R workflow for ABA data preparation

Jean-Matthieu Monnet

2021-08-03

The code below presents a workflow to prepare inventory data for the calibration of area-based models
with airborne laser scanning data and field measurements.

Licence: GNU GPLv3 / Source page
Required R libraries : ggplot2, sf, ggmap

Many thanks to Pascal Obstétar for checking code and improvement suggestions.

Import field inventory data
Tree-level inventory

96 plots of 15 m radius have been inventoried in the Quatre Montagnes area (Vercors Mountain, France).
Plots are aggregated in clusters of 4. Data are provided in the folder “data/aba.model/field”:

o one file per plot for tree information (“Verc-CLUSTERID-PLOTID-ArbresTerrain.csv”)
« one file per cluster for plot center location (“Verc-CLUSTERID-PiquetsTerrain.csv”)

The first step is to import tree and plot information in two separate data.frames.

set inventory parameters plot radius (m)
p_radius <- 15
DBH threshold (cm) for inventory, trees smaller than this value are not
inventoried
dbh_min <- 7.5
list tree files by pattern matching
files_t <- as.list(dir("../data/aba.model/field/", "Verc-[[:alnum:]]1{2}-[[:digit:]1]
TRUE))
load content of all files with lapply
trees <- lapply(files_t, function(x) {
read table

dummy <- read.table(x, ol T, F)
add one column with plot_id from file name
cbind (dummy, data.frame(rep(substr(x, 31, 34), nrow(dummy))))

b

bind elements of list into a single data.frame
trees <- do.call(rbind, trees)

add study area info in plot_<d

trees$plot_id <- pasteO("Verc-", trees$plot_id)

Fields are:

e tree_id: tree id in the plot

e pole_id: plot id inside the cluster (1 to 4)

o species: tree species abreviated as GESP (GEnus SPecies)

e azimuth_gr: azimuth in grades from the plot center to tree center

e slope_gr: slope in grades from the plot center to tree center

o diameter_cm: tree diameter at breast height (1.3 m, upslope), in cm

e ground_distance_m: ground distance between the plot center and tree edge at breast height, in m
e height_m: tree height, in m

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.1.data.preparation.Rmd

e appearance:
— 0: lying or missing,
— 1: live,
2: live with broken treetop,
— 3: dead with branches,
— 4: dead without branches (snag)
e tilted: 0: no, l:yes
e remark
e plot_id: plot id

The following lines set column names to English and convert the appearance column to factor with
adequate values for the levels.

change column names to English

names (trees) <- c("tree_id", "pole_id", "species", "azimuth_gr", "slope_gr", "diameter_cm",
"ground_distance_m", "height_m", "appearance", "tilted", "remark", "plot_id")

add factor levels to column appearance

trees$appearance <- factor(trees$appearance, levels = 0:4)

levels(trees$appearance) <- c("missing or lying", "live", "live with broken treetop",
"dead with branches", "dead without branches (snag)")

convert species column to factor

trees$species <- factor(trees$species)

head(trees, n = 3)

tree_id pole_id species azimuth_gr slope_gr diameter_cm ground_distance_m

1 1 pl PIAB 10 0 54.20817 6.00
2 2 pl PIAB 12 -4 32.40395 12.13
3 3 pl PIAB 28 -8 35.01409 13.90
height_m appearance tilted remark plot_id
1 33.8 live 0 170.3 Verc-01-1
2 26.8 live 0 101.8 Verc-01-1
3 29.1 live 0 110 Verc-01-1

Plot-level information

The next step is to import plot coordinates.

