From fd045e4c18e9f445121a97880eda3f7bec23b86c Mon Sep 17 00:00:00 2001 From: Fize Jacques <jacques.fize@cirad.fr> Date: Wed, 5 Sep 2018 08:11:48 +0200 Subject: [PATCH] Reorder files, debug geodict helpers, add disambiguation module + shell script, cleanup str models, clean wikicooc disambiguation, and minor changes --- .../padiweb_disambiguation/data_lang.json | 1 + .../database_graph_viewer.db | Bin .../database_graph_viewerV1.db | Bin .../database_graph_viewerv2.db | Bin .../graph_exp_july_19/selected.json | 0 .../graph_exp_may_25/selected.json | 0 eval_disambiguation.py | 69 + generate_data_csv.py | 11 +- notebooks/Eval.ipynb | 2897 +---------------- notebooks/EvalDesambiguisationPADIWEB.ipynb | 219 +- run_test_disambiguisation.sh | 12 + strpython/eval/disambiguation.py | 88 + strpython/helpers/geodict_helpers.py | 86 +- strpython/models/str.py | 8 +- strpython/nlp/disambiguator/geodict_gaurav.py | 4 +- strpython/nlp/disambiguator/models/bigram.py | 10 +- strpython/nlp/disambiguator/wikipedia_cooc.py | 18 +- 17 files changed, 378 insertions(+), 3045 deletions(-) create mode 100644 data/disambiguation_data/padiweb_disambiguation/data_lang.json rename data/{ => graph_data}/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db (100%) rename data/{ => graph_data}/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db (100%) rename data/{ => graph_data}/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db (100%) rename data/{ => graph_data}/graph_exp_july_19/selected.json (100%) rename data/{ => graph_data}/graph_exp_may_25/selected.json (100%) create mode 100644 eval_disambiguation.py create mode 100755 run_test_disambiguisation.sh create mode 100644 strpython/eval/disambiguation.py diff --git a/data/disambiguation_data/padiweb_disambiguation/data_lang.json b/data/disambiguation_data/padiweb_disambiguation/data_lang.json new file mode 100644 index 0000000..6298176 --- /dev/null +++ b/data/disambiguation_data/padiweb_disambiguation/data_lang.json @@ -0,0 +1 @@ +{"289": "en", "504": "en", "262": "en", "276": "en", "510": "tl", "29": "en", "15": "en", "114": "en", "100": "en", "128": "en", "470": "en", "316": "en", "302": "en", "464": "en", "458": "en", "459": "en", "303": "en", "465": "en", "471": "en", "317": "en", "129": "en", "101": "en", "115": "en", "14": "en", "28": "en", "277": "en", "511": "en", "505": "en", "263": "en", "288": "en", "513": "en", "275": "en", "261": "en", "507": "en", "249": "en", "16": "en", "103": "en", "117": "en", "498": "en", "467": "en", "301": "en", "315": "en", "473": "en", "329": "en", "328": "en", "314": "en", "472": "en", "466": "en", "300": "en", "499": "en", "116": "en", "102": "en", "17": "en", "248": "en", "260": "en", "506": "en", "512": "en", "274": "en", "258": "en", "270": "en", "516": "en", "502": "en", "264": "en", "13": "en", "106": "en", "112": "en", "489": "en", "338": "ro", "304": "en", "462": "en", "476": "en", "310": "en", "477": "en", "311": "en", "305": "ro", "463": "en", "339": "en", "488": "en", "113": "en", "107": "en", "12": "en", "503": "en", "265": "en", "271": "en", "517": "en", "259": "en", "298": "en", "529": "en", "267": "en", "501": "en", "515": "en", "273": "en", "10": "en", "38": "en", "139": "en", "111": "en", "105": "en", "449": "en", "313": "en", "475": "en", "461": "en", "307": "en", "460": "en", "306": "en", "312": "en", "474": "en", "448": "en", "104": "en", "110": "en", "138": "en", "39": "en", "11": "en", "514": "en", "272": "en", "266": "en", "500": "en", "528": "en", "299": "en", "201": "en", "215": "en", "229": "en", "76": "en", "188": "en", "62": "en", "89": "en", "177": "en", "163": "en", "375": "en", "413": "en", "407": "en", "361": "en", "349": "en", "348": "en", "406": "en", "360": "en", "374": "en", "412": "en", "162": "en", "88": "en", "176": "en", "63": "en", "77": "en", "189": "en", "228": "en", "214": "en", "200": "en", "216": "en", "202": "en", "49": "en", "61": "en", "75": "en", "160": "en", "174": "en", "148": "en", "389": "en", "362": "en", "404": "en", "410": "en", "376": "en", "438": "en", "439": "en", "411": "en", "377": "en", "363": "en", "405": "en", "388": "en", "149": "en", "175": "en", "161": "en", "74": "en", "60": "en", "48": "en", "203": "en", "217": "en", "213": "en", "207": "en", "64": "tl", "70": "en", "58": "en", "159": "en", "165": "en", "171": "en", "398": "en", "429": "en", "401": "en", "367": "en", "373": "en", "415": "en", "372": "en", "414": "en", "400": "en", "366": "en", "428": "en", "399": "en", "170": "en", "164": "en", "158": "en", "59": "en", "71": "en", "65": "en", "206": "en", "212": "en", "238": "en", "204": "en", "210": "en", "73": "en", "67": "en", "199": "en", "9": "en", "172": "es", "98": "en", "166": "en", "358": "en", "416": "en", "370": "en", "364": "en", "402": "en", "365": "en", "403": "en", "417": "en", "371": "en", "359": "en", "99": "en", "167": "en", "173": "es", "8": "en", "66": "en", "198": "en", "72": "en", "211": "en", "205": "en", "239": "en", "220": "en", "234": "en", "208": "en", "195": "en", "181": "en", "57": "en", "5": "en", "43": "en", "156": "en", "142": "en", "94": "en", "80": "en", "397": "en", "383": "en", "354": "en", "432": "en", "426": "en", "340": "ro", "368": "en", "369": "en", "427": "en", "341": "ro", "355": "en", "433": "en", "382": "en", "396": "en", "81": "en", "95": "en", "143": "en", "157": "en", "42": "en", "56": "en", "4": "en", "180": "en", "194": "en", "209": "en", "235": "en", "221": "en", "237": "en", "223": "en", "182": "en", "196": "en", "68": "en", "40": "en", "6": "en", "54": "en", "141": "en", "155": "en", "83": "en", "169": "en", "97": "en", "380": "en", "394": "en", "343": "en", "425": "en", "431": "en", "357": "en", "419": "en", "418": "en", "430": "en", "356": "en", "342": "ro", "424": "en", "395": "en", "381": "en", "168": "en", "96": "en", "82": "en", "154": "en", "140": "en", "7": "en", "55": "en", "41": "en", "197": "en", "69": "en", "183": "en", "222": "en", "236": "en", "232": "en", "226": "en", "45": "en", "51": "en", "3": "en", "187": "en", "79": "en", "193": "en", "178": "en", "86": "en", "92": "en", "144": "en", "150": "en", "385": "en", "391": "en", "408": "en", "420": "en", "346": "ro", "352": "en", "434": "en", "353": "en", "435": "en", "421": "en", "347": "en", "409": "en", "390": "en", "384": "en", "151": "en", "145": "en", "93": "en", "179": "en", "87": "en", "192": "en", "186": "en", "78": "en", "50": "en", "2": "en", "44": "en", "227": "en", "233": "en", "219": "en", "225": "en", "231": "en", "0": "en", "52": "en", "46": "en", "190": "en", "184": "en", "91": "en", "85": "en", "153": "en", "147": "en", "392": "en", "386": "en", "379": "en", "437": "en", "351": "en", "345": "en", "423": "en", "344": "ro", "422": "en", "436": "en", "350": "en", "378": "en", "387": "en", "393": "en", "146": "en", "152": "en", "84": "en", "90": "en", "185": "en", "191": "en", "47": "en", "1": "en", "53": "en", "230": "en", "224": "en", "218": "en", "280": "en", "294": "en", "525": "en", "243": "en", "257": "en", "531": "en", "519": "en", "34": "en", "20": "en", "135": "en", "121": "en", "109": "en", "492": "en", "486": "en", "451": "en", "337": "en", "323": "en", "445": "en", "479": "en", "478": "en", "322": "en", "444": "en", "450": "en", "336": "en", "487": "en", "493": "en", "108": "en", "120": "en", "134": "en", "21": "en", "35": "en", "518": "en", "256": "en", "530": "en", "524": "en", "242": "en", "295": "en", "281": "en", "297": "en", "283": "en", "254": "en", "240": "en", "526": "en", "268": "en", "23": "en", "37": "en", "122": "en", "136": "en", "485": "en", "491": "en", "446": "en", "320": "en", "334": "en", "452": "en", "308": "en", "309": "ro", "335": "en", "453": "en", "447": "en", "321": "en", "490": "en", "484": "en", "137": "en", "123": "en", "36": "en", "22": "en", "269": "en", "241": "en", "527": "en", "255": "en", "282": "en", "296": "en", "292": "en", "286": "en", "279": "en", "251": "en", "523": "en", "245": "en", "26": "en", "32": "en", "127": "en", "133": "en", "480": "en", "494": "en", "319": "en", "325": "en", "443": "en", "457": "en", "331": "en", "456": "en", "330": "en", "324": "en", "442": "en", "318": "en", "495": "en", "481": "en", "132": "en", "126": "en", "33": "en", "27": "en", "522": "en", "244": "en", "250": "en", "278": "en", "287": "en", "293": "en", "285": "en", "291": "en", "508": "en", "246": "en", "520": "en", "252": "en", "31": "en", "25": "en", "19": "en", "118": "en", "130": "en", "124": "en", "497": "en", "483": "en", "468": "en", "332": "en", "454": "en", "440": "en", "326": "en", "441": "en", "327": "en", "333": "en", "455": "en", "469": "en", "482": "en", "496": "en", "125": "en", "131": "en", "119": "en", "18": "en", "24": "en", "30": "en", "253": "en", "247": "en", "521": "en", "509": "en", "290": "en", "284": "en"} \ No newline at end of file diff --git a/data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db b/data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db similarity index 100% rename from data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db rename to data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewer.db diff --git a/data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db b/data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db similarity index 100% rename from data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db rename to data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerV1.db diff --git a/data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db b/data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db similarity index 100% rename from data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db rename to data/graph_data/graph_exp_fev_18/result_eval_backup/database_graph_viewerv2.db diff --git a/data/graph_exp_july_19/selected.json b/data/graph_data/graph_exp_july_19/selected.json similarity index 100% rename from data/graph_exp_july_19/selected.json rename to data/graph_data/graph_exp_july_19/selected.json diff --git a/data/graph_exp_may_25/selected.json b/data/graph_data/graph_exp_may_25/selected.json similarity index 100% rename from data/graph_exp_may_25/selected.json rename to data/graph_data/graph_exp_may_25/selected.json diff --git a/eval_disambiguation.py b/eval_disambiguation.py new file mode 100644 index 0000000..0a719c3 --- /dev/null +++ b/eval_disambiguation.py @@ -0,0 +1,69 @@ +# coding = utf-8 + +import argparse +import sys +import numpy as np +from numpy import inf +import glob,re,sys,os,json +import pandas as pd +from strpython.eval.disambiguation import * +import logging +for _ in ("boto", "elasticsearch", "urllib3"): + logging.getLogger(_).setLevel(logging.CRITICAL) + + +parser= argparse.ArgumentParser() + +parser.add_argument("corpus_name",default="padiweb",help="Corpus you want to evaluate",choices=["padiweb","agromada"]) +parser.add_argument("measure",default="accuracy",help="Performance measure you want to compute",choices=["accuracy","accuracy_k","mean_distance_error"]) +parser.add_argument("-k",type=float,default=1,help="K value for the accuracy@k computation") + +args= parser.parse_args() + +if args.corpus_name == "padiweb": + corpus_dir="data/disambiguation_data/padiweb_disambiguation" + data_lang = json.load(open("data/disambiguation_data/padiweb_disambiguation/data_lang.json")) + +else: + corpus_dir = "data/disambiguation_data/mada_disambiguisation" + data_lang = json.load(open("/Users/jacquesfize/LOD_DATASETS/raw_bvlac/associated_lang.json")) + +data_lang = {int(k): v for k, v in data_lang.items()} + +corpus_files=glob.glob("{0}/*.csv".format(corpus_dir)) + +acc_MC,acc_GEO,acc_wiki=[],[],[] +i=0 + +for fn in corpus_files: + i+=1 + id_=int(re.findall(r"\d+",fn)[-1]) + #sys.stdout.write("\r{0}/{1}".format(i,len(fns))) + try: + df=pd.read_csv(fn) + lang=data_lang[id_] + acc_MC.append(efficiencyMostCommon(df,lang,args.measure,args.k)) + acc_GEO.append(efficiencyGeodict(df,lang,args.measure,args.k)) + acc_wiki.append(efficiencyWiki(df,lang,args.measure,args.k)) + except Exception as e: + print(e) + acc_GEO=np.array(acc_GEO) + acc_GEO[acc_GEO == inf] = 0 + acc_GEO=acc_GEO.tolist() + sys.stdout.write("\r{0}/{1} -- {5}Wiki : {2} |Â {5}MC : {3} | {5}GEO : {4}".format( + i, + len(corpus_files), + np.mean(np.nan_to_num(acc_wiki)), + np.mean(np.nan_to_num(acc_MC)), + np.mean(np.nan_to_num(acc_GEO)), + args.measure + ) + ) + + +# In[63]: + + +print("\naccGEO",np.mean(np.nan_to_num(acc_GEO))) +print("acc_MC",np.mean(np.nan_to_num(acc_MC))) +print("accWiki",np.mean(np.nan_to_num(acc_wiki))) diff --git a/generate_data_csv.py b/generate_data_csv.py index 28127de..dfcc9ee 100644 --- a/generate_data_csv.py +++ b/generate_data_csv.py @@ -5,7 +5,6 @@ import argparse,glob, string,time,re from progressbar import ProgressBar, Timer, Bar, ETA, Counter -from strpython.helpers.boundary import get_all_shapes from strpython.models.str import STR from strpython.nlp.disambiguator.geodict_gaurav import * from strpython.pipeline import * @@ -62,10 +61,13 @@ print("Parameters entered : ",args) if os.path.exists(args.csv_input_dir): files_glob= glob.glob(args.csv_input_dir+"/*.csv") +if not files_glob: + files_glob = glob.glob(args.csv_input_dir + "/*.txt") else: exit() - +if not os.path.exists(args.graphs_output_dir): + os.makedirs(args.graphs_output_dir) start = time.time() associated_es={} @@ -92,8 +94,7 @@ for k,v in associated_es.items(): for k2 in v: all_es.add(k2) -#logging.info("Get All Shapes from Database for all ES") -#all_shapes=get_all_shapes(list(all_es)) + i=0 def foo_(x): @@ -116,7 +117,7 @@ with ProgressBar(max_value=len(files_glob), # print("BUG",df) df["label"]=df.GID.apply(foo_) df = df.rename(columns={"GID": "id"}) - str_=STR.from_pandas(df,[],all_shapes).build() + str_=STR.from_pandas(df,[]).build() nx.write_gexf(str_, args.graphs_output_dir + "/{0}.gexf".format(id_)) i+=1 pg.update(i) diff --git a/notebooks/Eval.ipynb b/notebooks/Eval.ipynb index f5096da..d0a24d7 100644 --- a/notebooks/Eval.ipynb +++ b/notebooks/Eval.ipynb @@ -22,13 +22,10 @@ "data": { "text/html": [ "<script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window.Plotly) {{require(['plotly'],function(plotly) {window.Plotly=plotly;});}}</script>" - ], - "text/vnd.plotly.v1+html": [ - "<script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window.Plotly) {{require(['plotly'],function(plotly) {window.Plotly=plotly;});}}</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" }, { "name": "stdout", @@ -78204,560 +78201,12 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "marker": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8571428571428571, - 0.8571428571428571, - 1, - 0.8571428571428571, - 0.8571428571428571, - 0.9047619047619048, - 1, - 0.19047619047619047, - 0.42857142857142855, - 0.9523809523809523, - 0.85, - 0.5789473684210527, - 0.5263157894736842, - 0.9047619047619048, - 0.8571428571428571, - 0.47368421052631576, - 0.8095238095238095, - 0.5789473684210527, - 0.9047619047619048, - 0.9047619047619048, - 0.6, - 0.9047619047619048, - 0.9047619047619048, - 0.9047619047619048, - 0.14285714285714285, - 1, - 0.3, - 0.7619047619047619, - 0.14285714285714285, - 0.5789473684210527, - 0.7, - 0.9523809523809523, - 0.8571428571428571, - 0.6470588235294118, - 0.7142857142857143, - 1, - 0.9047619047619048, - 0.9047619047619048, - 0.42857142857142855, - 0.7368421052631579, - 1, - 0.5789473684210527, - 0.21052631578947367, - 0.35294117647058826, - 0.8095238095238095, - 0.8095238095238095, - 0.47619047619047616, - 0.9047619047619048, - 0.42857142857142855, - 0.7894736842105263 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)", - "width": 4 - }, - "name": "c1_val Pareto Frontier", - "type": "scatter", - "x": [ - 426, - 499, - 527 - ], - "y": [ - 1, - 0.9047619047619048, - 0.7894736842105263 - ] - }, - { - "marker": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c2_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8571428571428571, - 0.5238095238095238, - 1, - 0.09523809523809523, - 0.7142857142857143, - 0.38095238095238093, - 0.7142857142857143, - 0.3333333333333333, - 0.42857142857142855, - 0.9523809523809523, - 0.8, - 0.5789473684210527, - 0.5263157894736842, - 0.9047619047619048, - 0.7142857142857143, - 0.47368421052631576, - 0.8095238095238095, - 0.5789473684210527, - 0.9047619047619048, - 0.9047619047619048, - 0.5, - 0.8095238095238095, - 0.9047619047619048, - 0.9047619047619048, - 0.14285714285714285, - 0.8571428571428571, - 0.3, - 0.2857142857142857, - 0.14285714285714285, - 0.5789473684210527, - 0.4, - 0.9047619047619048, - 0.8571428571428571, - 0.29411764705882354, - 0.47619047619047616, - 1, - 0.5714285714285714, - 0.9047619047619048, - 0.42857142857142855, - 0.7368421052631579, - 0.8095238095238095, - 0.5789473684210527, - 0.42105263157894735, - 0.5294117647058824, - 0.7619047619047619, - 0.2857142857142857, - 0.42857142857142855, - 0.8095238095238095, - 0.42857142857142855, - 0.47368421052631576 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)", - "width": 4 - }, - "name": "c2_val Pareto Frontier", - "type": "scatter", - "x": [ - 346, - 359, - 499, - 527 - ], - "y": [ - 1, - 0.9047619047619048, - 0.8095238095238095, - 0.47368421052631576 - ] - }, - { - "marker": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c3_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8571428571428571, - 0, - 1, - 0, - 0.047619047619047616, - 0, - 0.14285714285714285, - 0.3333333333333333, - 0, - 0.8571428571428571, - 0.3, - 0.5789473684210527, - 0.3157894736842105, - 0.5714285714285714, - 0.47619047619047616, - 0, - 0, - 0.5789473684210527, - 0.6190476190476191, - 0.5238095238095238, - 0.55, - 0.5714285714285714, - 0.7619047619047619, - 0.6666666666666666, - 0, - 0.8095238095238095, - 0.3, - 0.047619047619047616, - 0.14285714285714285, - 0.5789473684210527, - 0.2, - 0.3333333333333333, - 0.19047619047619047, - 0.6470588235294118, - 0.14285714285714285, - 0.38095238095238093, - 0, - 0, - 0.14285714285714285, - 0.6842105263157895, - 0.5714285714285714, - 0.5789473684210527, - 0.21052631578947367, - 0.35294117647058826, - 0.3333333333333333, - 0.2857142857142857, - 0.42857142857142855, - 0.3333333333333333, - 0, - 0.3157894736842105 - ] - }, - { - "line": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)", - "width": 4 - }, - "name": "c3_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 92, - 236, - 424, - 429, - 476, - 499, - 527 - ], - "y": [ - 1, - 0.8571428571428571, - 0.8095238095238095, - 0.6842105263157895, - 0.5789473684210527, - 0.42857142857142855, - 0.3333333333333333, - 0.3157894736842105 - ] - }, - { - "marker": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)" - }, - "mode": "markers", - "name": "c4_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8571428571428571, - 0, - 0.9523809523809523, - 0, - 0.42857142857142855, - 0, - 0.2857142857142857, - 0.19047619047619047, - 0, - 0.9047619047619048, - 0, - 0.5789473684210527, - 0.3157894736842105, - 0.5714285714285714, - 0, - 0, - 0.42857142857142855, - 0.5789473684210527, - 0.2857142857142857, - 0.47619047619047616, - 0.05, - 0.5238095238095238, - 0, - 0.3333333333333333, - 0, - 0.8095238095238095, - 0.3, - 0.09523809523809523, - 0.14285714285714285, - 0.5789473684210527, - 0.15, - 0.38095238095238093, - 0, - 0.29411764705882354, - 0, - 0.7142857142857143, - 0.09523809523809523, - 0.23809523809523808, - 0.38095238095238093, - 0.6842105263157895, - 0.5238095238095238, - 0.5789473684210527, - 0.21052631578947367, - 0.29411764705882354, - 0.3333333333333333, - 0.2857142857142857, - 0.2857142857142857, - 0.38095238095238093, - 0, - 0.5263157894736842 - ] - }, - { - "line": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)", - "width": 4 - }, - "name": "c4_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 92, - 236, - 346, - 424, - 429, - 527 - ], - "y": [ - 0.9523809523809523, - 0.9047619047619048, - 0.8095238095238095, - 0.7142857142857143, - 0.6842105263157895, - 0.5789473684210527, - 0.5263157894736842 - ] - } - ], - "layout": {} - }, "text/html": [ "<div id=\"5d7747b6-3632-4162-86d6-602766bb766c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"5d7747b6-3632-4162-86d6-602766bb766c\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.8571428571428571, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.42857142857142855, 0.9523809523809523, 0.85, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.8571428571428571, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9047619047619048, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 1.0, 0.3, 0.7619047619047619, 0.14285714285714285, 0.5789473684210527, 0.7, 0.9523809523809523, 0.8571428571428571, 0.6470588235294118, 0.7142857142857143, 1.0, 0.9047619047619048, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 1.0, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.8095238095238095, 0.8095238095238095, 0.47619047619047616, 0.9047619047619048, 0.42857142857142855, 0.7894736842105263], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7894736842105263], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.5238095238095238, 1.0, 0.09523809523809523, 0.7142857142857143, 0.38095238095238093, 0.7142857142857143, 0.3333333333333333, 0.42857142857142855, 0.9523809523809523, 0.8, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.7142857142857143, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.5, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 0.8571428571428571, 0.3, 0.2857142857142857, 0.14285714285714285, 0.5789473684210527, 0.4, 0.9047619047619048, 0.8571428571428571, 0.29411764705882354, 0.47619047619047616, 1.0, 0.5714285714285714, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 0.8095238095238095, 0.5789473684210527, 0.42105263157894735, 0.5294117647058824, 0.7619047619047619, 0.2857142857142857, 0.42857142857142855, 0.8095238095238095, 0.42857142857142855, 0.47368421052631576], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.47368421052631576], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 1.0, 0.0, 0.047619047619047616, 0.0, 0.14285714285714285, 0.3333333333333333, 0.0, 0.8571428571428571, 0.3, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.47619047619047616, 0.0, 0.0, 0.5789473684210527, 0.6190476190476191, 0.5238095238095238, 0.55, 0.5714285714285714, 0.7619047619047619, 0.6666666666666666, 0.0, 0.8095238095238095, 0.3, 0.047619047619047616, 0.14285714285714285, 0.5789473684210527, 0.2, 0.3333333333333333, 0.19047619047619047, 0.6470588235294118, 0.14285714285714285, 0.38095238095238093, 0.0, 0.0, 0.14285714285714285, 0.6842105263157895, 0.5714285714285714, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.3333333333333333, 0.2857142857142857, 0.42857142857142855, 0.3333333333333333, 0.0, 0.3157894736842105], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 424.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.8095238095238095, 0.6842105263157895, 0.5789473684210527, 0.42857142857142855, 0.3333333333333333, 0.3157894736842105], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 0.9523809523809523, 0.0, 0.42857142857142855, 0.0, 0.2857142857142857, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.0, 0.0, 0.42857142857142855, 0.5789473684210527, 0.2857142857142857, 0.47619047619047616, 0.05, 0.5238095238095238, 0.0, 0.3333333333333333, 0.0, 0.8095238095238095, 0.3, 0.09523809523809523, 0.14285714285714285, 0.5789473684210527, 0.15, 0.38095238095238093, 0.0, 0.29411764705882354, 0.0, 0.7142857142857143, 0.09523809523809523, 0.23809523809523808, 0.38095238095238093, 0.6842105263157895, 0.5238095238095238, 0.5789473684210527, 0.21052631578947367, 0.29411764705882354, 0.3333333333333333, 0.2857142857142857, 0.2857142857142857, 0.38095238095238093, 0.0, 0.5263157894736842], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 424.0, 429.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.6842105263157895, 0.5789473684210527, 0.5263157894736842], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" - ], - "text/vnd.plotly.v1+html": [ - "<div id=\"5d7747b6-3632-4162-86d6-602766bb766c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"5d7747b6-3632-4162-86d6-602766bb766c\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.8571428571428571, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.42857142857142855, 0.9523809523809523, 0.85, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.8571428571428571, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9047619047619048, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 1.0, 0.3, 0.7619047619047619, 0.14285714285714285, 0.5789473684210527, 0.7, 0.9523809523809523, 0.8571428571428571, 0.6470588235294118, 0.7142857142857143, 1.0, 0.9047619047619048, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 1.0, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.8095238095238095, 0.8095238095238095, 0.47619047619047616, 0.9047619047619048, 0.42857142857142855, 0.7894736842105263], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7894736842105263], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.5238095238095238, 1.0, 0.09523809523809523, 0.7142857142857143, 0.38095238095238093, 0.7142857142857143, 0.3333333333333333, 0.42857142857142855, 0.9523809523809523, 0.8, 0.5789473684210527, 0.5263157894736842, 0.9047619047619048, 0.7142857142857143, 0.47368421052631576, 0.8095238095238095, 0.5789473684210527, 0.9047619047619048, 0.9047619047619048, 0.5, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.14285714285714285, 0.8571428571428571, 0.3, 0.2857142857142857, 0.14285714285714285, 0.5789473684210527, 0.4, 0.9047619047619048, 0.8571428571428571, 0.29411764705882354, 0.47619047619047616, 1.0, 0.5714285714285714, 0.9047619047619048, 0.42857142857142855, 0.7368421052631579, 0.8095238095238095, 0.5789473684210527, 0.42105263157894735, 0.5294117647058824, 0.7619047619047619, 0.2857142857142857, 0.42857142857142855, 0.8095238095238095, 0.42857142857142855, 0.47368421052631576], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.47368421052631576], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 1.0, 0.0, 0.047619047619047616, 0.0, 0.14285714285714285, 0.3333333333333333, 0.0, 0.8571428571428571, 0.3, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.47619047619047616, 0.0, 0.0, 0.5789473684210527, 0.6190476190476191, 0.5238095238095238, 0.55, 0.5714285714285714, 0.7619047619047619, 0.6666666666666666, 0.0, 0.8095238095238095, 0.3, 0.047619047619047616, 0.14285714285714285, 0.5789473684210527, 0.2, 0.3333333333333333, 0.19047619047619047, 0.6470588235294118, 0.14285714285714285, 0.38095238095238093, 0.0, 0.0, 0.14285714285714285, 0.6842105263157895, 0.5714285714285714, 0.5789473684210527, 0.21052631578947367, 0.35294117647058826, 0.3333333333333333, 0.2857142857142857, 0.42857142857142855, 0.3333333333333333, 0.0, 0.3157894736842105], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 424.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.8095238095238095, 0.6842105263157895, 0.5789473684210527, 0.42857142857142855, 0.3333333333333333, 0.3157894736842105], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 0.0, 0.9523809523809523, 0.0, 0.42857142857142855, 0.0, 0.2857142857142857, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.5789473684210527, 0.3157894736842105, 0.5714285714285714, 0.0, 0.0, 0.42857142857142855, 0.5789473684210527, 0.2857142857142857, 0.47619047619047616, 0.05, 0.5238095238095238, 0.0, 0.3333333333333333, 0.0, 0.8095238095238095, 0.3, 0.09523809523809523, 0.14285714285714285, 0.5789473684210527, 0.15, 0.38095238095238093, 0.0, 0.29411764705882354, 0.0, 0.7142857142857143, 0.09523809523809523, 0.23809523809523808, 0.38095238095238093, 0.6842105263157895, 0.5238095238095238, 0.5789473684210527, 0.21052631578947367, 0.29411764705882354, 0.3333333333333333, 0.2857142857142857, 0.2857142857142857, 0.38095238095238093, 0.0, 0.5263157894736842], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 424.0, 429.