18:55:22.904693Z"
+     "end_time": "2018-08-27T15:13:54.591617Z",
+     "start_time": "2018-08-27T15:13:54.587000Z"
     }
    },
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "0.5630869832932465"
+       "0.5782357139650866"
       ]
      },
-     "execution_count": 22,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -347,7 +399,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": null,
    "metadata": {
     "ExecuteTime": {
      "end_time": "2018-06-19T13:01:36.778853Z",
@@ -359,28 +411,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 16,
    "metadata": {
     "ExecuteTime": {
-     "end_time": "2018-06-19T13:10:53.120884Z",
-     "start_time": "2018-06-19T13:09:52.611805Z"
+     "end_time": "2018-08-27T15:13:54.802963Z",
+     "start_time": "2018-08-27T15:13:54.593650Z"
     }
    },
    "outputs": [
     {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/usr/local/lib/python3.6/site-packages/pandas/core/ops.py:816: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
-      "  result = getattr(x, name)(y)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "151959 7898\n",
-      "19.24018738921246\n"
+     "ename": "ModuleNotFoundError",
+     "evalue": "No module named 'helpers'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-16-d620a808fc3e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mhelpers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgazeteer_helpers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcount_of_se\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0msum_\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcount\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfn\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mfns\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m         \u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlang\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparse_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'helpers'"
      ]
     }
    ],
diff --git a/run_test_disambiguisation.sh b/run_test_disambiguisation.sh
new file mode 100755
index 0000000000000000000000000000000000000000..59cba8bdcb6d3e5875a7794f2e4c32cad21e7523
--- /dev/null
+++ b/run_test_disambiguisation.sh
@@ -0,0 +1,12 @@
+#!/usr/bin/env bash
+python3 eval_disambiguation.py padiweb accuracy > accuracy_res_padi.txt
+python3 eval_disambiguation.py agromada accuracy > accuracy_res_mada.txt
+
+python3 eval_disambiguation.py padiweb mean_distance_error > mean_distance_res_padi.txt
+python3 eval_disambiguation.py agromada mean_distance_error > mean_distance_res_mada.txt
+
+python3 eval_disambiguation.py padiweb accuracy_k -k=1 >>accuracyk1y_res_padi.txt
+python3 eval_disambiguation.py padiweb accuracy_k -k=0.5 > accuracyk0-5_res_padi.txt
+
+python3 eval_disambiguation.py agromada accuracy_k -k=1 >> accuracyk1_res_mada.txt
+python3 eval_disambiguation.py agromada accuracy_k -k=0.5 > accuracyk0-5_res_mada.txt
\ No newline at end of file
diff --git a/strpython/eval/disambiguation.py b/strpython/eval/disambiguation.py
new file mode 100644
index 0000000000000000000000000000000000000000..1536fe7ea12a3f50c4f27e65a3f2a3b6ad2d72e5
--- /dev/null
+++ b/strpython/eval/disambiguation.py
@@ -0,0 +1,88 @@
+# coding = utf-8
+
+from shapely.geometry import Point
+from ..helpers.geodict_helpers import *
+from ..nlp.disambiguator.geodict_gaurav import GauravGeodict
+from ..nlp.disambiguator.most_common import MostCommonDisambiguator
+from ..nlp.disambiguator.wikipedia_cooc import WikipediaDisambiguator
+
+import langdetect
