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The code below presents a workflow to calibrate prediction models for the estimation of forest parameters
from ALS-derived metrics, using the area-based approach (ABA). The workflow is based on functions
from R packages 1idaRtRee and 1idR.
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Many thanks to Pascal Obstétar for checking code and improvement suggestions.

Load data

The “Quatre Montagnes” dataset from France, prepared as described in the data preparation tutorial is
loaded from the R archive files located in the folder “data/aba.model/output.”

Field data

The file “plots.rda” contains the field data, organized as a data.frame named plots. For subsequent use
in the workflow, the data.frame should contain at least two fields: plot_id (unique plot identifier) and a
forest stand parameter. Each line in the data.frame corresponds to a field plot. A factor variable is required
to calibrate stratified models. Plot coordinates are required for subsequent inference computations.

The provided data set includes one categorical variable: stratum, which corresponds to forest ownership,
XY coordinates and three forest stand parameters :

o basal area in m?/ha (G_m2_ha),

o stem density in /ha (N_ha),

o mean diameter at breast height in ¢cm (D_mean_cm).
Scatterplots of stand parameters are presented below, colored by ownership (green for public forest, blue
otherwise).
# load plot-level data

load( "../data/aba.model/output/plots.rda")

summary (plots)

## plot_id X Y cluster_id
## Length:96 Min. :895945  Min. 16439570 Length:96

## Class :character 1st Qu.:896989 1st Qu.:6443484 Class :character
## Mode :character Median :899661 Median :6451211 Mode :character

## Mean 1899394  Mean 16450228
#i 3rd Qu.:900696 3rd Qu.:6455042
## Max. 1903303  Max. 16459820
## G_m2_ha N_ha D_mean_cm stratum
## Min. :15.67  Min. : 56.59  Min. :14.70 private:32

## 1st Qu.:31.22 1st Qu.: 488.08 1st Qu.:19.55 public :64
## Median :37.35 Median : 714.43 Median :22.65

## Mean :40.17 Mean : 810.07 Mean :24.78
## 3rd Qu.:44.78 3rd Qu.:1110.55 3rd Qu.:26.31
## Max. :99.18 Max. :1994.74 Max. :75.53


https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.2.model.calibration.Rmd
https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.1.data.preparation.Rmd

# display forest wariables
plot(plots[, c("G_m2_ha", "N_ha", "D_mean_cm")], ifelse(plots$stratum == "public",
"green", "blue"))
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ALS data

Normalized ALS point clouds extracted over each plot, as well as terrain statistics previously computed
from the ALS ground points can also be prepared according to the data preparation tutorial. Point clouds
corresponding to each field plot are organized in a list of LAS objects. Meta data of one LAS object are
displayed below.

# list of LAS objects: normalized point clouds inside plot extent
load("../data/aba.model/output/llas_height.rda")

# display one point cloud # lidR::plot(llasn[[1]])
llas_height[[1]]

## class : LAS (v1.2 format 1)

## memory : 1.3 Mb

## extent : 898185.8, 898225.7, 6455688, 6455728 (xmin, xmax, ymin, ymax)
## coord. ref. : RGF93 / Lambert-93

## area 1 1248.7 m?

## points : 15.6 thousand points

## density : 12.51 points/m?

The first lines of the terrain statistics are displayed hereafter.

## altitude azimut_gr slope_gr
## Verc-01-1  1096.9 99.1 20.1
## Verc-01-2  1083.4 94.0 16.1
## Verc-01-3  1120.7 104.0 22.9

The following lines ensure that the plots are ordered in the same way in the three data objects.


https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.1.data.preparation.Rmd

llas_height <- llas_height[plots$plot_id]
metrics_terrain <- metrics_terrain[plots$plot_id, ]

ALS metrics computation

Two types of metrics can be computed.

e Point cloud metrics are directly computed from the point cloud or from the derived surface model
on the whole plot extent. These are the metrics generally used in the area-based approach.

o Tree metrics are computed from the characteristics of trees detected in the point cloud (or in the
derived surface model). They are more CPU-intensive to compute and require ALS data with higher
density, but in some cases they allow a slight improvement in models prediction accuracy.

Point cloud metrics

Point cloud metrics are computed with the function lidaRtRee::clouds_metrics, which applies
the 1idR::cloud_metrics to all point clouds in the list. Default computed metrics are those
proposed by the function 1idR::stdmetrics. Additional metrics are available with the function
lidaRtRee: :ABAmodelMetrics.