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.6842105263157895, 0.5789473684210527, 0.5263157894736842], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -78789,552 +78238,12 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "marker": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.7894736842105263, - 0.9523809523809523, - 1, - 0.8571428571428571, - 0.8571428571428571, - 0.9047619047619048, - 1, - 0.19047619047619047, - 0.6666666666666666, - 0.9047619047619048, - 0.9523809523809523, - 0.7, - 0.7368421052631579, - 0.9523809523809523, - 0.8571428571428571, - 0.5714285714285714, - 0.8, - 0.7, - 0.9523809523809523, - 0.9047619047619048, - 0.7, - 0.9523809523809523, - 0.8571428571428571, - 0.9047619047619048, - 0.19047619047619047, - 0.9047619047619048, - 0.3, - 0.8571428571428571, - 0.19047619047619047, - 0.7, - 0.7619047619047619, - 1, - 0.9523809523809523, - 0.7894736842105263, - 0.7142857142857143, - 0.9523809523809523, - 0.9523809523809523, - 0.9047619047619048, - 0.5714285714285714, - 0.7368421052631579, - 1, - 0.7, - 0.25, - 0.75, - 0.8571428571428571, - 0.7368421052631579, - 0.5714285714285714, - 1, - 0.38095238095238093, - 1 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)", - "width": 4 - }, - "name": "c1_val Pareto Frontier", - "type": "scatter", - "x": [ - 527 - ], - "y": [ - 1 - ] - }, - { - "marker": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c2_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.7894736842105263, - 0.6190476190476191, - 1, - 0.14285714285714285, - 0.7619047619047619, - 0.5714285714285714, - 0.8095238095238095, - 0.42857142857142855, - 0.7142857142857143, - 0.9047619047619048, - 0.9047619047619048, - 0.7, - 0.7894736842105263, - 0.9523809523809523, - 0.7619047619047619, - 0.5714285714285714, - 0.75, - 0.7, - 0.9047619047619048, - 0.9047619047619048, - 0.6, - 0.9523809523809523, - 0.8571428571428571, - 0.9047619047619048, - 0.23809523809523808, - 0.8571428571428571, - 0.3, - 0.38095238095238093, - 0.38095238095238093, - 0.7, - 0.38095238095238093, - 0.9523809523809523, - 0.9523809523809523, - 0.3684210526315789, - 0.5238095238095238, - 0.9047619047619048, - 0.7619047619047619, - 0.9523809523809523, - 0.5714285714285714, - 0.7368421052631579, - 0.8095238095238095, - 0.7, - 0.45, - 0.8, - 0.7619047619047619, - 0.3157894736842105, - 0.5238095238095238, - 0.9047619047619048, - 0.5714285714285714, - 0.7142857142857143 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)", - "width": 4 - }, - "name": "c2_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 359, - 499, - 527 - ], - "y": [ - 1, - 0.9523809523809523, - 0.9047619047619048, - 0.7142857142857143 - ] - }, - { - "marker": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c3_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.7894736842105263, - 0, - 1, - 0.047619047619047616, - 0.047619047619047616, - 0, - 0.047619047619047616, - 0.42857142857142855, - 0.047619047619047616, - 0.9047619047619048, - 0.3333333333333333, - 0.7, - 0.5263157894736842, - 0.5238095238095238, - 0.5238095238095238, - 0, - 0.25, - 0.7, - 0.6190476190476191, - 0.38095238095238093, - 0.6, - 0.9047619047619048, - 0.7142857142857143, - 0.7142857142857143, - 0, - 0.8095238095238095, - 0.3, - 0.14285714285714285, - 0.19047619047619047, - 0.7, - 0.2857142857142857, - 0.3333333333333333, - 0.2857142857142857, - 0.7894736842105263, - 0.19047619047619047, - 0.38095238095238093, - 0, - 0, - 0.19047619047619047, - 0.631578947368421, - 0.5238095238095238, - 0.7, - 0.25, - 0.65, - 0.3333333333333333, - 0.3157894736842105, - 0.5238095238095238, - 0.38095238095238093, - 0, - 0.6666666666666666 - ] - }, - { - "line": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)", - "width": 4 - }, - "name": "c3_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 211, - 236, - 304, - 429, - 527 - ], - "y": [ - 1, - 0.9047619047619048, - 0.8095238095238095, - 0.7894736842105263, - 0.7, - 0.6666666666666666 - ] - }, - { - "marker": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)" - }, - "mode": "markers", - "name": "c4_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.7894736842105263, - 0, - 0.9523809523809523, - 0, - 0.5714285714285714, - 0, - 0.19047619047619047, - 0.19047619047619047, - 0, - 0.9047619047619048, - 0, - 0.7, - 0.5263157894736842, - 0.42857142857142855, - 0, - 0, - 0.2, - 0.7, - 0.23809523809523808, - 0.5238095238095238, - 0.1, - 0.2857142857142857, - 0.14285714285714285, - 0.42857142857142855, - 0, - 0.8095238095238095, - 0.3, - 0.19047619047619047, - 0.19047619047619047, - 0.7, - 0.19047619047619047, - 0.38095238095238093, - 0, - 0.3157894736842105, - 0, - 0.7142857142857143, - 0.047619047619047616, - 0.23809523809523808, - 0.5238095238095238, - 0.631578947368421, - 0.5238095238095238, - 0.7, - 0.25, - 0.65, - 0.3333333333333333, - 0.3157894736842105, - 0.3333333333333333, - 0.5714285714285714, - 0.19047619047619047, - 0.5714285714285714 - ] - }, - { - "line": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)", - "width": 4 - }, - "name": "c4_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 92, - 236, - 346, - 429, - 439, - 527 - ], - "y": [ - 0.9523809523809523, - 0.9047619047619048, - 0.8095238095238095, - 0.7142857142857143, - 0.7, - 0.65, - 0.5714285714285714 - ] - } - ], - "layout": {} - }, "text/html": [ "<div id=\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.9523809523809523, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.6666666666666666, 0.9047619047619048, 0.9523809523809523, 0.7, 0.7368421052631579, 0.9523809523809523, 0.8571428571428571, 0.5714285714285714, 0.8, 0.7, 0.9523809523809523, 0.9047619047619048, 0.7, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.19047619047619047, 0.9047619047619048, 0.3, 0.8571428571428571, 0.19047619047619047, 0.7, 0.7619047619047619, 1.0, 0.9523809523809523, 0.7894736842105263, 0.7142857142857143, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.5714285714285714, 0.7368421052631579, 1.0, 0.7, 0.25, 0.75, 0.8571428571428571, 0.7368421052631579, 0.5714285714285714, 1.0, 0.38095238095238093, 1.0], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [527.0], \"y\": [1.0], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.6190476190476191, 1.0, 0.14285714285714285, 0.7619047619047619, 0.5714285714285714, 0.8095238095238095, 0.42857142857142855, 0.7142857142857143, 0.9047619047619048, 0.9047619047619048, 0.7, 0.7894736842105263, 0.9523809523809523, 0.7619047619047619, 0.5714285714285714, 0.75, 0.7, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.23809523809523808, 0.8571428571428571, 0.3, 0.38095238095238093, 0.38095238095238093, 0.7, 0.38095238095238093, 0.9523809523809523, 0.9523809523809523, 0.3684210526315789, 0.5238095238095238, 0.9047619047619048, 0.7619047619047619, 0.9523809523809523, 0.5714285714285714, 0.7368421052631579, 0.8095238095238095, 0.7, 0.45, 0.8, 0.7619047619047619, 0.3157894736842105, 0.5238095238095238, 0.9047619047619048, 0.5714285714285714, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9523809523809523, 0.9047619047619048, 0.7142857142857143], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 1.0, 0.047619047619047616, 0.047619047619047616, 0.0, 0.047619047619047616, 0.42857142857142855, 0.047619047619047616, 0.9047619047619048, 0.3333333333333333, 0.7, 0.5263157894736842, 0.5238095238095238, 0.5238095238095238, 0.0, 0.25, 0.7, 0.6190476190476191, 0.38095238095238093, 0.6, 0.9047619047619048, 0.7142857142857143, 0.7142857142857143, 0.0, 0.8095238095238095, 0.3, 0.14285714285714285, 0.19047619047619047, 0.7, 0.2857142857142857, 0.3333333333333333, 0.2857142857142857, 0.7894736842105263, 0.19047619047619047, 0.38095238095238093, 0.0, 0.0, 0.19047619047619047, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.5238095238095238, 0.38095238095238093, 0.0, 0.6666666666666666], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 211.0, 236.0, 304.0, 429.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.7894736842105263, 0.7, 0.6666666666666666], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 0.9523809523809523, 0.0, 0.5714285714285714, 0.0, 0.19047619047619047, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.7, 0.5263157894736842, 0.42857142857142855, 0.0, 0.0, 0.2, 0.7, 0.23809523809523808, 0.5238095238095238, 0.1, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.0, 0.8095238095238095, 0.3, 0.19047619047619047, 0.19047619047619047, 0.7, 0.19047619047619047, 0.38095238095238093, 0.0, 0.3157894736842105, 0.0, 0.7142857142857143, 0.047619047619047616, 0.23809523809523808, 0.5238095238095238, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.3333333333333333, 0.5714285714285714, 0.19047619047619047, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 429.0, 439.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.7, 0.65, 0.5714285714285714], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" - ], - "text/vnd.plotly.v1+html": [ - "<div id=\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"65c9c8e9-3665-4516-a3e2-3f0bf19f119a\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.9523809523809523, 1.0, 0.8571428571428571, 0.8571428571428571, 0.9047619047619048, 1.0, 0.19047619047619047, 0.6666666666666666, 0.9047619047619048, 0.9523809523809523, 0.7, 0.7368421052631579, 0.9523809523809523, 0.8571428571428571, 0.5714285714285714, 0.8, 0.7, 0.9523809523809523, 0.9047619047619048, 0.7, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.19047619047619047, 0.9047619047619048, 0.3, 0.8571428571428571, 0.19047619047619047, 0.7, 0.7619047619047619, 1.0, 0.9523809523809523, 0.7894736842105263, 0.7142857142857143, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.5714285714285714, 0.7368421052631579, 1.0, 0.7, 0.25, 0.75, 0.8571428571428571, 0.7368421052631579, 0.5714285714285714, 1.0, 0.38095238095238093, 1.0], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [527.0], \"y\": [1.0], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.6190476190476191, 1.0, 0.14285714285714285, 0.7619047619047619, 0.5714285714285714, 0.8095238095238095, 0.42857142857142855, 0.7142857142857143, 0.9047619047619048, 0.9047619047619048, 0.7, 0.7894736842105263, 0.9523809523809523, 0.7619047619047619, 0.5714285714285714, 0.75, 0.7, 0.9047619047619048, 0.9047619047619048, 0.6, 0.9523809523809523, 0.8571428571428571, 0.9047619047619048, 0.23809523809523808, 0.8571428571428571, 0.3, 0.38095238095238093, 0.38095238095238093, 0.7, 0.38095238095238093, 0.9523809523809523, 0.9523809523809523, 0.3684210526315789, 0.5238095238095238, 0.9047619047619048, 0.7619047619047619, 0.9523809523809523, 0.5714285714285714, 0.7368421052631579, 0.8095238095238095, 0.7, 0.45, 0.8, 0.7619047619047619, 0.3157894736842105, 0.5238095238095238, 0.9047619047619048, 0.5714285714285714, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 359.0, 499.0, 527.0], \"y\": [1.0, 0.9523809523809523, 0.9047619047619048, 0.7142857142857143], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 1.0, 0.047619047619047616, 0.047619047619047616, 0.0, 0.047619047619047616, 0.42857142857142855, 0.047619047619047616, 0.9047619047619048, 0.3333333333333333, 0.7, 0.5263157894736842, 0.5238095238095238, 0.5238095238095238, 0.0, 0.25, 0.7, 0.6190476190476191, 0.38095238095238093, 0.6, 0.9047619047619048, 0.7142857142857143, 0.7142857142857143, 0.0, 0.8095238095238095, 0.3, 0.14285714285714285, 0.19047619047619047, 0.7, 0.2857142857142857, 0.3333333333333333, 0.2857142857142857, 0.7894736842105263, 0.19047619047619047, 0.38095238095238093, 0.0, 0.0, 0.19047619047619047, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.5238095238095238, 0.38095238095238093, 0.0, 0.6666666666666666], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 211.0, 236.0, 304.0, 429.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.8095238095238095, 0.7894736842105263, 0.7, 0.6666666666666666], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.7894736842105263, 0.0, 0.9523809523809523, 0.0, 0.5714285714285714, 0.0, 0.19047619047619047, 0.19047619047619047, 0.0, 0.9047619047619048, 0.0, 0.7, 0.5263157894736842, 0.42857142857142855, 0.0, 0.0, 0.2, 0.7, 0.23809523809523808, 0.5238095238095238, 0.1, 0.2857142857142857, 0.14285714285714285, 0.42857142857142855, 0.0, 0.8095238095238095, 0.3, 0.19047619047619047, 0.19047619047619047, 0.7, 0.19047619047619047, 0.38095238095238093, 0.0, 0.3157894736842105, 0.0, 0.7142857142857143, 0.047619047619047616, 0.23809523809523808, 0.5238095238095238, 0.631578947368421, 0.5238095238095238, 0.7, 0.25, 0.65, 0.3333333333333333, 0.3157894736842105, 0.3333333333333333, 0.5714285714285714, 0.19047619047619047, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 92.0, 236.0, 346.0, 429.0, 439.0, 527.0], \"y\": [0.9523809523809523, 0.9047619047619048, 0.8095238095238095, 0.7142857142857143, 0.7, 0.65, 0.5714285714285714], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -79361,552 +78270,12 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "marker": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.6666666666666666, - 0.9523809523809523, - 0.8571428571428571, - 1, - 1, - 0.9523809523809523, - 0.9523809523809523, - 0.14285714285714285, - 0.42857142857142855, - 0.9047619047619048, - 0.8095238095238095, - 0.38095238095238093, - 0.8095238095238095, - 0.9047619047619048, - 0, - 0.5238095238095238, - 0.6, - 0.7, - 1, - 0.9523809523809523, - 0.8571428571428571, - 0.8571428571428571, - 0.5714285714285714, - 0.9047619047619048, - 0, - 0.8823529411764706, - 0.3, - 0.42857142857142855, - 0.47368421052631576, - 0.8571428571428571, - 0.6, - 1, - 1, - 0.8571428571428571, - 0.7142857142857143, - 0.9047619047619048, - 0.7619047619047619, - 0.8095238095238095, - 0.8571428571428571, - 0.5789473684210527, - 0.9047619047619048, - 0.7, - 0.42857142857142855, - 0.7619047619047619, - 0.5714285714285714, - 0.2857142857142857, - 0.35, - 0.7619047619047619, - 0.19047619047619047, - 0.7142857142857143 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)", - "width": 4 - }, - "name": "c1_val Pareto Frontier", - "type": "scatter", - "x": [ - 300, - 426, - 499, - 527 - ], - "y": [ - 1, - 0.9047619047619048, - 0.7619047619047619, - 0.7142857142857143 - ] - }, - { - "marker": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c2_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8571428571428571, - 1, - 0.8571428571428571, - 0.9523809523809523, - 1, - 0.6666666666666666, - 0.7619047619047619, - 0.8571428571428571, - 0.8095238095238095, - 0.9047619047619048, - 0.9047619047619048, - 0.8571428571428571, - 0.9047619047619048, - 0.9047619047619048, - 0.9523809523809523, - 0.5238095238095238, - 0.65, - 0.7, - 1, - 0.9523809523809523, - 0.7142857142857143, - 0.8095238095238095, - 0.7619047619047619, - 0.9523809523809523, - 0.38095238095238093, - 0.8823529411764706, - 0.5, - 0.7142857142857143, - 0.7894736842105263, - 0.8571428571428571, - 0.5, - 1, - 0.7619047619047619, - 0.42857142857142855, - 