+import pandas as pd
+import re
+import glob, re, sys
+
+disMost_common = MostCommonDisambiguator()
+disGaurav = GauravGeodict()
+disWiki = WikipediaDisambiguator()
+
+
+def get_coord(id):
+    try:
+        c = get_data(id).coord
+        return Point(c["lon"], c["lat"])
+    except Exception as e:
+        return None
+
+
+def dist(id1, id2):
+    p1, p2 = get_coord(id1), get_coord(id2)
+    if not p1 or not p2:
+        return -1
+    else:
+        return p1.distance(p2)
+
+
+def efficiencyMostCommon(df, lang, score="accuracy",k=1):
+    df2 = df[-df["GID"].isin(["O", "NR", "o"])][["text", "GID"]]
+    df2["disambiguation"] = df2.text.apply(lambda x: disMost_common.disambiguate_(x, lang)[0])
+    if score == "mean_distance_error":
+        df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1)
+        return df2["distance"][df2["distance"] >= 0].mean()
+    if score == "accuracy_k":
+        df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1)
+        return ((df2["distance"] < k) & (df2["distance"] >= 0)).sum() / ((df2["distance"] >= 0).sum())
+    return (df2.GID == df2.disambiguation).sum() / len(df2)
+
+
+def efficiencyGeodict(df, lang, score="accuracy",k=1):
+    df2 = df[-df["GID"].isin(["O", "NR", "o"])][["text", "GID"]]
+    res_dis = disGaurav.eval(df2["text"].unique(), lang)
+    df2["disambiguation"] = df2.text.apply(lambda x: res_dis[x] if x in res_dis else None)
+    if score == "mean_distance_error":
+        df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1)
+        return df2["distance"][df2["distance"] >= 0].mean()
+    if score == "accuracy_k":
+        df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1)
+        return ((df2["distance"] < k) & (df2["distance"] >= 0)).sum() / ((df2["distance"] >= 0).sum())
+
+    return (df2.GID == df2.disambiguation).sum() / len(df2)
+
+
+def efficiencyWiki(df, lang, score="accuracy",k=1):
+    df2 = df[-df["GID"].isin(["O", "NR", "o"])][["text", "GID"]]
+    res_dis = disWiki.disambiguate_wiki(df2["text"].unique(), lang)
+    df2["disambiguation"] = df2.text.apply(lambda x: res_dis[x] if x in res_dis else None)
+    if score == "mean_distance_error":
+        df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1)
+        return df2["distance"][df2["distance"] >= 0].mean()
+    elif score == "accuracy_k":
+        df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1)
+        return ((df2["distance"] < k) & (df2["distance"] >= 0)).sum() / ((df2["distance"] >= 0).sum())
+    else:
+        return (df2.GID == df2.disambiguation).sum() / len(df2)
+
+
+def parse_file_EPI(fn, path_rawtext):
+    id_ = int(re.findall(r"\d+", fn)[-1])
+    lang = langdetect.detect(open("{1}/{0}.txt".format(id_, path_rawtext.rstrip("/"))).read())
+    df = pd.read_json(fn, orient="index")
+    try:
+        df = df[(df["type"] == "location") & (df["annotation"] == "correct")]
+    except:
+        return
+    df["text"] = df["content"].apply(lambda x: re.sub(r"\s+", " ", x.strip()))
+    df["geoname"] = df["info"].apply(lambda x: x["id"])
+    df["GID"] = df["geoname"].apply(lambda x: get_data_by_geonames_id(x).id)
+    df = df[df["geoname"] != -111111]
+
+    return df, lang
diff --git a/strpython/helpers/geodict_helpers.py b/strpython/helpers/geodict_helpers.py
index 91d04087865e7f90c41a09de1e6cd850fe742877..0a91f973285086104e2d093f981fc8413827e578 100644
--- a/strpython/helpers/geodict_helpers.py
+++ b/strpython/helpers/geodict_helpers.py
@@ -123,12 +123,10 @@ def most_common_label(toponym: str, lang: str):
 