list location files by pattern matching
files_p <- dir(path = "../data/aba.model/field/", pattern = "Verc-[[:alnum:]]{2}_PiquetsTerrain.csv"
full.names = TRUE)
initialize data.frame
plots <- NULL
load all plot files with a loop
for (i in files_p) {
read file
dummy <- read.table(i, sep = ";", header = T, stringsAsFactors = F)
append to data.frame and add plot_id info
plots <- rbind(plots, cbind(dummy, data.frame(plot_id = rep(substr(i, 31, 32),
nrow(dummy)))))
}
keep only mecessary data in plots data.frame (remove duplicate position
measurements)
plots <- plots[is.element(plots$Id, c("pl", "p2", "p3", "p4")),]
add plot_id to cluster_id
plots$cluster_id <- pasteO("Verc-", substr(plots$plot_id, 1, 2))
plots$plot_id <- paste(plots$cluster_id, substr(plots$Id, 2, 2), sep = "-")
keep only coordinates and Id in data.frame
plots <- plots[, c("X", "Y", "plot_id", "cluster_id")]
convert to spatial sf object
plots_sf <- sf::st_as_sf(plots, coords = c("X", "Y"))

set coordinate system

sf::st_crs(plots_sf) <- 2154

add coordinates in data.frame of sf object

plots_sf <- cbind(plots_sf, data.frame(sf::st_coordinates(plots_sf)))

The following lines maps the plot locations with a background from OpenStreetMap :

o the bounding box of the region of interest is extracted in latitude / longitude values;
¢ the corresponding background is obtained with the package ggmap;
o ggplot2 functions are used to plot the coordinates with this background.

transform coordinates to lat / lon
plots_sf_transform <- sf::st_transform(plots_sf, 4326)
extract bounding box
ext <- sf::st_bbox(plots_sf_transform)
set buffer
buffer <- 0.02
define location extent
loc <- c(ext$ymin - buffer, ext$xmin - buffer, ext$ymax + buffer, ext$xmax + buffer)
add required names for location extent
names (loc) <- c("bottom", "left", "top", "right")
load maps around plots
map <- ggmap::get_map(location = loc, source = "osm", zoom = 11)
draw map
ggmap: :ggmap (map) + ggplot2::labs(title = "Field plot location", x = "Longitude",
y = "Latitude") + ggplot2::geom_sf(data = plots_sf_transform, inherit.aes = FALSE)

Field plot location

45.20°N -

45.15°N

Latitude

45.10°N -

45.05°N

5.48°65.50°65.52°65.54°65.56°65.58°65.60°E
Longitude

In case tree positions have to be precisely calculated in a given projected coordinates system, it is necessary
to correct magnetic azimuth with magnetic declination at the time of inventory and meridian convergence
at the location. The values of magnetic declination and meridian convergence at each plot location are
loaded from an additional table.

get meta data about meridian convergence and declination by importing the
metadata file.

meta <- read.table(file = "../data/aba.model/field/plot.metadata.csv", sep = ";",
header = T)

keep only required attributes

meta <- metal, c("Id", "Convergence_gr", "Declinaison_gr")]

rename attributes

names (meta) <- c("cluster_id", "convergence_gr", "declination_gr")

merge to add convergence and declination in plots data.frame
plots_sf <- merge(plots_sf, meta)
head(plots_sf, n = 3)

Simple feature collection with 3 features and 6 fields

Geometry type: POINT

Dimension: XY

Bounding box: =xmin: 898137 ymin: 6455667 xmax: 898248.8 ymax: 6455708
Projected CRS: RGF93 / Lambert-93

cluster_id plot_id X Y convergence_gr declination_gr

1 Verc-01 Verc-01-1 898205.7 6455708 -1.49862 0.83
2 Verc-01 Verc-01-2 898248.8 6455667 -1.49862 0.83
#t 3 Verc-01 Verc-01-3 898137.0 6455687 -1.49862 0.83
geometry

1 POINT (898205.7 6455708)
2 POINT (898248.8 6455667)
3 POINT (898137 6455687)

Compute tree coordinates

Tree coordinates can be computed from the plot center coordinates and from the azimuth, slope and
ground distance measurements. In case ground distance is measured to the tree edge, the tree diameter
has to be taken into account to compute the position of the tree center.