0.6190476190476191, - 0.9523809523809523, - 0.9523809523809523, - 0.9047619047619048, - 0.8571428571428571, - 0.7894736842105263, - 0.9523809523809523, - 0.7, - 0.8571428571428571, - 0.8095238095238095, - 1, - 0.2857142857142857, - 0.7, - 0.7142857142857143, - 0.8571428571428571, - 0.5714285714285714 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)", - "width": 4 - }, - "name": "c2_val Pareto Frontier", - "type": "scatter", - "x": [ - 453, - 503, - 527 - ], - "y": [ - 1, - 0.8571428571428571, - 0.5714285714285714 - ] - }, - { - "marker": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c3_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.6666666666666666, - 0, - 0.8571428571428571, - 0.6666666666666666, - 0.047619047619047616, - 0, - 0, - 0.42857142857142855, - 0.09523809523809523, - 0.9047619047619048, - 0.19047619047619047, - 0.6190476190476191, - 0.8095238095238095, - 0.7619047619047619, - 0.38095238095238093, - 0, - 0.4, - 0.7, - 0.7142857142857143, - 0.6190476190476191, - 0.8095238095238095, - 0.6190476190476191, - 0.19047619047619047, - 0.7619047619047619, - 0, - 0.8823529411764706, - 0.3, - 0, - 0.5263157894736842, - 0.8571428571428571, - 0.2, - 0.3333333333333333, - 0.14285714285714285, - 0.7142857142857143, - 0.047619047619047616, - 0.3333333333333333, - 0, - 0, - 0.3333333333333333, - 0.5789473684210527, - 0.8095238095238095, - 0.7, - 0.42857142857142855, - 0.7142857142857143, - 0.8571428571428571, - 0.2857142857142857, - 0.55, - 0.09523809523809523, - 0.6666666666666666, - 0.5714285714285714 - ] - }, - { - "line": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)", - "width": 4 - }, - "name": "c3_val Pareto Frontier", - "type": "scatter", - "x": [ - 92, - 236, - 453, - 503, - 527 - ], - "y": [ - 0.9047619047619048, - 0.8823529411764706, - 0.8571428571428571, - 0.6666666666666666, - 0.5714285714285714 - ] - }, - { - "marker": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)" - }, - "mode": "markers", - "name": "c4_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.6666666666666666, - 0, - 0.7619047619047619, - 0.23809523809523808, - 0.8095238095238095, - 0, - 0.23809523809523808, - 0.14285714285714285, - 0.047619047619047616, - 0.9047619047619048, - 0, - 0.38095238095238093, - 0.42857142857142855, - 0.14285714285714285, - 0, - 0, - 0.15, - 0.7, - 0.23809523809523808, - 0.5714285714285714, - 0.23809523809523808, - 0.3333333333333333, - 0, - 0.47619047619047616, - 0, - 0.8823529411764706, - 0.3, - 0.047619047619047616, - 0.47368421052631576, - 0.8571428571428571, - 0.05, - 0.3333333333333333, - 0.09523809523809523, - 0.09523809523809523, - 0, - 0.7142857142857143, - 0.09523809523809523, - 0.14285714285714285, - 0.8571428571428571, - 0.5789473684210527, - 0.42857142857142855, - 0.7, - 0.42857142857142855, - 0.7619047619047619, - 0.6190476190476191, - 0.2857142857142857, - 0.35, - 0.14285714285714285, - 0.38095238095238093, - 0.38095238095238093 - ] - }, - { - "line": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)", - "width": 4 - }, - "name": "c4_val Pareto Frontier", - "type": "scatter", - "x": [ - 92, - 236, - 375, - 439, - 453, - 527 - ], - "y": [ - 0.9047619047619048, - 0.8823529411764706, - 0.8571428571428571, - 0.7619047619047619, - 0.6190476190476191, - 0.38095238095238093 - ] - } - ], - "layout": {} - }, "text/html": [ "<div id=\"034cf487-f711-46fe-b3a4-53b97e4c9d59\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"034cf487-f711-46fe-b3a4-53b97e4c9d59\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.9523809523809523, 0.8571428571428571, 1.0, 1.0, 0.9523809523809523, 0.9523809523809523, 0.14285714285714285, 0.42857142857142855, 0.9047619047619048, 0.8095238095238095, 0.38095238095238093, 0.8095238095238095, 0.9047619047619048, 0.0, 0.5238095238095238, 0.6, 0.7, 1.0, 0.9523809523809523, 0.8571428571428571, 0.8571428571428571, 0.5714285714285714, 0.9047619047619048, 0.0, 0.8823529411764706, 0.3, 0.42857142857142855, 0.47368421052631576, 0.8571428571428571, 0.6, 1.0, 1.0, 0.8571428571428571, 0.7142857142857143, 0.9047619047619048, 0.7619047619047619, 0.8095238095238095, 0.8571428571428571, 0.5789473684210527, 0.9047619047619048, 0.7, 0.42857142857142855, 0.7619047619047619, 0.5714285714285714, 0.2857142857142857, 0.35, 0.7619047619047619, 0.19047619047619047, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [300.0, 426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7619047619047619, 0.7142857142857143], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 1.0, 0.8571428571428571, 0.9523809523809523, 1.0, 0.6666666666666666, 0.7619047619047619, 0.8571428571428571, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.8571428571428571, 0.9047619047619048, 0.9047619047619048, 0.9523809523809523, 0.5238095238095238, 0.65, 0.7, 1.0, 0.9523809523809523, 0.7142857142857143, 0.8095238095238095, 0.7619047619047619, 0.9523809523809523, 0.38095238095238093, 0.8823529411764706, 0.5, 0.7142857142857143, 0.7894736842105263, 0.8571428571428571, 0.5, 1.0, 0.7619047619047619, 0.42857142857142855, 0.6190476190476191, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.8571428571428571, 0.7894736842105263, 0.9523809523809523, 0.7, 0.8571428571428571, 0.8095238095238095, 1.0, 0.2857142857142857, 0.7, 0.7142857142857143, 0.8571428571428571, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [453.0, 503.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.5714285714285714], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.8571428571428571, 0.6666666666666666, 0.047619047619047616, 0.0, 0.0, 0.42857142857142855, 0.09523809523809523, 0.9047619047619048, 0.19047619047619047, 0.6190476190476191, 0.8095238095238095, 0.7619047619047619, 0.38095238095238093, 0.0, 0.4, 0.7, 0.7142857142857143, 0.6190476190476191, 0.8095238095238095, 0.6190476190476191, 0.19047619047619047, 0.7619047619047619, 0.0, 0.8823529411764706, 0.3, 0.0, 0.5263157894736842, 0.8571428571428571, 0.2, 0.3333333333333333, 0.14285714285714285, 0.7142857142857143, 0.047619047619047616, 0.3333333333333333, 0.0, 0.0, 0.3333333333333333, 0.5789473684210527, 0.8095238095238095, 0.7, 0.42857142857142855, 0.7142857142857143, 0.8571428571428571, 0.2857142857142857, 0.55, 0.09523809523809523, 0.6666666666666666, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 453.0, 503.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.6666666666666666, 0.5714285714285714], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.7619047619047619, 0.23809523809523808, 0.8095238095238095, 0.0, 0.23809523809523808, 0.14285714285714285, 0.047619047619047616, 0.9047619047619048, 0.0, 0.38095238095238093, 0.42857142857142855, 0.14285714285714285, 0.0, 0.0, 0.15, 0.7, 0.23809523809523808, 0.5714285714285714, 0.23809523809523808, 0.3333333333333333, 0.0, 0.47619047619047616, 0.0, 0.8823529411764706, 0.3, 0.047619047619047616, 0.47368421052631576, 0.8571428571428571, 0.05, 0.3333333333333333, 0.09523809523809523, 0.09523809523809523, 0.0, 0.7142857142857143, 0.09523809523809523, 0.14285714285714285, 0.8571428571428571, 0.5789473684210527, 0.42857142857142855, 0.7, 0.42857142857142855, 0.7619047619047619, 0.6190476190476191, 0.2857142857142857, 0.35, 0.14285714285714285, 0.38095238095238093, 0.38095238095238093], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 375.0, 439.0, 453.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.7619047619047619, 0.6190476190476191, 0.38095238095238093], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" - ], - "text/vnd.plotly.v1+html": [ - "<div id=\"034cf487-f711-46fe-b3a4-53b97e4c9d59\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"034cf487-f711-46fe-b3a4-53b97e4c9d59\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.9523809523809523, 0.8571428571428571, 1.0, 1.0, 0.9523809523809523, 0.9523809523809523, 0.14285714285714285, 0.42857142857142855, 0.9047619047619048, 0.8095238095238095, 0.38095238095238093, 0.8095238095238095, 0.9047619047619048, 0.0, 0.5238095238095238, 0.6, 0.7, 1.0, 0.9523809523809523, 0.8571428571428571, 0.8571428571428571, 0.5714285714285714, 0.9047619047619048, 0.0, 0.8823529411764706, 0.3, 0.42857142857142855, 0.47368421052631576, 0.8571428571428571, 0.6, 1.0, 1.0, 0.8571428571428571, 0.7142857142857143, 0.9047619047619048, 0.7619047619047619, 0.8095238095238095, 0.8571428571428571, 0.5789473684210527, 0.9047619047619048, 0.7, 0.42857142857142855, 0.7619047619047619, 0.5714285714285714, 0.2857142857142857, 0.35, 0.7619047619047619, 0.19047619047619047, 0.7142857142857143], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [300.0, 426.0, 499.0, 527.0], \"y\": [1.0, 0.9047619047619048, 0.7619047619047619, 0.7142857142857143], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8571428571428571, 1.0, 0.8571428571428571, 0.9523809523809523, 1.0, 0.6666666666666666, 0.7619047619047619, 0.8571428571428571, 0.8095238095238095, 0.9047619047619048, 0.9047619047619048, 0.8571428571428571, 0.9047619047619048, 0.9047619047619048, 0.9523809523809523, 0.5238095238095238, 0.65, 0.7, 1.0, 0.9523809523809523, 0.7142857142857143, 0.8095238095238095, 0.7619047619047619, 0.9523809523809523, 0.38095238095238093, 0.8823529411764706, 0.5, 0.7142857142857143, 0.7894736842105263, 0.8571428571428571, 0.5, 1.0, 0.7619047619047619, 0.42857142857142855, 0.6190476190476191, 0.9523809523809523, 0.9523809523809523, 0.9047619047619048, 0.8571428571428571, 0.7894736842105263, 0.9523809523809523, 0.7, 0.8571428571428571, 0.8095238095238095, 1.0, 0.2857142857142857, 0.7, 0.7142857142857143, 0.8571428571428571, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [453.0, 503.0, 527.0], \"y\": [1.0, 0.8571428571428571, 0.5714285714285714], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.8571428571428571, 0.6666666666666666, 0.047619047619047616, 0.0, 0.0, 0.42857142857142855, 0.09523809523809523, 0.9047619047619048, 0.19047619047619047, 0.6190476190476191, 0.8095238095238095, 0.7619047619047619, 0.38095238095238093, 0.0, 0.4, 0.7, 0.7142857142857143, 0.6190476190476191, 0.8095238095238095, 0.6190476190476191, 0.19047619047619047, 0.7619047619047619, 0.0, 0.8823529411764706, 0.3, 0.0, 0.5263157894736842, 0.8571428571428571, 0.2, 0.3333333333333333, 0.14285714285714285, 0.7142857142857143, 0.047619047619047616, 0.3333333333333333, 0.0, 0.0, 0.3333333333333333, 0.5789473684210527, 0.8095238095238095, 0.7, 0.42857142857142855, 0.7142857142857143, 0.8571428571428571, 0.2857142857142857, 0.55, 0.09523809523809523, 0.6666666666666666, 0.5714285714285714], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 453.0, 503.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.6666666666666666, 0.5714285714285714], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.6666666666666666, 0.0, 0.7619047619047619, 0.23809523809523808, 0.8095238095238095, 0.0, 0.23809523809523808, 0.14285714285714285, 0.047619047619047616, 0.9047619047619048, 0.0, 0.38095238095238093, 0.42857142857142855, 0.14285714285714285, 0.0, 0.0, 0.15, 0.7, 0.23809523809523808, 0.5714285714285714, 0.23809523809523808, 0.3333333333333333, 0.0, 0.47619047619047616, 0.0, 0.8823529411764706, 0.3, 0.047619047619047616, 0.47368421052631576, 0.8571428571428571, 0.05, 0.3333333333333333, 0.09523809523809523, 0.09523809523809523, 0.0, 0.7142857142857143, 0.09523809523809523, 0.14285714285714285, 0.8571428571428571, 0.5789473684210527, 0.42857142857142855, 0.7, 0.42857142857142855, 0.7619047619047619, 0.6190476190476191, 0.2857142857142857, 0.35, 0.14285714285714285, 0.38095238095238093, 0.38095238095238093], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [92.0, 236.0, 375.0, 439.0, 453.0, 527.0], \"y\": [0.9047619047619048, 0.8823529411764706, 0.8571428571428571, 0.7619047619047619, 0.6190476190476191, 0.38095238095238093], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -79937,550 +78306,12 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "marker": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8333333333333334, - 1, - 1, - 0.8333333333333334, - 0.8333333333333334, - 0.8333333333333334, - 1, - 0.2222222222222222, - 0.8333333333333334, - 1, - 1, - 0.8333333333333334, - 0.7777777777777778, - 1, - 0.8888888888888888, - 0.6666666666666666, - 0.8333333333333334, - 0.8333333333333334, - 1, - 1, - 0.7777777777777778, - 1, - 1, - 1, - 0.2222222222222222, - 1, - 0.3333333333333333, - 0.9444444444444444, - 0.2222222222222222, - 0.7222222222222222, - 0.8888888888888888, - 1, - 1, - 0.9444444444444444, - 0.8333333333333334, - 1, - 0.9444444444444444, - 1, - 0.6666666666666666, - 0.8333333333333334, - 0.9444444444444444, - 0.8333333333333334, - 0.2777777777777778, - 0.5, - 0.8888888888888888, - 0.8333333333333334, - 0.8333333333333334, - 1, - 0.7222222222222222, - 0.8888888888888888 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)", - "width": 4 - }, - "name": "c1_val Pareto Frontier", - "type": "scatter", - "x": [ - 499, - 527 - ], - "y": [ - 1, - 0.8888888888888888 - ] - }, - { - "marker": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c2_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8333333333333334, - 0.7777777777777778, - 1, - 0.2777777777777778, - 0.7222222222222222, - 0.6111111111111112, - 0.7777777777777778, - 0.5, - 0.8333333333333334, - 0.8888888888888888, - 1, - 0.7777777777777778, - 0.7777777777777778, - 1, - 0.6666666666666666, - 0.6666666666666666, - 0.5555555555555556, - 0.8333333333333334, - 0.9444444444444444, - 1, - 0.6111111111111112, - 0.8888888888888888, - 1, - 1, - 0.4444444444444444, - 0.9444444444444444, - 0.3333333333333333, - 0.3333333333333333, - 0.2222222222222222, - 0.7222222222222222, - 0.5, - 1, - 1, - 0.3888888888888889, - 0.5, - 1, - 0.7222222222222222, - 0.9444444444444444, - 0.6666666666666666, - 0.8333333333333334, - 0.7777777777777778, - 0.8333333333333334, - 0.4444444444444444, - 0.7777777777777778, - 0.8333333333333334, - 0.2777777777777778, - 0.6111111111111112, - 0.8888888888888888, - 0.8333333333333334, - 0.3888888888888889 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)", - "width": 4 - }, - "name": "c2_val Pareto Frontier", - "type": "scatter", - "x": [ - 346, - 359, - 499, - 503, - 527 - ], - "y": [ - 1, - 0.9444444444444444, - 0.8888888888888888, - 0.8333333333333334, - 0.3888888888888889 - ] - }, - { - "marker": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c3_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8333333333333334, - 0, - 1, - 0.16666666666666666, - 0, - 0, - 0.2222222222222222, - 0.5, - 0, - 0.8333333333333334, - 0.3333333333333333, - 0.7777777777777778, - 0.5, - 0.7222222222222222, - 0.5, - 0, - 0.16666666666666666, - 0.8333333333333334, - 0.6111111111111112, - 0.5, - 0.7222222222222222, - 0.7222222222222222, - 0.9444444444444444, - 0.9444444444444444, - 0, - 0.9444444444444444, - 0.3333333333333333, - 0.05555555555555555, - 0.2222222222222222, - 0.7222222222222222, - 0.3333333333333333, - 0.3333333333333333, - 0.05555555555555555, - 0.9444444444444444, - 0.05555555555555555, - 0.3888888888888889, - 0, - 0, - 0.2222222222222222, - 0.6666666666666666, - 0.5, - 0.8333333333333334, - 0.2777777777777778, - 0.5, - 0.3333333333333333, - 0.2777777777777778, - 0.6111111111111112, - 0.4444444444444444, - 0.05555555555555555, - 0.3333333333333333 - ] - }, - { - "line": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)", - "width": 4 - }, - "name": "c3_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 304, - 429, - 476, - 499, - 527 - ], - "y": [ - 1, - 0.9444444444444444, - 0.8333333333333334, - 0.6111111111111112, - 0.4444444444444444, - 0.3333333333333333 - ] - }, - { - "marker": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)" - }, - "mode": "markers", - "name": "c4_val ", - "type": "scatter", - "x": [ - 2, - 7, - 14, - 27, - 45, - 47, - 53, - 57, - 62, - 92, - 94, - 101, - 105, - 125, - 128, - 141, - 150, - 155, - 156, - 174, - 203, - 211, - 213, - 221, - 233, - 236, - 237, - 249, - 252, - 264, - 285, - 290, - 300, - 304, - 341, - 346, - 350, - 359, - 375, - 424, - 426, - 429, - 433, - 439, - 453, - 456, - 476, - 499, - 503, - 527 - ], - "y": [ - 0.8333333333333334, - 0, - 1, - 0, - 0.6111111111111112, - 0, - 0.3333333333333333, - 0.2222222222222222, - 0, - 0.8888888888888888, - 0, - 0.7777777777777778, - 0.5, - 0.5555555555555556, - 0, - 0, - 0.16666666666666666, - 0.8333333333333334, - 0.3333333333333333, - 0.4444444444444444, - 0.05555555555555555, - 0.5, - 0.05555555555555555, - 0.5, - 0, - 0.9444444444444444, - 0.3333333333333333, - 0.1111111111111111, - 0.2222222222222222, - 0.7222222222222222, - 0.2777777777777778, - 0.3888888888888889, - 0, - 0.2777777777777778, - 0, - 0.7777777777777778, - 0.16666666666666666, - 0.2777777777777778, - 0.6111111111111112, - 0.6666666666666666, - 0.6111111111111112, - 0.8333333333333334, - 0.2777777777777778, - 0.5, - 0.3333333333333333, - 0.2777777777777778, - 0.5555555555555556, - 0.3888888888888889, - 0.05555555555555555, - 0.6111111111111112 - ] - }, - { - "line": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)", - "width": 4 - }, - "name": "c4_val Pareto Frontier", - "type": "scatter", - "x": [ - 14, - 236, - 429, - 527 - ], - "y": [ - 1, - 0.9444444444444444, - 0.8333333333333334, - 0.6111111111111112 - ] - } - ], - "layout": {} - }, "text/html": [ "<div id=\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 1.0, 0.2222222222222222, 0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.7777777777777778, 1.0, 0.8888888888888888, 0.6666666666666666, 0.8333333333333334, 0.8333333333333334, 1.0, 1.0, 0.7777777777777778, 1.0, 1.0, 1.0, 0.2222222222222222, 1.0, 0.3333333333333333, 0.9444444444444444, 0.2222222222222222, 0.7222222222222222, 0.8888888888888888, 1.0, 1.0, 0.9444444444444444, 0.8333333333333334, 1.0, 0.9444444444444444, 1.0, 0.6666666666666666, 0.8333333333333334, 0.9444444444444444, 0.8333333333333334, 0.2777777777777778, 0.5, 0.8888888888888888, 0.8333333333333334, 0.8333333333333334, 1.0, 0.7222222222222222, 0.8888888888888888], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [499.0, 527.0], \"y\": [1.0, 0.8888888888888888], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.7777777777777778, 1.0, 0.2777777777777778, 0.7222222222222222, 0.6111111111111112, 0.7777777777777778, 0.5, 0.8333333333333334, 0.8888888888888888, 1.0, 0.7777777777777778, 0.7777777777777778, 1.0, 0.6666666666666666, 0.6666666666666666, 0.5555555555555556, 0.8333333333333334, 0.9444444444444444, 1.0, 0.6111111111111112, 0.8888888888888888, 1.0, 1.0, 0.4444444444444444, 0.9444444444444444, 0.3333333333333333, 0.3333333333333333, 0.2222222222222222, 0.7222222222222222, 0.5, 1.0, 1.0, 0.3888888888888889, 0.5, 1.0, 0.7222222222222222, 0.9444444444444444, 0.6666666666666666, 0.8333333333333334, 0.7777777777777778, 0.8333333333333334, 0.4444444444444444, 0.7777777777777778, 0.8333333333333334, 0.2777777777777778, 0.6111111111111112, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 503.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.16666666666666666, 0.0, 0.0, 0.2222222222222222, 0.5, 0.0, 0.8333333333333334, 0.3333333333333333, 0.7777777777777778, 0.5, 0.7222222222222222, 0.5, 0.0, 0.16666666666666666, 0.8333333333333334, 0.6111111111111112, 0.5, 0.7222222222222222, 0.7222222222222222, 0.9444444444444444, 0.9444444444444444, 0.0, 0.9444444444444444, 0.3333333333333333, 0.05555555555555555, 0.2222222222222222, 0.7222222222222222, 0.3333333333333333, 0.3333333333333333, 0.05555555555555555, 0.9444444444444444, 0.05555555555555555, 0.3888888888888889, 0.0, 0.0, 0.2222222222222222, 0.6666666666666666, 0.5, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.6111111111111112, 0.4444444444444444, 0.05555555555555555, 0.3333333333333333], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 304.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112, 0.4444444444444444, 0.3333333333333333], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.0, 0.6111111111111112, 0.0, 0.3333333333333333, 0.2222222222222222, 0.0, 0.8888888888888888, 0.0, 0.7777777777777778, 0.5, 0.5555555555555556, 0.0, 0.0, 0.16666666666666666, 0.8333333333333334, 0.3333333333333333, 0.4444444444444444, 0.05555555555555555, 0.5, 0.05555555555555555, 0.5, 0.0, 0.9444444444444444, 0.3333333333333333, 0.1111111111111111, 0.2222222222222222, 0.7222222222222222, 0.2777777777777778, 0.3888888888888889, 0.0, 0.2777777777777778, 0.0, 0.7777777777777778, 0.16666666666666666, 0.2777777777777778, 0.6111111111111112, 0.6666666666666666, 0.6111111111111112, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.5555555555555556, 0.3888888888888889, 0.05555555555555555, 0.6111111111111112], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 236.0, 429.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" - ], - "text/vnd.plotly.v1+html": [ - "<div id=\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"9e9d9c7d-9b2d-41e0-b208-b766b0cbdfdc\", [{\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 1.0, 0.2222222222222222, 0.8333333333333334, 1.0, 1.0, 0.8333333333333334, 0.7777777777777778, 1.0, 0.8888888888888888, 0.6666666666666666, 0.8333333333333334, 0.8333333333333334, 1.0, 1.0, 0.7777777777777778, 1.0, 1.0, 1.0, 0.2222222222222222, 1.0, 0.3333333333333333, 0.9444444444444444, 0.2222222222222222, 0.7222222222222222, 0.8888888888888888, 1.0, 1.0, 0.9444444444444444, 0.8333333333333334, 1.0, 0.9444444444444444, 1.0, 0.6666666666666666, 0.8333333333333334, 0.9444444444444444, 0.8333333333333334, 0.2777777777777778, 0.5, 0.8888888888888888, 0.8333333333333334, 0.8333333333333334, 1.0, 0.7222222222222222, 0.8888888888888888], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [499.0, 527.0], \"y\": [1.0, 0.8888888888888888], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.7777777777777778, 1.0, 0.2777777777777778, 0.7222222222222222, 0.6111111111111112, 0.7777777777777778, 0.5, 0.8333333333333334, 0.8888888888888888, 1.0, 0.7777777777777778, 0.7777777777777778, 1.0, 0.6666666666666666, 0.6666666666666666, 0.5555555555555556, 0.8333333333333334, 0.9444444444444444, 1.0, 0.6111111111111112, 0.8888888888888888, 1.0, 1.0, 0.4444444444444444, 0.9444444444444444, 0.3333333333333333, 0.3333333333333333, 0.2222222222222222, 0.7222222222222222, 0.5, 1.0, 1.0, 0.3888888888888889, 0.5, 1.0, 0.7222222222222222, 0.9444444444444444, 0.6666666666666666, 0.8333333333333334, 0.7777777777777778, 0.8333333333333334, 0.4444444444444444, 0.7777777777777778, 0.8333333333333334, 0.2777777777777778, 0.6111111111111112, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [346.0, 359.0, 499.0, 503.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8888888888888888, 0.8333333333333334, 0.3888888888888889], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.16666666666666666, 0.0, 0.0, 0.2222222222222222, 0.5, 0.0, 0.8333333333333334, 0.3333333333333333, 0.7777777777777778, 0.5, 0.7222222222222222, 0.5, 0.0, 0.16666666666666666, 0.8333333333333334, 0.6111111111111112, 0.5, 0.7222222222222222, 0.7222222222222222, 0.9444444444444444, 0.9444444444444444, 0.0, 0.9444444444444444, 0.3333333333333333, 0.05555555555555555, 0.2222222222222222, 0.7222222222222222, 0.3333333333333333, 0.3333333333333333, 0.05555555555555555, 0.9444444444444444, 0.05555555555555555, 0.3888888888888889, 0.0, 0.0, 0.2222222222222222, 0.6666666666666666, 0.5, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.6111111111111112, 0.4444444444444444, 0.05555555555555555, 0.3333333333333333], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 304.0, 429.0, 476.0, 499.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112, 0.4444444444444444, 0.3333333333333333], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [2.0, 7.0, 14.0, 27.0, 45.0, 47.0, 53.0, 57.0, 62.0, 92.0, 94.0, 101.0, 105.0, 125.0, 128.0, 141.0, 150.0, 155.0, 156.0, 174.0, 203.0, 211.0, 213.0, 221.0, 233.0, 236.0, 237.0, 249.0, 252.0, 264.0, 285.0, 290.0, 300.0, 304.0, 341.0, 346.0, 350.0, 359.0, 375.0, 424.0, 426.0, 429.0, 433.0, 439.0, 453.0, 456.0, 476.0, 499.0, 503.0, 527.0], \"y\": [0.8333333333333334, 0.0, 1.0, 0.0, 0.6111111111111112, 0.0, 0.3333333333333333, 0.2222222222222222, 0.0, 0.8888888888888888, 0.0, 0.7777777777777778, 0.5, 0.5555555555555556, 0.0, 0.0, 0.16666666666666666, 0.8333333333333334, 0.3333333333333333, 0.4444444444444444, 0.05555555555555555, 0.5, 0.05555555555555555, 0.5, 0.0, 0.9444444444444444, 0.3333333333333333, 0.1111111111111111, 0.2222222222222222, 0.7222222222222222, 0.2777777777777778, 0.3888888888888889, 0.0, 0.2777777777777778, 0.0, 0.7777777777777778, 0.16666666666666666, 0.2777777777777778, 0.6111111111111112, 0.6666666666666666, 0.6111111111111112, 0.8333333333333334, 0.2777777777777778, 0.5, 0.3333333333333333, 0.2777777777777778, 0.5555555555555556, 0.3888888888888889, 0.05555555555555555, 0.6111111111111112], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [14.0, 236.0, 429.0, 527.0], \"y\": [1.0, 0.9444444444444444, 0.8333333333333334, 0.6111111111111112], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -80512,7 +78343,6 @@ { "ename": "KeyError", "evalue": "('n', 'occurred at index 0')", - "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", @@ -80539,7 +78369,8 @@ "\u001b[0;32mpandas/src/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13742)\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/src/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13696)\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mKeyError\u001b[0m: ('n', 'occurred at index 0')" - ] + ], + "output_type": "error" } ], "source": [ @@ -81492,369 +79323,12 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "marker": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1_val ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.92, - 0.9266666666666666, - 0.47333333333333333, - 0.9266666666666666, - 0.92, - 0.7866666666666666, - 0.7278911564625851, - 0.7687074829931972, - 0.5486111111111112, - 0.8294573643410853, - 0.44, - 0.7933333333333333, - 0.82, - 0.92, - 0.9266666666666666, - 0.52, - 1, - 0.5333333333333333, - 0.92, - 0.9266666666666666, - 0.9266666666666666, - 0.9251700680272109, - 0.9509803921568627, - 0.4557823129251701, - 0.9888888888888889, - 0.4666666666666667, - 0.9251700680272109 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)", - "width": 4 - }, - "name": "c1_val Pareto Frontier", - "type": "scatter", - "x": [ - "gen_regionHED", - "normalHED", - "normalMCS" - ], - "y": [ - 1, - 0.9888888888888889, - 0.9251700680272109 - ] - }, - { - "marker": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c2_val ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.72, - 0.78, - 0.48, - 0.8333333333333334, - 0.82, - 0.7066666666666667, - 0.8843537414965986, - 0.9115646258503401, - 0.6527777777777778, - 0.875968992248062, - 0.48, - 0.9266666666666666, - 0.9266666666666666, - 0.7733333333333333, - 0.8333333333333334, - 0.5, - 0.7530864197530864, - 0.5266666666666666, - 0.8733333333333333, - 0.84, - 0.7466666666666667, - 0.8095238095238095, - 0.7843137254901961, - 0.38095238095238093, - 0.7444444444444445, - 0.47333333333333333, - 0.8503401360544217 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)", - "width": 4 - }, - "name": "c2_val Pareto Frontier", - "type": "scatter", - "x": [ - "gen_countryVEO", - "gen_regionMCS", - "normalMCS" - ], - "y": [ - 0.9266666666666666, - 0.8733333333333333, - 0.8503401360544217 - ] - }, - { - "marker": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c3_val ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.44, - 0.46, - 0.26, - 0.49333333333333335, - 0.4866666666666667, - 0.41333333333333333, - 0.4897959183673469, - 0.5306122448979592, - 0.3541666666666667, - 0.5193798449612403, - 0.22, - 0.5066666666666667, - 0.5333333333333333, - 0.4666666666666667, - 0.5133333333333333, - 0.29333333333333333, - 0.37037037037037035, - 0.28, - 0.52, - 0.5066666666666667, - 0.46, - 0.47619047619047616, - 0.37254901960784315, - 0.2653061224489796, - 0.35555555555555557, - 0.26666666666666666, - 0.4897959183673469 - ] - }, - { - "line": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)", - "width": 4 - }, - "name": "c3_val Pareto Frontier", - "type": "scatter", - "x": [ - "gen_countryVEO", - "gen_regionMCS", - "gen_regionVEO", - "normalMCS" - ], - "y": [ - 0.5333333333333333, - 0.52, - 0.5066666666666667, - 0.4897959183673469 - ] - }, - { - "marker": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)" - }, - "mode": "markers", - "name": "c4_val ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.4, - 0.44, - 0.24666666666666667, - 0.44, - 0.4533333333333333, - 0.28, - 0.3673469387755102, - 0.3945578231292517, - 0.2569444444444444, - 