# define function for later use

aba_point_metrics_fun <- ~lidaRtRee::aba_metrics(Z, Intensity, ReturnNumber, Classification,
2)

# apply function on each point cloud in list

metrics_points <- lidaRtRee::clouds_metrics(llas_height, aba_point_metrics_fun)

round (head (metrics_points[, 1:8], 3), 2)

## zmax zmean zsd zskew zkurt zentropy pzabovezmean pzabove2
## Verc-01-1 33.87 16.99 8.21 -0.35 1.80 0.93 57.78 99.98
## Verc-01-2 30.54 16.79 5.66 -0.44 2.70 0.90 54.00 99.99
## Verc-01-3 29.89 18.64 5.15 -0.65 3.33 0.88 54.50 99.99

Tree metrics

Tree metrics rely on a preliminary detection of trees, which is performed with the 1idaRtRee: :tree_segmentation
function. For more details, please refer to the tree detection tutorial. Tree segmentation requires

point clouds or canopy height models with an additional buffer in order to avoid border effects

when computing tree characteristics. Once trees are detected, metrics are derived with the function
lidaRtRee::std_tree_metrics. A user-specific function can be specified to compute other metrics

from the features of detected trees. Plot radius has to be specified as it is required to exclude trees
detected outside of the plot, and to compute the plot surface. Tree segmentation is not relevant when the

point cloud density is too low, typically below five points per m?. The function first computes a canopy

height model which default resolution is 0.5 m, but this should be set to 1 m with low point densities.

# resolution of canopy height model (m)

aba_res_chm <- 0.5

# spectify plot radius to exclude trees located outside plots

plot_radius <- 15

# compute tree metrics

metrics_trees <- lidaRtRee::clouds_tree_metrics(llas_height, plots[, c("X", "Y")],

plot_radius, aba_res_chm, function(x) {
lidaRtRee::std_tree_metrics(x, pi * plot_radius~2/10000)
1))
round (head (metrics_trees[, 1:5], 3), 2)
## Tree_meanH Tree_sdH Tree_giniH Tree_density TreeInf10_density
## Verc-01-1 27.11 6.39 0.11 226.35 14.15
## Verc-01-2 25.80 3.27 0.06 268.80 0.00
## Verc-01-3 25.74 3.88 0.08 268.80 0.00


https://github.com/Jean-Romain/lidR/wiki/stdmetrics
https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/tree.detection.Rmd

Other metrics

In case terrain metrics have been computed from the cloud of ground points only, they can also be added
as variables, and so do other environmental variables which might be relevant in modeling.

metrics <- cbind(metrics_points[plots$plot_id, ], metrics_trees[plots$plot_id, 1],
metrics_terrain[plots$plot_id, 1:3])

Model calibration

Calibration for a single variable

Once a dependent variable (forest parameter of interest) has been chosen, the function 1idaRtRee: : ABAmodel
is used to select the linear regression model that yields the highest adjusted-R? with a defined number
of independent variables, while checking linear model assumptions. A Box-Cox transformation of the
dependent variable can be applied to normalize its distribution, or a log transformation of all variables
(parameter transform). Model details and cross-validation statistics are available from the returned
object.

variable <- "G_m2 ha"

# no subsample in this case

subsample <- l:nrow(plots)

# model calibration

model_aba <- lidaRtRee::aba_build_model(plots[subsample, variable], metrics[subsample,
1, "boxcox", 4, plots[subsample, c("X", "Y")])

## Reordering variables and trying again:

# renames outputs with variable name
row.names (model_aba$stats) <- variable

# display selected linear regression model
model_aba$model

#i#

## Call:

## stats::lm(formula = dep_var ~ Tree_density + TreeCanopy_meanH +

## TreeCanopy_cover_in_plot, data = df_transform)

##

## Coefficients:

#it (Intercept) Tree_density TreeCanopy_meanH
## 1.7873158 0.0005378 0.0240784
## TreeCanopy_cover_in_plot

## 0.5448517

# display calibration and validation statistics
model_aba$stats

## n formula adjR2
## G_m2_ha 96 Tree_density + TreeCanopy_meanH + TreeCanopy_cover_in_plot 0.6892235
## transform lambda rmse cvrmse pwil pttest paov
## G_m2_ha boxcox -0.1437872 8.312489 0.2069094 0.7134264 0.9922839 0.9965286
## cor 1looR2 var_res

## G_m2_ha 0.8189643 0.6701818 0.01285133

The function computes values predicted in leave-one-out cross-validation, by using the same combination
of dependent variables and fitting the regression coefficients with all observations except one. Predicted
values can be plotted against field values with the function 1idaRtRee: :aba_plot. It is also informative
to check the correlation of prediction errors with other forest or environmental variables.