merge tree and plots data.frames to import plot center

trees <- merge(trees, plots_sf[, c("X", "Y", "convergence_gr", "declination_gr",
"plot_id")], "plot_id")

compute projected coordinates

dummy <- lidaRtRee::polar2Projected(trees$X, trees$Y, 0, trees$azimuth_gr/200 * pi,
trees$ground_distance_m, trees$slope_gr/200 * pi, trees$declination_gr/200 *

pi, trees$convergence_gr/200 * pi, trees$diameter_cm/100)
add coordinates to trees data.frame
trees[, c("X", "Y", "horiz_dist_m")] <- dummy[, c("x", "y", "d")]

head(trees, 3)

plot_id tree_id pole_id species azimuth_gr slope_gr diameter_cm

1 Verc-01-1 1 pl PIAB 10 0 54.20817

2 Verc-01-1 2 pl PIAB 12 -4 32.40395

3 Verc-01-1 3 pl PIAB 28 -8 35.01409

ground_distance_m height_m appearance tilted remark X Y
1 6.00 33.8 live 0 170.3 898206.6 6455714
2 12.13 26.8 live 0 101.8 898207.9 6455720
3 13.90 29.1 live 0 110 898211.5 6455721
convergence_gr declination_gr geometry horiz_dist_m

1 -1.49862 0.83 POINT (898205.7 6455708) 6.271041

2 -1.49862 0.83 POINT (898205.7 6455708) 12.268084

3 -1.49862 0.83 POINT (898205.7 6455708) 13.965465

Import ALS data

The LAZ files provided with this tutorial are the point clouds already extracted around the plots. The
code presented afterwards will thus extract the point clouds in files which correspond to already extracted
data, but it can also perform the operation if the folder contains LAZ files corresponding to a wall to wall
cover. LAZ files should be non-overlapping, and normalized (i.e. the Z field contains the height above
ground).

Point cloud extraction

Normalized points clouds are extracted over each plot. For the delineation of single trees, a buffer has to
be added around the plot border. The attribute buffer is added and filled with TRUE for loaded points
which are located outside of the plot extent. Those points will be removed when statistics are computed
for the point cloud located inside the extent of the field plot.

folder with laz files lazdir <-—

'/media/reseau/lessem/ProjetsCommuns/Lidar/data/38_Quatre_Montagnes/norm.laz/"'
lazdir <- "../data/aba.model/ALS/plots.norm.laz/"

make catalog of las files

cata <- 1lidR::readALSLAScatalog(lazdir)

set coordinate system

1lidR::projection(cata) <- 2154
disable display of catalog processing
1idR: :opt_progress(cata) <- FALSE
extract from LAZ files in catalog
llas_height <- 1idR::clip_circle(cata, plots_sf$X, plots_sf$Y, p_radius + 5)
add 'buffer' attridbute equal to TRUE to points outside plot
for (i in 1:length(llas_height)) {
llas_height[[i]] <- 1lidR::add_attribute(llas_height[[i]], (1las_height[[i]]$X -
plots_sf$X[i]l) "2 + (llas_height[[i]1]$Y - plots_sf$Y[i]l) "2 > p_radius~2, "buffer")
}
set names of point clouds in list
names (1las_height) <- plots_sf$plot_id
set negative height wvalues to 0
for (i in 1:length(llas_height)) {
llas_height[[i]]@data$Z[1las_height[[i]]@data$Z < 0] <- O
}
write plot clouds for (i in names(llas_height))
{lidR: :writeLAS(llas_height[[i]], file=pasteO(lazdir, %, '.laz'))}

Point clouds with altitude values can be used to compute terrain statistics. The folder plots.laz contains
the point clouds with altitude value extracted on the extent of each field plot. No buffer is added when
loading those point clouds. The points not classified as ground are removed.

folder with laz files

lazdir <- "../data/aba.model/ALS/plots.laz/"

make catalog of las files

cata <- 1lidR::readALSLAScatalog(lazdir)

set coordinate system

lidR::projection(cata) <- 2154

disable plot of tile processing
cata@processing_options$progress <- FALSE

extract las point cloud without buffer

llas_ground <- 1idR::clip_circle(cata, plots$X, plots$Y, p_radius)
names (1las_ground) <- plots$plot_id

keep only ground points in point clouds

llas_ground <- lapply(llas_ground, lidR::filter_ground)