0.40310077519379844, - 0.19333333333333333, - 0.42, - 0.44, - 0.4066666666666667, - 0.43333333333333335, - 0.24, - 0.2839506172839506, - 0.2733333333333333, - 0.44666666666666666, - 0.44, - 0.4066666666666667, - 0.43537414965986393, - 0.3431372549019608, - 0.22448979591836735, - 0.34444444444444444, - 0.26, - 0.42857142857142855 - ] - }, - { - "line": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)", - "width": 4 - }, - "name": "c4_val Pareto Frontier", - "type": "scatter", - "x": [ - "extension_1VEO", - "gen_regionMCS", - "gen_regionVEO", - "normalBOWSE", - "normalMCS" - ], - "y": [ - 0.4533333333333333, - 0.44666666666666666, - 0.44, - 0.43537414965986393, - 0.42857142857142855 - ] - } - ], - "layout": { - "margin": { - "b": 160 - }, - "xaxis": { - "tickangle": 45 - } - } - }, "text/html": [ "<div id=\"a348649e-26f5-447c-b526-ea244b9f3e2a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"a348649e-26f5-447c-b526-ea244b9f3e2a\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.92, 0.9266666666666666, 0.47333333333333333, 0.9266666666666666, 0.92, 0.7866666666666666, 0.7278911564625851, 0.7687074829931972, 0.5486111111111112, 0.8294573643410853, 0.44, 0.7933333333333333, 0.82, 0.92, 0.9266666666666666, 0.52, 1.0, 0.5333333333333333, 0.92, 0.9266666666666666, 0.9266666666666666, 0.9251700680272109, 0.9509803921568627, 0.4557823129251701, 0.9888888888888889, 0.4666666666666667, 0.9251700680272109], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionHED\", \"normalHED\", \"normalMCS\"], \"y\": [1.0, 0.9888888888888889, 0.9251700680272109], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.72, 0.78, 0.48, 0.8333333333333334, 0.82, 0.7066666666666667, 0.8843537414965986, 0.9115646258503401, 0.6527777777777778, 0.875968992248062, 0.48, 0.9266666666666666, 0.9266666666666666, 0.7733333333333333, 0.8333333333333334, 0.5, 0.7530864197530864, 0.5266666666666666, 0.8733333333333333, 0.84, 0.7466666666666667, 0.8095238095238095, 0.7843137254901961, 0.38095238095238093, 0.7444444444444445, 0.47333333333333333, 0.8503401360544217], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.9266666666666666, 0.8733333333333333, 0.8503401360544217], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.44, 0.46, 0.26, 0.49333333333333335, 0.4866666666666667, 0.41333333333333333, 0.4897959183673469, 0.5306122448979592, 0.3541666666666667, 0.5193798449612403, 0.22, 0.5066666666666667, 0.5333333333333333, 0.4666666666666667, 0.5133333333333333, 0.29333333333333333, 0.37037037037037035, 0.28, 0.52, 0.5066666666666667, 0.46, 0.47619047619047616, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.4897959183673469], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5333333333333333, 0.52, 0.5066666666666667, 0.4897959183673469], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.4, 0.44, 0.24666666666666667, 0.44, 0.4533333333333333, 0.28, 0.3673469387755102, 0.3945578231292517, 0.2569444444444444, 0.40310077519379844, 0.19333333333333333, 0.42, 0.44, 0.4066666666666667, 0.43333333333333335, 0.24, 0.2839506172839506, 0.2733333333333333, 0.44666666666666666, 0.44, 0.4066666666666667, 0.43537414965986393, 0.3431372549019608, 0.22448979591836735, 0.34444444444444444, 0.26, 0.42857142857142855], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [\"extension_1VEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOWSE\", \"normalMCS\"], \"y\": [0.4533333333333333, 0.44666666666666666, 0.44, 0.43537414965986393, 0.42857142857142855], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" - ], - "text/vnd.plotly.v1+html": [ - "<div id=\"a348649e-26f5-447c-b526-ea244b9f3e2a\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"a348649e-26f5-447c-b526-ea244b9f3e2a\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.92, 0.9266666666666666, 0.47333333333333333, 0.9266666666666666, 0.92, 0.7866666666666666, 0.7278911564625851, 0.7687074829931972, 0.5486111111111112, 0.8294573643410853, 0.44, 0.7933333333333333, 0.82, 0.92, 0.9266666666666666, 0.52, 1.0, 0.5333333333333333, 0.92, 0.9266666666666666, 0.9266666666666666, 0.9251700680272109, 0.9509803921568627, 0.4557823129251701, 0.9888888888888889, 0.4666666666666667, 0.9251700680272109], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionHED\", \"normalHED\", \"normalMCS\"], \"y\": [1.0, 0.9888888888888889, 0.9251700680272109], \"name\": \"c1_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.72, 0.78, 0.48, 0.8333333333333334, 0.82, 0.7066666666666667, 0.8843537414965986, 0.9115646258503401, 0.6527777777777778, 0.875968992248062, 0.48, 0.9266666666666666, 0.9266666666666666, 0.7733333333333333, 0.8333333333333334, 0.5, 0.7530864197530864, 0.5266666666666666, 0.8733333333333333, 0.84, 0.7466666666666667, 0.8095238095238095, 0.7843137254901961, 0.38095238095238093, 0.7444444444444445, 0.47333333333333333, 0.8503401360544217], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c2_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.9266666666666666, 0.8733333333333333, 0.8503401360544217], \"name\": \"c2_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.44, 0.46, 0.26, 0.49333333333333335, 0.4866666666666667, 0.41333333333333333, 0.4897959183673469, 0.5306122448979592, 0.3541666666666667, 0.5193798449612403, 0.22, 0.5066666666666667, 0.5333333333333333, 0.4666666666666667, 0.5133333333333333, 0.29333333333333333, 0.37037037037037035, 0.28, 0.52, 0.5066666666666667, 0.46, 0.47619047619047616, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.4897959183673469], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c3_val \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5333333333333333, 0.52, 0.5066666666666667, 0.4897959183673469], \"name\": \"c3_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.4, 0.44, 0.24666666666666667, 0.44, 0.4533333333333333, 0.28, 0.3673469387755102, 0.3945578231292517, 0.2569444444444444, 0.40310077519379844, 0.19333333333333333, 0.42, 0.44, 0.4066666666666667, 0.43333333333333335, 0.24, 0.2839506172839506, 0.2733333333333333, 0.44666666666666666, 0.44, 0.4066666666666667, 0.43537414965986393, 0.3431372549019608, 0.22448979591836735, 0.34444444444444444, 0.26, 0.42857142857142855], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c4_val \"}, {\"type\": \"scatter\", \"x\": [\"extension_1VEO\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOWSE\", \"normalMCS\"], \"y\": [0.4533333333333333, 0.44666666666666666, 0.44, 0.43537414965986393, 0.42857142857142855], \"name\": \"c4_val Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -81892,359 +79366,12 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "marker": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1*c2 ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.6933333333333334, - 0.7533333333333333, - 0.4666666666666667, - 0.8133333333333334, - 0.8, - 0.6733333333333333, - 0.6802721088435374, - 0.7142857142857143, - 0.4513888888888889, - 0.7441860465116279, - 0.44, - 0.7466666666666667, - 0.7733333333333333, - 0.7333333333333333, - 0.8, - 0.44666666666666666, - 0.7530864197530864, - 0.5133333333333333, - 0.8466666666666667, - 0.82, - 0.72, - 0.782312925170068, - 0.7745098039215687, - 0.3673469387755102, - 0.7444444444444445, - 0.46, - 0.8367346938775511 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.3712, 0.33999999999999997)", - "width": 4 - }, - "name": "c1*c2 Pareto Frontier", - "type": "scatter", - "x": [ - "gen_regionMCS", - "normalMCS" - ], - "y": [ - 0.8466666666666667, - 0.8367346938775511 - ] - }, - { - "marker": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1*c2*c3 ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.41333333333333333, - 0.42, - 0.26, - 0.4533333333333333, - 0.44666666666666666, - 0.38666666666666666, - 0.41496598639455784, - 0.4421768707482993, - 0.3055555555555556, - 0.4496124031007752, - 0.21333333333333335, - 0.4533333333333333, - 0.4666666666666667, - 0.44, - 0.47333333333333333, - 0.28, - 0.37037037037037035, - 0.28, - 0.4866666666666667, - 0.4666666666666667, - 0.43333333333333335, - 0.43537414965986393, - 0.3431372549019608, - 0.2653061224489796, - 0.35555555555555557, - 0.26666666666666666, - 0.46938775510204084 - ] - }, - { - "line": { - "color": "rgb(0.86, 0.7612000000000001, 0.33999999999999997)", - "width": 4 - }, - "name": "c1*c2*c3 Pareto Frontier", - "type": "scatter", - "x": [ - "gen_regionMCS", - "normalMCS" - ], - "y": [ - 0.4866666666666667, - 0.46938775510204084 - ] - }, - { - "marker": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)" - }, - "mode": "markers", - "name": "c1*c3 ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.43333333333333335, - 0.4533333333333333, - 0.26, - 0.4866666666666667, - 0.48, - 0.4, - 0.42857142857142855, - 0.46938775510204084, - 0.3194444444444444, - 0.46511627906976744, - 0.21333333333333335, - 0.47333333333333333, - 0.4866666666666667, - 0.46, - 0.5066666666666667, - 0.28, - 0.37037037037037035, - 0.28, - 0.5133333333333333, - 0.5, - 0.4533333333333333, - 0.46938775510204084, - 0.37254901960784315, - 0.2653061224489796, - 0.35555555555555557, - 0.26666666666666666, - 0.48299319727891155 - ] - }, - { - "line": { - "color": "rgb(0.5688000000000001, 0.86, 0.33999999999999997)", - "width": 4 - }, - "name": "c1*c3 Pareto Frontier", - "type": "scatter", - "x": [ - "gen_regionMCS", - "gen_regionVEO", - "normalMCS" - ], - "y": [ - 0.5133333333333333, - 0.5, - 0.48299319727891155 - ] - }, - { - "marker": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)" - }, - "mode": "markers", - "name": "c2*c3 ", - "type": "scatter", - "x": [ - "extension_1BOC", - "extension_1BOWSE", - "extension_1JACCARD", - "extension_1MCS", - "extension_1VEO", - "extension_1WLSUBTREE", - "gen_countryBOC", - "gen_countryBOWSE", - "gen_countryGREEDY", - "gen_countryHED", - "gen_countryJACCARD", - "gen_countryMCS", - "gen_countryVEO", - "gen_regionBOC", - "gen_regionBOWSE", - "gen_regionGREEDY", - "gen_regionHED", - "gen_regionJACCARD", - "gen_regionMCS", - "gen_regionVEO", - "normalBOC", - "normalBOWSE", - "normalGED", - "normalGREEDY", - "normalHED", - "normalJACCARD", - "normalMCS" - ], - "y": [ - 0.42, - 0.4266666666666667, - 0.26, - 0.46, - 0.4533333333333333, - 0.4, - 0.47619047619047616, - 0.5034013605442177, - 0.3402777777777778, - 0.5038759689922481, - 0.22, - 0.4866666666666667, - 0.5133333333333333, - 0.44666666666666666, - 0.48, - 0.29333333333333333, - 0.37037037037037035, - 0.28, - 0.49333333333333335, - 0.47333333333333333, - 0.44, - 0.4421768707482993, - 0.3431372549019608, - 0.2653061224489796, - 0.35555555555555557, - 0.26666666666666666, - 0.47619047619047616 - ] - }, - { - "line": { - "color": "rgb(0.33999999999999997, 0.86, 0.5012000000000001)", - "width": 4 - }, - "name": "c2*c3 Pareto Frontier", - "type": "scatter", - "x": [ - "gen_countryVEO", - "gen_regionMCS", - "normalMCS" - ], - "y": [ - 0.5133333333333333, - 0.49333333333333335, - 0.47619047619047616 - ] - } - ], - "layout": { - "margin": { - "b": 160 - }, - "xaxis": { - "tickangle": 45 - } - } - }, "text/html": [ "<div id=\"6f987a48-a826-4d65-943d-e729c755f1b8\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"6f987a48-a826-4d65-943d-e729c755f1b8\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.6933333333333334, 0.7533333333333333, 0.4666666666666667, 0.8133333333333334, 0.8, 0.6733333333333333, 0.6802721088435374, 0.7142857142857143, 0.4513888888888889, 0.7441860465116279, 0.44, 0.7466666666666667, 0.7733333333333333, 0.7333333333333333, 0.8, 0.44666666666666666, 0.7530864197530864, 0.5133333333333333, 0.8466666666666667, 0.82, 0.72, 0.782312925170068, 0.7745098039215687, 0.3673469387755102, 0.7444444444444445, 0.46, 0.8367346938775511], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1*c2 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.8466666666666667, 0.8367346938775511], \"name\": \"c1*c2 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.41333333333333333, 0.42, 0.26, 0.4533333333333333, 0.44666666666666666, 0.38666666666666666, 0.41496598639455784, 0.4421768707482993, 0.3055555555555556, 0.4496124031007752, 0.21333333333333335, 0.4533333333333333, 0.4666666666666667, 0.44, 0.47333333333333333, 0.28, 0.37037037037037035, 0.28, 0.4866666666666667, 0.4666666666666667, 0.43333333333333335, 0.43537414965986393, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.46938775510204084], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c1*c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.4866666666666667, 0.46938775510204084], \"name\": \"c1*c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.43333333333333335, 0.4533333333333333, 0.26, 0.4866666666666667, 0.48, 0.4, 0.42857142857142855, 0.46938775510204084, 0.3194444444444444, 0.46511627906976744, 0.21333333333333335, 0.47333333333333333, 0.4866666666666667, 0.46, 0.5066666666666667, 0.28, 0.37037037037037035, 0.28, 0.5133333333333333, 0.5, 0.4533333333333333, 0.46938775510204084, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.48299319727891155], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c1*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.5, 0.48299319727891155], \"name\": \"c1*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.42, 0.4266666666666667, 0.26, 0.46, 0.4533333333333333, 0.4, 0.47619047619047616, 0.5034013605442177, 0.3402777777777778, 0.5038759689922481, 0.22, 0.4866666666666667, 0.5133333333333333, 0.44666666666666666, 0.48, 0.29333333333333333, 0.37037037037037035, 0.28, 0.49333333333333335, 0.47333333333333333, 0.44, 0.4421768707482993, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.47619047619047616], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.49333333333333335, 0.47619047619047616], \"name\": \"c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" - ], - "text/vnd.plotly.v1+html": [ - "<div id=\"6f987a48-a826-4d65-943d-e729c755f1b8\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";Plotly.newPlot(\"6f987a48-a826-4d65-943d-e729c755f1b8\", [{\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.6933333333333334, 0.7533333333333333, 0.4666666666666667, 0.8133333333333334, 0.8, 0.6733333333333333, 0.6802721088435374, 0.7142857142857143, 0.4513888888888889, 0.7441860465116279, 0.44, 0.7466666666666667, 0.7733333333333333, 0.7333333333333333, 0.8, 0.44666666666666666, 