     """
     res = es.search("gazetteer", "place",
-                    body={"query":
-                              {"bool":
-                                   {"must": [{"term": {lang: toponym}}], "must_not": [], "should": []}
-                               },
+                    body={ "query": {"query_string": {"query": "\"{0}\"".format(toponym), "analyze_wildcard": False}},
                           "from": 0,
-                          "size": 50, "sort": [{'score': "desc"}], "aggs": {}})
+                          "size": 50,
+                           "sort": [{'score': "desc"}]})
     res = convert_es_to_pandas(res)
     if not isinstance(res, pd.DataFrame):
         return None, 0
@@ -150,13 +148,7 @@ def most_common_alias(toponym: str, lang: str):
 
     """
     res = es.search("gazetteer", "place",
-                    body={"query": {"nested": {"path": "aliases",
-                                               "query":
-                                                   {"bool":
-                                                        {"must": [{"term": {"aliases.{0}".format(lang): toponym}}], "must_not": [], "should": []}
-                                                    }
-                                               }},
-                          "sort": [{"score": "desc"}]})
+                    body={"size": 1, "sort": [{"score": {"order": "desc", "unmapped_type": "boolean"}}],"query": {"bool": {"must": [{"term": {lang: toponym}}], "must_not": [], "should": []}}})
 
     res = convert_es_to_pandas(res)
     if not isinstance(res, pd.DataFrame):
@@ -181,9 +173,11 @@ def n_label_similar(toponym, lang, n=5, score=True):
                 'score': "desc"
             }
         ]
-
-    res = es.search("gazetteer", "place",
-                    body=body)
+    try:
+        res = es.search("gazetteer", "place",
+                        body=body)
+    except:
+        return None
     res = convert_es_to_pandas(res)
     if not isinstance(res, pd.DataFrame):
         return None
@@ -208,8 +202,11 @@ def n_alias_similar(toponym, lang, n=5, score=True):
                 'score': "desc"
             }
         ]
-    res = es.search("gazetteer", "place",
-                    body=body)
+    try:
+        res = es.search("gazetteer", "place",
+                        body=body)
+    except:
+        return None
 
     res = convert_es_to_pandas(res)
     if not isinstance(res, pd.DataFrame):
@@ -217,35 +214,6 @@ def n_alias_similar(toponym, lang, n=5, score=True):
     return res.iloc[0].id, res.iloc[0].score
 
 
-def get_most_common_id_v2(label, lang="fr"):
-    """
-    Return the spatial entity and its score, based on a specific label and language that obtains the highest score.
-    :param label: str
-    :param lang: str
-    :return: str, float
-    """
-    query_2 = {"query_string": {
-        "default_field": lang,
-        "query": parse_label(label),
-
-    }}
-    res = es.search("gazetteer", "place",
-                    body={"query":
-                              {"bool":
-                                   {"must": [{"term": {lang: label}}], "must_not": [], "should": []}
-                               },
-                          "from": 0,
-                          "size": 50, "sort": [{'score': "desc"}], "aggs": {}})
-    res = convert_es_to_pandas(res)
-
-    if not isinstance(res, pd.DataFrame):
-        if not res:
-            res = convert_es_to_pandas(es.search("gazetteer", "place",
-                                                 body={"query": query_2}))
-        if not isinstance(res, pd.DataFrame):
-            return None, 0
-    return res.iloc[0].id, res.iloc[0].score
-
 
 def get_most_common_id_v3(label, lang='fr'):
     """
@@ -262,7 +230,12 @@ def get_most_common_id_v3(label, lang='fr'):
         # China case
         id_2, score2 = most_common_alias(label, lang)
         if id_2 and score2 > score:
-            return id_2, score2
+            id_, score = id_2, score2
+        simi=n_label_similar(label, lang)
+        if isinstance(simi,pd.DataFrame):
+            id_3, score3 = simi.iloc[0].id,simi.iloc[0].score
+            if id_2 and score2 > score:
+                id_, score = id_3, score3
         return id_, score
 