Computation of terrain statistics

Terrain statistics can be extracted from the cloud of ground points with altitude values. The function
terrain_points_metrics computes the aspect, altitude and slope of a point cloud by fitting a plane to
points. The altitude is extracted by interpolating values at user-specified coordinates, or as the mean of
the range of altitude values if no coordinates are specified.

use mapply to apply points2terrainStats function to each point cloud while
providing the coordinates of each center
metrics_terrain <- mapply(function(x, y) {

lidaRtRee: :terrain_points_metrics(x, plots[y, c("X", "Y")], p_radius)
}, llas_ground, as.list(1l:length(llas_ground)), FALSE)
bind results in data.frame
metrics_terrain <- do.call(rbind, metrics_terrain)
compute terrain stats without specifying centre
metrics_terrain2 <- lapply(llas_ground, lidaRtRee::terrain_points_metrics)
metrics_terrain2 <- do.call(rbind, metrics_terrain2)
display results for comparison

head(cbind(metrics_terrain, metrics_terrain2), 3)
altitude azimut_gr slope_gr adjR2_plane altitude azimut_gr slope_gr
Verc-01-1 1096.9 99.1 20.1 99.6 1096.7 99.1 20.1

Verc-01-2 1083.4 94.0 16.1 99.2 1083.2 94.0 16.1

Verc-01-3 1120.7 104.0 22.9 99.6 1120.4 104.0 22.9
#it adjR2_plane
Verc-01-1 99.6
Verc-01-2 99.2
Verc-01-3 99.6

Check field inventory data

Below are some checks that can be performed to correct possible errors in the field data.

Consistency with the inventory protocol (all trees)
To ensure that all trees were correctly inventoried according to the protocol :

o If the distance of the tree to the plot center was recorded, the horizontal distance between the plot
center and the tree center has to be checked to make sure the tree is included in the 15 meter radius.
e Diameters can also be checked to avoid that trees below the DBH limit remain in the inventory.

summary (trees[, c("diameter_cm", "horiz_dist_m")])

diameter_cm horiz_dist m
Min. : 7.417 Min. : 0.790
1st Qu.:11.332 1st Qu.: 7.241
Median :17.500 Median :10.476

Mean :21.385 Mean : 9.884
3rd Qu.:27.900 3rd Qu.:12.945
Max. :95.100 Max. :18.201

Once values have been checked for potential writing errors, remaining errors should be removed.

nb_trees <- nrow(trees)

keep only trees inside plot

trees <- trees[trees$horiz_dist_m <= p_radius,]
keep trees above the DBH limit

trees <- trees[trees$diameter_cm >= dbh_min,]

number of removed trees nb_trees - nrow(trees)

In this case 59 trees were removed.

Consistency of trees azimuth and slope to center (by plot)

If tree 3D spherical coordinates have been recorded, azimuth can be checked against slope. For each
plot, if the slope and azimuth are constant on the whole surface, then plotting the tree slope from the
plot center against the tree azimuth from the plot center should draw a sinusoid-shaped point cloud.
Outliers are likely to be errors in slope or azimuth values. For trees located close to the plot center, slope
measurement precision is lower, so that larger deviation might be accepted.

example plot to test

plot_test <- "Verc-01-1"

plot slope as a function of azimuth, symbol size proportional to horizontal

distance from center

plot(slope_gr ~ azimuth_gr, trees, which(trees$plot_id == plot_test),
horiz_dist_m/p_radius, "Trees slope and azimuth to plot center")

Trees slope and azimuth to plot center

o _|]

~ o0 c?o% o

o o %

-] S
Enl o
8 QO — o Oo °
o o
7) (@]

S 4 % 0

| o o

o o
< ‘D o®
D I I I I
0 100 200 300 400
azimuth_gr

The following lines create a spatial polygon corresponding to one plot extent.

extract example plot

plots_sf.t <- plots_sf[plots_sf$plot_id == plot_test,]

create polygon with buffer of plot radius

plots_extent_t <- sf::st_buffer(plots_sf.t, p_radius, 10)

Consistency of field operator path (by plot)