0.7530864197530864, 0.5133333333333333, 0.8466666666666667, 0.82, 0.72, 0.782312925170068, 0.7745098039215687, 0.3673469387755102, 0.7444444444444445, 0.46, 0.8367346938775511], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\"}, \"name\": \"c1*c2 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.8466666666666667, 0.8367346938775511], \"name\": \"c1*c2 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.3712, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.41333333333333333, 0.42, 0.26, 0.4533333333333333, 0.44666666666666666, 0.38666666666666666, 0.41496598639455784, 0.4421768707482993, 0.3055555555555556, 0.4496124031007752, 0.21333333333333335, 0.4533333333333333, 0.4666666666666667, 0.44, 0.47333333333333333, 0.28, 0.37037037037037035, 0.28, 0.4866666666666667, 0.4666666666666667, 0.43333333333333335, 0.43537414965986393, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.46938775510204084], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\"}, \"name\": \"c1*c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"normalMCS\"], \"y\": [0.4866666666666667, 0.46938775510204084], \"name\": \"c1*c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.86, 0.7612000000000001, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.43333333333333335, 0.4533333333333333, 0.26, 0.4866666666666667, 0.48, 0.4, 0.42857142857142855, 0.46938775510204084, 0.3194444444444444, 0.46511627906976744, 0.21333333333333335, 0.47333333333333333, 0.4866666666666667, 0.46, 0.5066666666666667, 0.28, 0.37037037037037035, 0.28, 0.5133333333333333, 0.5, 0.4533333333333333, 0.46938775510204084, 0.37254901960784315, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.48299319727891155], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\"}, \"name\": \"c1*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_regionMCS\", \"gen_regionVEO\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.5, 0.48299319727891155], \"name\": \"c1*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.5688000000000001, 0.86, 0.33999999999999997)\", \"width\": 4}}, {\"type\": \"scatter\", \"x\": [\"extension_1BOC\", \"extension_1BOWSE\", \"extension_1JACCARD\", \"extension_1MCS\", \"extension_1VEO\", \"extension_1WLSUBTREE\", \"gen_countryBOC\", \"gen_countryBOWSE\", \"gen_countryGREEDY\", \"gen_countryHED\", \"gen_countryJACCARD\", \"gen_countryMCS\", \"gen_countryVEO\", \"gen_regionBOC\", \"gen_regionBOWSE\", \"gen_regionGREEDY\", \"gen_regionHED\", \"gen_regionJACCARD\", \"gen_regionMCS\", \"gen_regionVEO\", \"normalBOC\", \"normalBOWSE\", \"normalGED\", \"normalGREEDY\", \"normalHED\", \"normalJACCARD\", \"normalMCS\"], \"y\": [0.42, 0.4266666666666667, 0.26, 0.46, 0.4533333333333333, 0.4, 0.47619047619047616, 0.5034013605442177, 0.3402777777777778, 0.5038759689922481, 0.22, 0.4866666666666667, 0.5133333333333333, 0.44666666666666666, 0.48, 0.29333333333333333, 0.37037037037037035, 0.28, 0.49333333333333335, 0.47333333333333333, 0.44, 0.4421768707482993, 0.3431372549019608, 0.2653061224489796, 0.35555555555555557, 0.26666666666666666, 0.47619047619047616], \"mode\": \"markers\", \"marker\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\"}, \"name\": \"c2*c3 \"}, {\"type\": \"scatter\", \"x\": [\"gen_countryVEO\", \"gen_regionMCS\", \"normalMCS\"], \"y\": [0.5133333333333333, 0.49333333333333335, 0.47619047619047616], \"name\": \"c2*c3 Pareto Frontier\", \"line\": {\"color\": \"rgb(0.33999999999999997, 0.86, 0.5012000000000001)\", \"width\": 4}}], {\"xaxis\": {\"tickangle\": 45}, \"margin\": {\"b\": 160}}, {\"showLink\": true, \"linkText\": \"Export to plot.ly\"})});</script>" ] }, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ @@ -82556,9 +79683,9 @@ }, "varInspector": { "cols": { - "lenName": 16, - "lenType": 16, - "lenVar": 40 + "lenName": 16.0, + "lenType": 16.0, + "lenVar": 40.0 }, "kernels_config": { "python": { diff --git a/notebooks/EvalDesambiguisationPADIWEB.ipynb b/notebooks/EvalDesambiguisationPADIWEB.ipynb index 83ab07b..189ca41 100644 --- a/notebooks/EvalDesambiguisationPADIWEB.ipynb +++ b/notebooks/EvalDesambiguisationPADIWEB.ipynb @@ -5,8 +5,8 @@ "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T12:57:56.566077Z", - "start_time": "2018-06-19T12:57:56.076820Z" + "end_time": "2018-08-27T15:11:06.231565Z", + "start_time": "2018-08-27T15:11:05.795641Z" } }, "outputs": [], @@ -20,8 +20,8 @@ "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T12:57:56.766774Z", - "start_time": "2018-06-19T12:57:56.761060Z" + "end_time": "2018-08-27T15:11:06.238529Z", + "start_time": "2018-08-27T15:11:06.233600Z" } }, "outputs": [ @@ -42,15 +42,15 @@ "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T12:58:25.165818Z", - "start_time": "2018-06-19T12:58:25.056576Z" + "end_time": "2018-08-27T15:11:06.330207Z", + "start_time": "2018-08-27T15:11:06.240613Z" } }, "outputs": [], "source": [ "from elasticsearch import Elasticsearch\n", "\n", - "from config.configuration import config\n", + "from strpython.config.configuration import config\n", "\n", "es = Elasticsearch(config.es_server)\n", "def get_data_by_geoname_id(id):\n", @@ -67,12 +67,18 @@ "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T12:58:25.614490Z", - "start_time": "2018-06-19T12:58:25.607038Z" + "end_time": "2018-08-27T15:11:06.346204Z", + "start_time": "2018-08-27T15:11:06.332072Z" } }, "outputs": [], "source": [ + "test=pd.read_csv(\"ens2.csv\")\n", + "def foo(x):\n", + " try:\n", + " test[test[\"sp_en\"] == x[\"id\"]].geonames_id.values[0]\n", + " except:\n", + " \"nan\"\n", "def parse_file(fn):\n", " id_=int(re.findall(r\"\\d+\",fn)[-1])\n", " lang=langdetect.detect(open(\"data/EPI_ELENA/raw_text/{0}.txt\".format(id_)).read())\n", @@ -81,18 +87,41 @@ " df=df[(df[\"type\"]==\"location\") & (df[\"annotation\"]==\"correct\")]\n", " except:\n", " return\n", + " df[\"geoname\"]=df[\"info\"].apply(lambda x:foo(x))\n", " df[\"GID\"]=df[\"info\"].apply(lambda x:get_data_by_geoname_id(x[\"id\"])[\"id\"])\n", " df[\"content\"]=df[\"content\"].apply(lambda x:re.sub(r\"\\s+\",\" \",x.strip()))\n", - " return df,lang\n" + " return df,lang\n", + "\n", + "def parse_file2(fn):\n", + " id_=int(re.findall(r\"\\d+\",fn)[-1])\n", + " lang=langdetect.detect(open(\"data/EPI_ELENA/raw_text/{0}.txt\".format(id_)).read())\n", + " df=pd.read_json(fn,orient=\"index\")\n", + " try:\n", + " df=df[(df[\"type\"]==\"location\") & (df[\"annotation\"]==\"correct\")]\n", + " except:\n", + " return\n", + " return df" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T13:00:51.545645Z", - "start_time": "2018-06-19T13:00:51.538149Z" + "end_time": "2018-08-27T15:08:33.366321Z", + "start_time": "2018-08-27T15:08:33.358349Z" + } + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2018-08-27T15:11:06.356525Z", + "start_time": "2018-08-27T15:11:06.348143Z" } }, "outputs": [], @@ -107,8 +136,8 @@ "execution_count": 6, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T12:58:56.147169Z", - "start_time": "2018-06-19T12:58:56.132754Z" + "end_time": "2018-08-27T15:11:06.370866Z", + "start_time": "2018-08-27T15:11:06.358409Z" } }, "outputs": [], @@ -118,19 +147,19 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:46:38.252413Z", - "start_time": "2018-06-03T18:46:35.836908Z" + "end_time": "2018-08-27T15:11:09.749290Z", + "start_time": "2018-08-27T15:11:06.373193Z" } }, "outputs": [], "source": [ - "%autoreload\n", - "from nlp.disambiguator.geodict_gaurav import GauravGeodict\n", - "from nlp.disambiguator.most_common import MostCommonDisambiguator\n", - "from nlp.disambiguator.wikipedia_cooc import WikipediaDisambiguator\n", + "\n", + "from strpython.nlp.disambiguator.geodict_gaurav import GauravGeodict\n", + "from strpython.nlp.disambiguator.most_common import MostCommonDisambiguator\n", + "from strpython.nlp.disambiguator.wikipedia_cooc import WikipediaDisambiguator\n", "disMost_common=MostCommonDisambiguator()\n", "disGaurav=GauravGeodict()\n", "disWiki=WikipediaDisambiguator()" @@ -141,8 +170,8 @@ "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:40:57.064904Z", - "start_time": "2018-06-03T18:40:57.043921Z" + "end_time": "2018-08-27T15:11:09.759142Z", + "start_time": "2018-08-27T15:11:09.751214Z" } }, "outputs": [], @@ -160,8 +189,8 @@ "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:40:58.360243Z", - "start_time": "2018-06-03T18:40:58.203320Z" + "end_time": "2018-08-27T15:11:09.831909Z", + "start_time": "2018-08-27T15:11:09.760876Z" } }, "outputs": [], @@ -171,49 +200,49 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:46:54.196478Z", - "start_time": "2018-06-03T18:46:53.863582Z" + "end_time": "2018-08-27T15:11:10.512110Z", + "start_time": "2018-08-27T15:11:09.833822Z" } }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Rivers State GD4106855 12.73152386775468\n", - "Kano GD4103071 21.675014816832682\n", - "Kano GD4103071 21.675014816832682\n", - "Lagos GD4468122 124.6205202335819\n", - "Lagos GD4468122 124.6205202335819\n", - "Port Harcourt GD791183 15.777445058883712\n" - ] - }, { "data": { "text/plain": [ - "0.6666666666666666" + "( after annotation content index \\\n", + " 17 NaN correct Latvia 165 \n", + " 3 1.0 correct Latvia 13 \n", + " 7 NaN correct Latvia 35 \n", + " \n", + " info length type \\\n", + " 17 {'coordinates': [57, 25], 'countryCode': 'LV',... 1 location \n", + " 3 {'coordinates': [57, 25], 'countryCode': 'LV',... 1 location \n", + " 7 {'coordinates': [57, 25], 'countryCode': 'LV',... 1 location \n", + " \n", + " use_for_all geoname GID \n", + " 17 NaN None GD5551940 \n", + " 3 1.0 None GD5551940 \n", + " 7 NaN None GD5551940 , 'en')" ] }, - "execution_count": 19, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df,lang=parse_file(fns[0])\n", - "accuracyMostCommon(df,lang)\n" + "parse_file(fns[0])\n" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:45:45.708459Z", - "start_time": "2018-06-03T18:45:45.679984Z" + "end_time": "2018-08-27T15:11:10.542154Z", + "start_time": "2018-08-27T15:11:10.514743Z" } }, "outputs": [], @@ -226,7 +255,7 @@ " return (df2.GID == df2.disambiguation).sum()/len(df2)\n", "def accuracyWiki(df,lang):\n", " df2=df[-df[\"GID\"].isin([\"O\",\"NR\",\"o\"])][[\"content\",\"GID\"]]\n", - " res_dis=disWiki.disambiguate(df2[\"content\"].unique(),lang)\n", + " res_dis=disWiki.disambiguate_wiki(df2[\"content\"].unique(),lang)\n", " df2[\"disambiguation\"]=df2.content.apply(lambda x:res_dis[x] if x in res_dis else \"0\")\n", " return (df2.GID == df2.disambiguation).sum()/len(df2)\n", "#df\n", @@ -235,11 +264,11 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:53:53.880676Z", - "start_time": "2018-06-03T18:48:05.294472Z" + "end_time": "2018-08-27T15:13:54.566181Z", + "start_time": "2018-08-27T15:11:10.544793Z" } }, "outputs": [ @@ -247,10 +276,13 @@ "name": "stderr", "output_type": "stream", "text": [ + "/usr/local/lib/python3.6/site-packages/ipykernel_launcher.py:11: RuntimeWarning: invalid value encountered in long_scalars\n", + " # This is added back by InteractiveShellApp.init_path()\n", "/usr/local/lib/python3.6/site-packages/pandas/core/ops.py:816: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", " result = getattr(x, name)(y)\n", - "/usr/local/lib/python3.6/site-packages/ipykernel_launcher.py:11: RuntimeWarning: invalid value encountered in long_scalars\n", - " # This is added back by InteractiveShellApp.init_path()\n" + "GET http://localhost:9200/gazetteer/place/_search [status:400 request:0.006s]\n", + "GET http://localhost:9200/gazetteer/place/_search [status:400 request:0.004s]\n", + "GET http://localhost:9200/gazetteer/place/_search [status:400 request:0.003s]\n" ] } ], @@ -270,21 +302,31 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 13, "metadata": { "ExecuteTime": { - "end_time": "2018-05-17T01:37:02.209200Z", - "start_time": "2018-05-17T01:37:02.200462Z" + "end_time": "2018-08-27T15:13:54.577715Z", + "start_time": "2018-08-27T15:13:54.568059Z" } }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/site-packages/numpy/core/fromnumeric.py:2957: RuntimeWarning: Mean of empty slice.\n", + " out=out, **kwargs)\n", + "/usr/local/lib/python3.6/site-packages/numpy/core/_methods.py:80: RuntimeWarning: invalid value encountered in double_scalars\n", + " ret = ret.dtype.type(ret / rcount)\n" + ] + }, { "data": { "text/plain": [ - "0.5139891137064413" + "nan" ] }, - "execution_count": 63, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -296,21 +338,31 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 14, "metadata": { "ExecuteTime": { - "end_time": "2018-05-17T01:37:02.250591Z", - "start_time": "2018-05-17T01:37:02.246260Z" + "end_time": "2018-08-27T15:13:54.584996Z", + "start_time": "2018-08-27T15:13:54.579637Z" } }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/site-packages/numpy/core/fromnumeric.py:2957: RuntimeWarning: Mean of empty slice.\n", + " out=out, **kwargs)\n", + "/usr/local/lib/python3.6/site-packages/numpy/core/_methods.py:80: RuntimeWarning: invalid value encountered in double_scalars\n", + " ret = ret.dtype.type(ret / rcount)\n" + ] + }, { "data": { "text/plain": [ - "0.5267050989770068" + "nan" ] }, - "execution_count": 64, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -321,21 +373,21 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "metadata": { "ExecuteTime": { - "end_time": "2018-06-03T18:55:22.909028Z", - "start_time": "2018-06-03T18:55:22.904693Z" + "end_time": "2018-08-27T15:13:54.591617Z", + "start_time": "2018-08-27T15:13:54.587000Z" } }, "outputs": [ { "data": { "text/plain": [ - "0.5630869832932465" + "0.5782357139650866" ] }, - "execution_count": 22, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -347,7 +399,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-06-19T13:01:36.778853Z", @@ -359,28 +411,23 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 16, "metadata": { "ExecuteTime": { - "end_time": "2018-06-19T13:10:53.120884Z", - "start_time": "2018-06-19T13:09:52.611805Z" + "end_time": "2018-08-27T15:13:54.802963Z", + "start_time": "2018-08-27T15:13:54.593650Z" } }, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.6/site-packages/pandas/core/ops.py:816: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", - " result = getattr(x, name)(y)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151959 7898\n", - "19.24018738921246\n" + "ename": "ModuleNotFoundError", + "evalue": "No module named 'helpers'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-16-d620a808fc3e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mhelpers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgazeteer_helpers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcount_of_se\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0msum_\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcount\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfn\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mfns\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlang\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparse_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'helpers'" ] } ], diff --git a/run_test_disambiguisation.sh b/run_test_disambiguisation.sh new file mode 100755 index 0000000..59cba8b --- /dev/null +++ b/run_test_disambiguisation.sh @@ -0,0 +1,12 @@ +#!