In this example, only tree metrics are selected in the basal area prediction model. The model seems to
fail to predict large values. The prediction errors are positively correlated with basal area because large
values are under-estimated.



# check correlation between errors and other wvariables
round(cor(cbind(model_aba$values$residual, plots[subsample, c("G_m2_ha", "N_ha",
"D _mean_cm")], metrics_terrain[subsample, 1:31)), 2)I[1, ]

## model_aba$values$residual G_m2_ha N_ha
# 1.00 0.61 0.09
## D_mean_cm altitude azimut_gr
## 0.16 0.10 -0.06
## slope_gr
# -0.01

# significance of correlation value
cor.test(model_aba$values$residual, plots[subsample, variable])

#i#

## Pearson's product-moment correlation

#i#

## data: model_aba$values$residual and plots[subsample, variable]
## t = 7.3846, df = 94, p-value = 6.106e-11

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.4614978 0.7190573

## sample estimates:

#it cor

## 0.6059216

# plot predicted VS field wvalues

par( c(1, 2))
lidaRtRee: :aba_plot(model_aba, variable)
plot(plots[subsample, c("G_m2_ha")], model_aba$values$residual, "Prediction errors",
"Field values")
abline( 0, 2)
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In case only point cloud metrics are used as potential inputs, the errors are hardly better distributed.
Coloring points by ownership shows that plots located in private forests have the largest basal area values
which tend to be under-estimated.



model_aba_metrics_points <- lidaRtRee::aba_build_model(plots[subsample, variable],
metrics_points[subsample, ], "boxcox", 4, plots[subsample,
c("X", "Y")1)
# renames outputs
row.names (model_aba_metrics_points$stats) <- names(model_aba_metrics_points$model) <- variable
# model_aba_metrics_points$model [[variable]]
model_aba_metrics_points$stats

it n formula adjR2 transform lambda
## G_m2_ha 96 pzabovezmean + zpcum8 + p_1lst_hmin 0.6519446 boxcox -0.1437872
## rmse cvrmse pwil pttest paov cor looR2
## G_m2_ha 8.517813 0.2120202 0.5048285 0.9790591 0.9904006 0.808511 0.653687
## var_res

## G_m2_ha 0.0143929

# cor.test(model_aba_metrics_points$values$residual, plots[subsample,
# variable])

par( c(1, 2))
# plot predicted VS field wvalues
lidaRtRee: :aba_plot(model_aba_metrics_points, variable, ifelse(plots$stratum ==
"public", "green", "blue"))
legend("topleft", c("public", "private"), c("green", "blue"), 1)
plot(plots[subsample, c("G_m2 _ha")], model_aba_metrics_points$values$residual, "Prediction er
"Field values", ifelse(plots$stratum == "public", '"green", "blue"))
abline( 0, 2)
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Calibration for several variables

The following code calibrates models for several forest parameters. In case different transformations have
to be performed on the parameters, models have to be calibrated one by one.

models_aba <- list()
for (i in c("G_m2_ha", "D_mean_cm", "N_ha")) {
models_abal[[i]l] <- lidaRtRee::aba_build_model(plots[, i], metrics, "boxcox",
4, plots[, c('X", "Y")]1)



## Reordering variables and trying again:
## Reordering variables and trying again:
## Reordering variables and trying again:

# bind model stats in a data.frame

model_stats <- do.call(rbind, lapply(models_aba, function(x) {
x[["stats"]]

19))

The obtained models are presented below. The table columns correspond to:

e n number of plots,

e metrics selected in the model,

o adj-R2.% adjusted R-squared of fitted model (%),

o CV-R2.% coefficient of determination of values predicted in cross-validation (CV) VS field values
(%),

o CV-RMSE.Y% coefficient of variation of the Root Mean Square Errors of prediction in CV (%),

e CV-RMSE Root Mean Square Error of prediction in CV.

n metrics adj- CV- CV- CV-
R2.% R2.% RMSE.% RMSE
G_m2 ha96 Tree density + TreeCanopy meanH + 68.9 67.0 20.7 8.3
TreeCanopy__cover__in_ plot
D_mean @6 ipcumzq70 + Tree density + 82.1 89.5 12.5 3.1
TreeCanopy__meanH + altitude
N_ha 96 zentropy + mCH + p_ 1st_ hmin + 90.5 87.5 19.6 1584
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Stratified models

Motivation

When calibrating a statistical relationship between forest stand parameters, which are usually derived
from diameter measurements, and ALS metrics, one relies on the hypothesis that the interaction of laser
pulses with the leaves and branches structure is constant on the whole area. However, differences can be
expected either due to variations in acquisition settings (flight parameters, scanner model), in forests
(stand structure and composition) or in topography (slope). Better models might be obtained when
calibrating stratum-specific relationships, provided each stratum is more homogeneous regarding the laser
/ vegetation interaction. A trade-off has to be achieved between the within-strata homogeneity and the
number of available plots for calibration in each stratum. A minimum number of plots is approximately
50, while 100 would be recommended. In this example we hypothesize that ownership reflects both
structure and composition differences in forest stands.