In case trees have been numbered in the order of inventory on the field, plotting tree positions with lines
linking the trees in the order of inventory should trace the path of field operators. Any detour might
indicate an error in distance or azimuth values.

extraction of trees of plot to test
trees_t <- trees[trees$plot_id == plot_test,]
display plot limits

plot(sf::st_geometry(plots_extent_t), "red", TRUE)

display plot center

plot(sf::st_geometry(plots_sf.t), "red", 3P TRUE)

add tnventoried trees

lidaRtRee: :plot_tree_inventory(trees_t[, c("X", "Y")], trees_t$height_m, as.character(tree
as.numeric(trees_t$appearance) - 1, TRUE)

draw lines between trees
lines(trees_t[order(trees_t$tree_id), c("X", "Y")])

B ABAL
B FASY
o -| ®m PAB
< | @ TABA
m p—
Lo
q—
© _
. -
(@]
(e}
m —
Lo
q—
© [[[
898180 898200 898220

Height / diameter allometry (all trees)

The allometry of trees can also be checked in case heights were also measured. Plotting the heights
against diameters can be informative to detect errors in diameter or height values. In this case, the
information about the appearance of trees sometimes provides explanation for outliers (mostly damaged
or dead trees).

symbol size proportional to hortizontal distance from center

plot(height_m ~ diameter_cm, trees, lidaRtRee: :species_color() [as.character (trees$speci
"col"], as.numeric(trees$appearance) - 1, "Height VS diameter, all trees")

legend ("bottomright", levels(trees$appearance), (1:1length(levels(trees$appearance)) -
1)

Height VS diameter, all trees

@]
g] © o C@)@ >
% o

o R o

Q -
E|
2 %
< O missing or lying

o o live

— 7 A live with broken treetop

+ dead with branches
o — O X dead without branches (snag)

I I I I
20 40 60 80

diameter_cm

The ggplot2 package provides useful syntax and functions for producing informative graphics. The next
plot displays the diameter / height relationship for the three most abundant species in the dataset.

g <- ggplot(trees[is.element(trees$species, c("ABAL", "PIAB", "FASY")),], aes(x = diameter_cm,
v = height_m, shape = appearance))
g + geom_point(aes(color = species)) + scale_x_sqrt() + geom_smooth(aes(group = species),
color = "black", linetype = "dashed") + facet_grid(. ~ species) + labs(x = "diameter_cm (sqrt sc

ABAL FASY PIAB

appearance
® missing or lying
A live
= live with broken treetop
+ dead with branches
® dead without branches (snag)
NA

species
® ABAL
® FASY
* PIAB

25 50 75 100 25 50 75 100 25 50 75 100
diameter_cm (sqrt scale)

Diameter distribution (by plot)

For each plot, displaying the histogram of trees, colored by species is also informative to make sure the
forest structure is coherent.

plot diameter distribution remove unused levels in species factor column
trees_t$species <- factor(trees_t$species)

10

stacked histogram : data.frame split by species
dummy <- split(trees_t$diameter_cm, trees_t$species)
lidaRtRee: :hist_stack(dummy, col = lidaRtRee::species_color() [names(dummy), '"col"],
breaks = seq(from = dbh_min, by = 5, to = 5 * ceiling(max(trees_t$diameter_cm -
2.5)/5) + 2.5), main = pasteO("Diameter distribution of plot ", plot_test),

ylab = "Number of trees", xlab = "Diameter (cm)",)
legend("topright", names(dummy), fill = lidaRtRee::species_color () [names (dummy),
”COl"])

plot diameter distribution change order of levels to display more abundant

specties at the bottom

trees_t$species <- factor(trees_t$species, levels = names(sort(table(trees_t$species))))

load custom species table with associated colors

table.species <- lidaRtRee: :species_color()

extract species present on the plot

table.species <- table.species[levels(trees_t$species), "col"]

stacked histogram : data.frame split by species

ggplot(trees_t, aes(x = diameter_cm, fill = species)) + geom_histogram(breaks = seq(from = 7.5,

to = max(trees_t$diameter_cm) + 5, by = 5), color = "black") + scale_fill manual(values = table.
labs(title = pasteO("Diameter distribution of plot ", plot_test), y = "Number of trees",
x = "Diameter (cm)")