     # if nothing found in english, search in aliases
@@ -424,14 +397,15 @@ def get_top_candidate(label, lang, n=5):
     :param lang: str
     :return: list
     """
-    query = {"query": {"bool": {"must": [{"term": {lang: label}}], "must_not": [], "should": []}}, "sort": [
-        {
-            "score": {
-                "order": "desc"
-            }
-        }
-    ], "size": n}
+    if n<4:
+        n=4
+    query={"size": n-3, "sort": [{"score": {"order": "desc"}}],"query": {"bool": {"must": [{"term": {lang: label}}], "must_not": [], "should": []}}}
+    query2={"size": 1, "sort": [{"score": {"order": "desc"}}],
+     "query": {"query_string": {"query": "\"{0}\"".format(label), "analyze_wildcard": False}}}
+    query3 = {"size": 1, "sort": [{"score": {"order": "desc", "unmapped_type": "boolean"}}],"query": {"bool": {"must": [{"term": {"en": "\"{0}\"".format(label)}}], "must_not": [], "should": []}}}
     response = es.search('gazetteer', 'place', body=query)
+    res=[]
     if 'hits' in response['hits']:
-        return [x["_source"]["id"] for x in response['hits']['hits']]
-    return []
+        res=[x["_source"]["id"] for x in response['hits']['hits']]
+    res.extend([get_most_common_id_v3(label,lang)[0]])
+    return res
diff --git a/strpython/models/str.py b/strpython/models/str.py
index be98e0019b7dd184dcc4f337db41abc5e90307dd..efe5ae470a99cace5fdddcc93a1f3a1a10367514 100644
--- a/strpython/models/str.py
+++ b/strpython/models/str.py
@@ -66,7 +66,7 @@ class STR(object):
         return str_
 
     @staticmethod
-    def from_dict(spat_ent: dict, tagged_: list = [], shapes: dict = {}):
+    def from_dict(spat_ent: dict, tagged_: list = []):
         """
         Return a STR built from a Networkx imported graph
         :param g:
@@ -77,13 +77,13 @@ class STR(object):
         for id_, label in spat_ent.items():
             sp_en[id_] = label
 
-        str_ = STR(tagged_, sp_en, shapes)
+        str_ = STR(tagged_, sp_en)
         str_.build()
         return str_
 
     @staticmethod
-    def from_pandas(dataf: pd.DataFrame, tagged: list = [], shapes: dict = {}):
-        return STR.from_dict(pd.Series(dataf.label.values, index=dataf.id).to_dict(), tagged, shapes)
+    def from_pandas(dataf: pd.DataFrame, tagged: list = []):
+        return STR.from_dict(pd.Series(dataf.label.values, index=dataf.id).to_dict(), tagged)
 
     def add_spatial_entity(self, id, label=None, v=True):
         """
diff --git a/strpython/nlp/disambiguator/geodict_gaurav.py b/strpython/nlp/disambiguator/geodict_gaurav.py
index f6ae42277bb7e9bd5e6c553799e76d8db7a999de..bbfb37b8b7b4229a94a26caa5036c7df94503a45 100644
--- a/strpython/nlp/disambiguator/geodict_gaurav.py
+++ b/strpython/nlp/disambiguator/geodict_gaurav.py
@@ -86,9 +86,9 @@ class GauravGeodict(Disambiguator):
         fixed_entities = {}
         ambiguous_entities = {}
         for en in se_:
-            request = get_by_label(en, lang)
+            request = get_top_candidate(en, lang)
             if len(request) == 0:
-                request = get_by_alias(en, lang)
+                request = n_label_similar(en, lang)
 
             if len(request) > 1:
                 ambiguous_entities[en] = [r["_source"] for r in request]
diff --git a/strpython/nlp/disambiguator/models/bigram.py b/strpython/nlp/disambiguator/models/bigram.py
index f45ba97b13382fa7cc7c7bccc421732284fba791..9441041fc75f5377532d2339c5544d7350c0cf8d 100644
--- a/strpython/nlp/disambiguator/models/bigram.py
+++ b/strpython/nlp/disambiguator/models/bigram.py
@@ -1,4 +1,6 @@
 # coding = utf-8
+from strpython.helpers.geodict_helpers import get_data
+
 