Calibration of stratum-specific models

Stratum-specific models are computed and stored in a list during a for loop. The function
lidaRtRee: :aba_combine_strata then combines the list of models corresponding to each stratum to
compute aggregated statistics for all plots, making it easier to compare stratified with non-stratified
models.

In this example, the model for “private” yields a large error on the plot “Verc-C5-1,” which considerably
lowers the accuracy of the stratified approach.

# stratification wvariable
strat <- "stratum"
# create list of models
model_aba_stratified <- 1list()
# calibrate each stratum model
for (i in levels(plots[, stratl])) {
subsample <- which(plots[, strat] == i)
if (length(subsample) > 0) {
model_aba_stratified[[i]] <- lidaRtRee::aba_build_model(plots [subsample,
variable], metrics[subsample, ], "boxcox", 4, plots[subsample,
c("X", "Y")1)

}

## Reordering variables and trying again:

# backup list of models for later use

model_aba_stratified_boxcox <- model_aba_stratified

# combine list of models into single object

model_aba_stratified <- lidaRtRee::aba_combine_strata(model_aba_stratified, plots$plot_id)
# model_aba_stratified$stats

n metrics adj- CV- CV- CV-

R2.% R2.% RMSE.% RMSE

NOT.STRATIB6EDTree_ density + TreeCanopy__meanH + 68.9 67.0 20.7 8.3
TreeCanopy_ cover__in_ plot

private 32  zpcum?7 + ikurt + p_ 1st_ hmin 62.8 29.2 23.4 12.5

public 64 Tree_meanH + TreeCanopy_cover_ in_ plot 49.0 45.7 18.1 6.1

COMBINED 96 NA NA 63.3 21.8 8.8
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Stratified models with stratum-specific variable tranformations

In case one wants to apply different variable transformations, or use different subsets of ALS metrics
depending on the strata, the following example can be used. First models using only the point cloud
metrics are calibrated without transformation of the data. The statistics for all plots are then calculated
by combining the following stratum-specific models :

o public ownership, all metrics, Box-Cox transformation of basal area values (calibrated in the previous
paragraph),
e private ownership, only point cloud metrics, no data transformation.
# create list of models for no transformation
model_aba_stratified.none <- list()
# calibrate each stratum model
for (i in levels(plots[, strat])) {
subsample <- which(plots[, strat] == i)
if (length(subsample) > 0) {
model_aba_stratified.none[[i]] <- lidaRtRee::aba_build_model (plots[subsample,

variable], metrics_points[subsample, ], "none", plots[subsample,
c("x", "vy"1)
}
¥
# combine list of models into single object
model_aba_stratified_mixed <- lidaRtRee::aba_combine_strata(list( model_aba_stratified.none

model_aba_stratified_boxcox[["public"]]), plots$plot_id)
# bind model stats in a data.frame for comparison
model_stats <- rbind(model_aba$stats, model_aba_stratified_mixed$stats)
row.names (model_stats) [1] <- "NOT.STRATIFIED"

n metrics transform  adj- CV- CV- CV-
R2.% R2.% RMSE.% RMSE

NOT.STRATI& TEDee_ density + TreeCanopy__meanH +  boxcox 68.9 67.0 20.7 8.3
TreeCanopy_ cover_in_ plot

private 32 zpcum?7 + ikurt none 50.8 42.3 21.1 11.3

public 64 Tree meanH + boxcox 49.0 45.7 18.1 6.1
TreeCanopy__cover__in_ plot




n metrics transform  adj- CV- CV- CV-
R2.% R2% RMSE.% RMSE

COMBINEDY9 NA NA NA 68.0 20.4 8.2
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Save data before next tutorial

The following lines save the data required for the area-based mapping step.

save(model_aba_stratified_mixed, model_aba, aba_point_metrics_fun, aba_res_chm,
# save data for lidaRtRee package quatre_montagnes <- cbind(plots, metrics)
# save(quatre_montagnes, file = 'quatre_montagnes.rda')

10

"../data/aba.


https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.3.mapping.Rmd
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