11

Diameter distribution of plot Verc-01-1

15-
@ species
o 10-
= |:| TABA
N . FASY
[}
= . ABAL
= . PIAB

20 40 60
Diameter (cm)

Trees positions and remote sensing data (by plot)

In case remote sensing data is available, plotting trees positions, sizes and species on high-resolution
remote sensing background also helps in identifying errors or incoherence. Airborne laser scanning data
is particularly helpful. Please refer to the field plot coregistration and tree segmentation tutorials for
additional information.

The tree positions can be plotted with the canopy height model computed with the ALS data.

compute background compute canopy height model

chm <- lidaRtRee::points2DSM(1llas_height[[plot_test]], res = 0.5)

display CHM

raster::plot(chm, col = gray(seq(0, 1, 1/255)), main = "Canopy Height Model and tree positions")

add inventoried trees

lidaRtRee: :plot_tree_inventory(trees_t[, c("X", "Y")], trees_t$height_m, species = as.character(tree
pch = as.numeric(trees_t$appearance) - 1, add = TRUE)

display plot limits

plot(plots_extent_t, border = "red", color = NA, add = TRUE)

12

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/coregistration.Rmd
https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/tree.detection.Rmd

Canopy Height Model and tree positions

B ABAL
@ FASY
| m PIAB
O TABA 30
g 25
o 20
3 15
10
- 5
0
o
D
[{e]
r
Te]
< T T
©
898180 898200 898220
Similar output with ggplot2.
convert raster to data.frame for display with ggplot
chm.df <- raster::as.data.frame(chm, xy = TRUE)
rename columns
names (chm.df) <- c("x", "y", "CHM")
create graph
gl <- ggplot() +
raster background
geom_raster(data = chm.df, aes(x = x, y =y, fill = CHM)) +
background scale in black and white
scale_fill_gradientn(colours = c("black", "white"), na.value = "white") +

add trees
geom_point(data = trees_t, aes(x = X, y = Y, shape = appearance, size = diameter_cm, colour = spec
shape radius (not area) proportional to diameter
scale_radius(name = "diameter_cm") +
custom colors for species
scale_colour_manual (values = table.species) +
shapes are empty
scale_shape(solid = FALSE) +
add plot extent
geom_sf (data = plots_extent_t, fill = NA, color = "red") +
specify coordinate system
coord_sf(datum = 2154) +
add title
labs(title = paste0("Map of plot ", plot_test))
print(gl)

13

Map of plot Verc-01-1 ® 40
6455730 - . 60

appearance

6455720 - o live

A live with broken treetop

6455710~ Species

> TABA

® FASY
® ABAL

6455700 - e PIAB

CHM

6455690 - 30

20

' ' ' '
898190 898200 898210 898220

10

Stand level parameters
Compute stand level forest parameters
Three stand level parameters are computed by aggregating the tree level information at the plot level:

e basal area (G_m2_ha, m?/ha)
o mean diameter (D_mean_cm, cm)
o stem density (N_ha, /ha).

Only live trees are considered in this analysis.

keep only live trees

trees <- trees[is.element(trees$appearance, c("live", "live with broken treetop")),
]

Basal area in m2/ha

dummy <- aggregate(diameter_cm ~ plot_id, trees, FUN = function(x) {
sum(pi * (x/200)°2, na.rm = T) * (10000/(pi * p_radius~2))

1))

rename colum of result

names (dummy) [2] <- "G_m2_ha"

add information to plots data.frame

plots <- merge(plots, dummy)

Stem density in m2/ha

dummy <- aggregate(diameter_cm ~ plot_id, trees, FUN = function(x) {
length(x) * (10000/(pi * p_radius”2))

b

names (dummy) [2] <- "N_ha"

plots <- merge(plots, dummy)