/usr/bin/env bash +python3 eval_disambiguation.py padiweb accuracy > accuracy_res_padi.txt +python3 eval_disambiguation.py agromada accuracy > accuracy_res_mada.txt + +python3 eval_disambiguation.py padiweb mean_distance_error > mean_distance_res_padi.txt +python3 eval_disambiguation.py agromada mean_distance_error > mean_distance_res_mada.txt + +python3 eval_disambiguation.py padiweb accuracy_k -k=1 >>accuracyk1y_res_padi.txt +python3 eval_disambiguation.py padiweb accuracy_k -k=0.5 > accuracyk0-5_res_padi.txt + +python3 eval_disambiguation.py agromada accuracy_k -k=1 >> accuracyk1_res_mada.txt +python3 eval_disambiguation.py agromada accuracy_k -k=0.5 > accuracyk0-5_res_mada.txt \ No newline at end of file diff --git a/strpython/eval/disambiguation.py b/strpython/eval/disambiguation.py new file mode 100644 index 0000000..1536fe7 --- /dev/null +++ b/strpython/eval/disambiguation.py @@ -0,0 +1,88 @@ +# coding = utf-8 + +from shapely.geometry import Point +from ..helpers.geodict_helpers import * +from ..nlp.disambiguator.geodict_gaurav import GauravGeodict +from ..nlp.disambiguator.most_common import MostCommonDisambiguator +from ..nlp.disambiguator.wikipedia_cooc import WikipediaDisambiguator + +import langdetect +import pandas as pd +import re +import glob, re, sys + +disMost_common = MostCommonDisambiguator() +disGaurav = GauravGeodict() +disWiki = WikipediaDisambiguator() + + +def get_coord(id): + try: + c = get_data(id).coord + return Point(c["lon"], c["lat"]) + except Exception as e: + return None + + +def dist(id1, id2): + p1, p2 = get_coord(id1), get_coord(id2) + if not p1 or not p2: + return -1 + else: + return p1.distance(p2) + + +def efficiencyMostCommon(df, lang, score="accuracy",k=1): + df2 = df[-df["GID"].isin(["O", "NR", "o"])][["text", "GID"]] + df2["disambiguation"] = df2.text.apply(lambda x: disMost_common.disambiguate_(x, lang)[0]) + if score == "mean_distance_error": + df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1) + return df2["distance"][df2["distance"] >= 0].mean() + if score == "accuracy_k": + df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1) + return ((df2["distance"] < k) & (df2["distance"] >= 0)).sum() / ((df2["distance"] >= 0).sum()) + return (df2.GID == df2.disambiguation).sum() / len(df2) + + +def efficiencyGeodict(df, lang, score="accuracy",k=1): + df2 = df[-df["GID"].isin(["O", "NR", "o"])][["text", "GID"]] + res_dis = disGaurav.eval(df2["text"].unique(), lang) + df2["disambiguation"] = df2.text.apply(lambda x: res_dis[x] if x in res_dis else None) + if score == "mean_distance_error": + df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1) + return df2["distance"][df2["distance"] >= 0].mean() + if score == "accuracy_k": + df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1) + return ((df2["distance"] < k) & (df2["distance"] >= 0)).sum() / ((df2["distance"] >= 0).sum()) + + return (df2.GID == df2.disambiguation).sum() / len(df2) + + +def efficiencyWiki(df, lang, score="accuracy",k=1): + df2 = df[-df["GID"].isin(["O", "NR", "o"])][["text", "GID"]] + res_dis = disWiki.disambiguate_wiki(df2["text"].unique(), lang) + df2["disambiguation"] = df2.text.apply(lambda x: res_dis[x] if x in res_dis else None) + if score == "mean_distance_error": + df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1) + return df2["distance"][df2["distance"] >= 0].mean() + elif score == "accuracy_k": + df2["distance"] = df2.apply(lambda row: dist(row.GID, row.disambiguation) if "GID" in row else -1, axis=1) + return ((df2["distance"] < k) & (df2["distance"] >= 0)).sum() / ((df2["distance"] >= 0).sum()) + else: + return (df2.GID == df2.disambiguation).sum() / len(df2) + + +def parse_file_EPI(fn, path_rawtext): + id_ = int(re.findall(r"\d+", fn)[-1]) + lang = langdetect.detect(open("{1}/{0}.txt".format(id_, path_rawtext.rstrip("/"))).read()) + df = pd.read_json(fn, orient="index") + try: + df = df[(df["type"] == "location") & (df["annotation"] == "correct")] + except: + return + df["text"] = df["content"].apply(lambda x: re.sub(r"\s+", " ", x.strip())) + df["geoname"] = df["info"].apply(lambda x: x["id"]) + df["GID"] = df["geoname"].apply(lambda x: get_data_by_geonames_id(x).id) + df = df[df["geoname"] != -111111] + + return df, lang diff --git a/strpython/helpers/geodict_helpers.py b/strpython/helpers/geodict_helpers.py index 91d0408..0a91f97 100644 --- a/strpython/helpers/geodict_helpers.py +++ b/strpython/helpers/geodict_helpers.py @@ -123,12 +123,10 @@ def most_common_label(toponym: str, lang: str): """ res = es.search("gazetteer", "place", - body={"query": - {"bool": - {"must": [{"term": {lang: toponym}}], "must_not": [], "should": []} - }, + body={ "query": {"query_string": {"query": "\"{0}\"".format(toponym), "analyze_wildcard": False}}, "from": 0, - "size": 50, "sort": [{'score': "desc"}], "aggs": {}}) + "size": 50, + "sort": [{'score': "desc"}]}) res = convert_es_to_pandas(res) if not isinstance(res, pd.DataFrame): return None, 0 @@ -150,13 +148,7 @@ def most_common_alias(toponym: str, lang: str): """ res = es.search("gazetteer", "place", - body={"query": {"nested": {"path": "aliases", - "query": - {"bool": - {"must": [{"term": {"aliases.{0}".format(lang): toponym}}], "must_not": [], "should": []} - } - }}, - "sort": [{"score": "desc"}]}) + body={"size": 1, "sort": [{"score": {"order": "desc", "unmapped_type": "boolean"}}],"query": {"bool": {"must": [{"term": {lang: toponym}}], "must_not": [], "should": []}}}) res = convert_es_to_pandas(res) if not isinstance(res, pd.DataFrame): @@ -181,9 +173,11 @@ def n_label_similar(toponym, lang, n=5, score=True): 'score': "desc" } ] - - res = es.search("gazetteer", "place", - body=body) + try: + res = es.search("gazetteer", "place", + body=body) + except: + return None res = convert_es_to_pandas(res) if not isinstance(res, pd.DataFrame): return None @@ -208,8 +202,11 @@ def n_alias_similar(toponym, lang, n=5, score=True): 'score': "desc" } ] - res = es.search("gazetteer", "place", - body=body) + try: + res = es.search("gazetteer", "place", + body=body) + except: + return None res = convert_es_to_pandas(res) if not isinstance(res, pd.DataFrame): @@ -217,35 +214,6 @@ def n_alias_similar(toponym, lang, n=5, score=True): return res.iloc[0].id, res.iloc[0].score -def get_most_common_id_v2(label, lang="fr"): - """ - Return the spatial entity and its score, based on a specific label and language that obtains the highest score. - :param label: str - :param lang: str - :return: str, float - """ - query_2 = {"query_string": { - "default_field": lang, - "query": parse_label(label), - - }} - res = es.search("gazetteer", "place", - body={"query": - {"bool": - {"must": [{"term": {lang: label}}], "must_not": [], "should": []} - }, - "from": 0, - "size": 50, "sort": [{'score': "desc"}], "aggs": {}}) - res = convert_es_to_pandas(res) - - if not isinstance(res, pd.DataFrame): - if not res: - res = convert_es_to_pandas(es.search("gazetteer", "place", - body={"query": query_2})) - if not isinstance(res, pd.DataFrame): - return None, 0 - return res.iloc[0].id, res.iloc[0].score - def get_most_common_id_v3(label, lang='fr'): """ @@ -262,7 +230,12 @@ def get_most_common_id_v3(label, lang='fr'): # China case id_2, score2 = most_common_alias(label, lang) if id_2 and score2 > score: - return id_2, score2 + id_, score = id_2, score2 + simi=n_label_similar(label, lang) + if isinstance(simi,pd.DataFrame): + id_3, score3 = simi.iloc[0].id,simi.iloc[0].score + if id_2 and score2 > score: + id_, score = id_3, score3 return id_, score # if nothing found in english, search in aliases @@ -424,14 +397,15 @@ def get_top_candidate(label, lang, n=5): :param lang: str :return: list """ - query = {"query": {"bool": {"must": [{"term": {lang: label}}], "must_not": [], "should": []}}, "sort": [ - { - "score": { - "order": "desc" - } - } - ], "size": n} + if n<4: + n=4 + query={"size": n-3, "sort": [{"score": {"order": "desc"}}],"query": {"bool": {"must": [{"term": {lang: label}}], "must_not": [], "should": []}}} + query2={"size": 1, "sort": [{"score": {"order": "desc"}}], + "query": {"query_string": {"query": "\"{0}\"".format(label), "analyze_wildcard": False}}} + query3 = {"size": 1, "sort": [{"score": {"order": "desc", "unmapped_type": "boolean"}}],"query": {"bool": {"must": [{"term": {"en": "\"{0}\"".format(label)}}], "must_not": [], "should": []}}} response = es.search('gazetteer', 'place', body=query) + res=[] if 'hits' in response['hits']: - return [x["_source"]["id"] for x in response['hits']['hits']] - return [] + res=[x["_source"]["id"] for x in response['hits']['hits']] + res.extend([get_most_common_id_v3(label,lang)[0]]) + return res diff --git a/strpython/models/str.py b/strpython/models/str.py index be98e00..efe5ae4 100644 --- a/strpython/models/str.py +++ b/strpython/models/str.py @@ -66,7 +66,7 @@ class STR(object): return str_ @staticmethod - def from_dict(spat_ent: dict, tagged_: list = [], shapes: dict = {}): + def from_dict(spat_ent: dict, tagged_: list = []): """ Return a STR built from a Networkx imported graph :param g: @@ -77,13 +77,13 @@ class STR(object): for id_, label in spat_ent.items(): sp_en[id_] = label - str_ = STR(tagged_, sp_en, shapes) + str_ = STR(tagged_, sp_en) str_.build() return str_ @staticmethod - def from_pandas(dataf: pd.DataFrame, tagged: list = [], shapes: dict = {}): - return STR.from_dict(pd.Series(dataf.label.values, index=dataf.id).to_dict(), tagged, shapes) + def from_pandas(dataf: pd.DataFrame, tagged: list = []): + return STR.from_dict(pd.Series(dataf.label.values, index=dataf.id).to_dict(), tagged) def add_spatial_entity(self, id, label=None, v=True): """ diff --git a/strpython/nlp/disambiguator/geodict_gaurav.py b/strpython/nlp/disambiguator/geodict_gaurav.py index f6ae422..bbfb37b 100644 --- a/strpython/nlp/disambiguator/geodict_gaurav.py +++ b/strpython/nlp/disambiguator/geodict_gaurav.py @@ -86,9 +86,9 @@ class GauravGeodict(Disambiguator): fixed_entities = {} ambiguous_entities = {} for en in se_: - request = get_by_label(en, lang) + request = get_top_candidate(en, lang) if len(request) == 0: - request = get_by_alias(en, lang) + request = n_label_similar(en, lang) if len(request) > 1: ambiguous_entities[en] = [r["_source"] for r in request] diff --git a/strpython/nlp/disambiguator/models/bigram.py b/strpython/nlp/disambiguator/models/bigram.py index f45ba97..9441041 100644 --- a/strpython/nlp/disambiguator/models/bigram.py +++ b/strpython/nlp/disambiguator/models/bigram.py @@ -1,4 +1,6 @@ # coding = utf-8 +from strpython.helpers.geodict_helpers import get_data + class BigramModel: def __init__(self,freq={},count={}): @@ -21,7 +23,7 @@ class BigramModel: self.count_associated[uri]+=1 def get_coocurence_probability(self, pr1, *args): - if len(args) <2: + if len(args) < 2: print("Only one URI indicated") return 0. res_=1. @@ -34,10 +36,12 @@ class BigramModel: nna=0.00000001 if uri1 in self.cooc_freq: if uri2 in self.cooc_freq[uri1]: - return (self.cooc_freq[uri1][uri2] / self.count_associated[uri1])+pr1 + return self.cooc_freq[uri1][uri2] + #return (self.cooc_freq[uri1][uri2] / self.count_associated[uri1])+pr1 elif uri2 in self.cooc_freq: if uri1 in self.cooc_freq[uri2]: - return (self.cooc_freq[uri2][uri1] / self.count_associated[uri1])+pr1 + return self.cooc_freq[uri2][uri1] + #return (self.cooc_freq[uri2][uri1] / self.count_associated[uri1])+pr1 return nna diff --git a/strpython/nlp/disambiguator/wikipedia_cooc.py b/strpython/nlp/disambiguator/wikipedia_cooc.py index 56ec7cd..9d605d3 100644 --- a/strpython/nlp/disambiguator/wikipedia_cooc.py +++ b/strpython/nlp/disambiguator/wikipedia_cooc.py @@ -5,7 +5,7 @@ from .disambiguator import Disambiguator from .models.bigram import BigramModel import pickle from ...config.configuration import config -from ...helpers.geodict_helpers import get_data,get_most_common_id_v3,get_top_candidate +from ...helpers.geodict_helpers import * from .most_common import stop_words,common_words import networkx as nx @@ -14,7 +14,7 @@ def read_pickle(fn): class WikipediaDisambiguator(Disambiguator): - def __init__(self,measure="centrality"): + def __init__(self,measure="degree"): Disambiguator.__init__(self) # Load model self.model=BigramModel(read_pickle(config.wiki_cooc_dis.cooc_freq),read_pickle(config.wiki_cooc_dis.count)) @@ -53,7 +53,16 @@ class WikipediaDisambiguator(Disambiguator): group_candidate = {} #candidates per toponym for e in spat_en: - cand = get_top_candidate(e, lang,4) + cand = get_top_candidate(e, lang, 5)#get_top_candidate(e, lang,4) + if cand[0] == None: + cand=[] + if not cand: + cand=n_label_similar(e,lang,5) + if isinstance(cand,pd.DataFrame): + cand = cand["id"].values + else: + cand=[] + group_candidate[e] = cand betw_cand[e]=cand for n in cand: @@ -91,13 +100,14 @@ class WikipediaDisambiguator(Disambiguator): #Take the candidates with the highest degree weighted for gr in group_candidate: try: + if self.measure == "degree": selected[gr] = max(group_candidate[gr], key=lambda x: g.degree(x, weight='weight')) elif self.measure == "centrality": selected[gr] = max(group_candidate[gr], key=lambda x: nx.closeness_centrality(g, x, distance="weight")) else:# degree by default selected[gr] = max(group_candidate[gr], key=lambda x: g.degree(x, weight='weight')) - + #print(1) except: selected[gr]=get_most_common_id_v3(gr,lang)[0] return selected -- GitLab