 class BigramModel:
     def __init__(self,freq={},count={}):
@@ -21,7 +23,7 @@ class BigramModel:
         self.count_associated[uri]+=1
 
     def get_coocurence_probability(self, pr1, *args):
-        if len(args) <2:
+        if len(args) < 2:
             print("Only one URI indicated")
             return 0.
         res_=1.
@@ -34,10 +36,12 @@ class BigramModel:
         nna=0.00000001
         if  uri1 in self.cooc_freq:
             if  uri2 in self.cooc_freq[uri1]:
-                return (self.cooc_freq[uri1][uri2] / self.count_associated[uri1])+pr1
+                return self.cooc_freq[uri1][uri2]
+                #return (self.cooc_freq[uri1][uri2] / self.count_associated[uri1])+pr1
         elif uri2 in self.cooc_freq:
             if uri1 in self.cooc_freq[uri2]:
-                return (self.cooc_freq[uri2][uri1] / self.count_associated[uri1])+pr1
+                return self.cooc_freq[uri2][uri1]
+                #return (self.cooc_freq[uri2][uri1] / self.count_associated[uri1])+pr1
         return nna
 
 
diff --git a/strpython/nlp/disambiguator/wikipedia_cooc.py b/strpython/nlp/disambiguator/wikipedia_cooc.py
index 56ec7cd83f97971a9d392f74151eb4dc37c0f047..9d605d3af58ca54e40af2d4b71818600659d02cc 100644
--- a/strpython/nlp/disambiguator/wikipedia_cooc.py
+++ b/strpython/nlp/disambiguator/wikipedia_cooc.py
@@ -5,7 +5,7 @@ from .disambiguator import Disambiguator
 from .models.bigram import BigramModel
 import pickle
 from ...config.configuration import config
-from ...helpers.geodict_helpers import get_data,get_most_common_id_v3,get_top_candidate
+from ...helpers.geodict_helpers import *
 from .most_common import stop_words,common_words
 import networkx as nx
 
@@ -14,7 +14,7 @@ def read_pickle(fn):
 
 class WikipediaDisambiguator(Disambiguator):
 
-    def __init__(self,measure="centrality"):
+    def __init__(self,measure="degree"):
         Disambiguator.__init__(self)
         # Load model
         self.model=BigramModel(read_pickle(config.wiki_cooc_dis.cooc_freq),read_pickle(config.wiki_cooc_dis.count))
@@ -53,7 +53,16 @@ class WikipediaDisambiguator(Disambiguator):
         group_candidate = {} #candidates per toponym
 
         for e in spat_en:
-            cand = get_top_candidate(e, lang,4)
+            cand = get_top_candidate(e, lang, 5)#get_top_candidate(e, lang,4)
+            if cand[0] == None:
+                cand=[]
+            if not cand:
+                cand=n_label_similar(e,lang,5)
+                if isinstance(cand,pd.DataFrame):
+                    cand = cand["id"].values
+                else:
+                    cand=[]
+
             group_candidate[e] = cand
             betw_cand[e]=cand
             for n in cand:
@@ -91,13 +100,14 @@ class WikipediaDisambiguator(Disambiguator):
         #Take the candidates with the highest degree weighted
         for gr in group_candidate:
             try:
+
                 if self.measure == "degree":
                     selected[gr] = max(group_candidate[gr], key=lambda x: g.degree(x, weight='weight'))
                 elif self.measure == "centrality":
                     selected[gr] = max(group_candidate[gr], key=lambda x: nx.closeness_centrality(g, x, distance="weight"))
                 else:# degree by default
                     selected[gr] = max(group_candidate[gr], key=lambda x: g.degree(x, weight='weight'))
-
+                #print(1)
             except:
                 selected[gr]=get_most_common_id_v3(gr,lang)[0]
         return selected