Mean diameter in cm

dummy <- aggregate(diameter_cm ~ plot_id, trees, FUN = function(x) {
mean (x)

b

names (dummy) [2] <- "D_mean_cm"

plots <- merge(plots, dummy)

Summary statistics

summary (plots[, c¢("G_m2_ha", "N_ha", "D_mean_cm")])

G_m2_ha N_ha D_mean_cm
Min. :15.67 Min. : 56.59 Min. :14.70
1st Qu.:31.22 1st Qu.: 488.08 1st Qu.:19.55

14

Median :37.35 Median : 714.43 Median :22.65

Mean :40.17 Mean : 810.07 Mean :24.78

3rd Qu.:44.78 3rd Qu.:1110.55 3rd Qu.:26.31

Max. :99.18 Max. :1994.74 Max. :75.53

display histograms

par(c(1, 3))

hist(plots$G_m2_ha, "Basal area", "(m2/ha)", "Plot number")

hist(plots$N_ha, "Stem density", "(/ha)", "Plot number")

hist(plots$D_mean_cm, "Mean diameter", "(cm)", "Plot number")
Basal area Stem density Mean diameter

25 30
1 1
15
1
40
1

20
1

Plot number
Plot number
Plot number
20

1

10
1

r T T T 1 r T T T 1
20 40 60 80 100 0 500 1000 1500 2000 10 20 30 40 50 60 70 80

(m2/ha) (Iha) (cm)

Add stratum information from external data

In this area, public forests are generally managed in a different way compared to private forests, resulting
in different forest structures. Ownership is also linked to species composition. This classification could be
used as a stratification when calibrating relationships between ALS metrics and forest parameters.

Plots will be attributed to strata based on external GIS layers. The first layer is a vector map of public
forests (Foréts publiques, ONF Paris, 2019) which is available under the Open Licence Etalab Version 2.0.

The following lines load the public forests layer and intersects it with the plot locations.

load GIS layer of public forests

public <- sf::st_read("../data/aba.model/GIS/Public4Montagnes.shp", TRUE,
TRUE)

set coordinate system

sf::st_crs(public) <- 2154

spatial query

plots_sf <- sf::st_join(plots_sf, public)

rename column and levels

plots_sf$stratum <- factor(ifelse(is.na(plots_sf$FID), "private", "public"))

also add to data.frame

plots <- merge(plots, sf::st_drop_geometry(plots_sf[, c("plot_id", "stratum")]))

remove column

plots_sf$FID <- NULL

The following map displays the plots colored based on ownership, after spatial extraction of this information

from the polygons of public forests (black borders).

project points into map system

plots_sf_transform <- sf::st_transform(plots_sf, 4326)

public_transform <- sf::st_transform(public, 4326)

display plots

ggmap: :ggmap (map) + ggplot2::geom_sf (sf::st_geometry(public_transform), FALSE,
NA, "black") + ggplot2::geom_sf (plots_sf_transform, FALSE,

aes (stratum))

15

https://www.etalab.gouv.fr/licence-ouverte-open-licence

45.15°N
stratum
© ® private
® public

45.10°N

45.05°N

N -’t
5.48°B.50°6.52°6.54°6.56°6.58°6.60°E
lon

Save data before next tutorial

The following lines save the data required for the area-based model calibration step.

save(plots, file = "../data/aba.model/output/plots.rda")
save(llas_height, file = "../data/aba.model/output/llas_height.rda", compress = "bzip2")
save(metrics_terrain, file = "../data/aba.model/output/metrics_terrain.rda")

16

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.2.model.calibration.Rmd

	Import field inventory data
	Tree-level inventory
	Plot-level information
	Compute tree coordinates

	Import ALS data
	Point cloud extraction
	Computation of terrain statistics

	Check field inventory data
	Consistency with the inventory protocol (all trees)
	Consistency of trees azimuth and slope to center (by plot)
	Consistency of field operator path (by plot)
	Height / diameter allometry (all trees)
	Diameter distribution (by plot)
	Trees positions and remote sensing data (by plot)

	Stand level parameters
	Compute stand level forest parameters
	Add stratum information from external data

	Save data before next tutorial

