
R workflow for ABA data preparation

Jean-Matthieu Monnet

2021-08-03

The code below presents a workflow to prepare inventory data for the calibration of area-based models
with airborne laser scanning data and field measurements.

Licence: GNU GPLv3 / Source page

Required R libraries : ggplot2, sf, ggmap

Many thanks to Pascal Obstétar for checking code and improvement suggestions.

Import field inventory data
Tree-level inventory

96 plots of 15 m radius have been inventoried in the Quatre Montagnes area (Vercors Mountain, France).
Plots are aggregated in clusters of 4. Data are provided in the folder “data/aba.model/field”:

• one file per plot for tree information (“Verc-CLUSTERID-PLOTID-ArbresTerrain.csv”)
• one file per cluster for plot center location (“Verc-CLUSTERID-PiquetsTerrain.csv”)

The first step is to import tree and plot information in two separate data.frames.
set inventory parameters plot radius (m)
p_radius <- 15
DBH threshold (cm) for inventory, trees smaller than this value are not
inventoried
dbh_min <- 7.5
list tree files by pattern matching
files_t <- as.list(dir(path = "../data/aba.model/field/", pattern = "Verc-[[:alnum:]]{2}-[[:digit:]]{1}_ArbresTerrain.csv",

full.names = TRUE))
load content of all files with lapply
trees <- lapply(files_t, function(x) {

read table
dummy <- read.table(x, sep = ";", header = T, stringsAsFactors = F)
add one column with plot_id from file name
cbind(dummy, data.frame(plot_id = rep(substr(x, 31, 34), nrow(dummy))))

})
bind elements of list into a single data.frame
trees <- do.call(rbind, trees)
add study area info in plot_id
trees$plot_id <- paste0("Verc-", trees$plot_id)

Fields are:

• tree_id: tree id in the plot
• pole_id: plot id inside the cluster (1 to 4)
• species: tree species abreviated as GESP (GEnus SPecies)
• azimuth_gr: azimuth in grades from the plot center to tree center
• slope_gr: slope in grades from the plot center to tree center
• diameter_cm: tree diameter at breast height (1.3 m, upslope), in cm
• ground_distance_m: ground distance between the plot center and tree edge at breast height, in m
• height_m: tree height, in m

1

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.1.data.preparation.Rmd

• appearance:
– 0: lying or missing,
– 1: live,
– 2: live with broken treetop,
– 3: dead with branches,
– 4: dead without branches (snag)

• tilted: 0: no, 1:yes
• remark
• plot_id: plot id

The following lines set column names to English and convert the appearance column to factor with
adequate values for the levels.
change column names to English
names(trees) <- c("tree_id", "pole_id", "species", "azimuth_gr", "slope_gr", "diameter_cm",

"ground_distance_m", "height_m", "appearance", "tilted", "remark", "plot_id")
add factor levels to column appearance
trees$appearance <- factor(trees$appearance, levels = 0:4)
levels(trees$appearance) <- c("missing or lying", "live", "live with broken treetop",

"dead with branches", "dead without branches (snag)")
convert species column to factor
trees$species <- factor(trees$species)
head(trees, n = 3)

tree_id pole_id species azimuth_gr slope_gr diameter_cm ground_distance_m
1 1 p1 PIAB 10 0 54.20817 6.00
2 2 p1 PIAB 12 -4 32.40395 12.13
3 3 p1 PIAB 28 -8 35.01409 13.90
height_m appearance tilted remark plot_id
1 33.8 live 0 170.3 Verc-01-1
2 26.8 live 0 101.8 Verc-01-1
3 29.1 live 0 110 Verc-01-1

Plot-level information

The next step is to import plot coordinates.
list location files by pattern matching
files_p <- dir(path = "../data/aba.model/field/", pattern = "Verc-[[:alnum:]]{2}_PiquetsTerrain.csv",

full.names = TRUE)
initialize data.frame
plots <- NULL
load all plot files with a loop
for (i in files_p) {

read file
dummy <- read.table(i, sep = ";", header = T, stringsAsFactors = F)
append to data.frame and add plot_id info
plots <- rbind(plots, cbind(dummy, data.frame(plot_id = rep(substr(i, 31, 32),

nrow(dummy)))))
}
keep only necessary data in plots data.frame (remove duplicate position
measurements)
plots <- plots[is.element(plots$Id, c("p1", "p2", "p3", "p4")),]
add plot_id to cluster_id
plots$cluster_id <- paste0("Verc-", substr(plots$plot_id, 1, 2))
plots$plot_id <- paste(plots$cluster_id, substr(plots$Id, 2, 2), sep = "-")
keep only coordinates and Id in data.frame
plots <- plots[, c("X", "Y", "plot_id", "cluster_id")]
convert to spatial sf object
plots_sf <- sf::st_as_sf(plots, coords = c("X", "Y"))

2

set coordinate system
sf::st_crs(plots_sf) <- 2154
add coordinates in data.frame of sf object
plots_sf <- cbind(plots_sf, data.frame(sf::st_coordinates(plots_sf)))

The following lines maps the plot locations with a background from OpenStreetMap :

• the bounding box of the region of interest is extracted in latitude / longitude values;
• the corresponding background is obtained with the package ggmap;
• ggplot2 functions are used to plot the coordinates with this background.

transform coordinates to lat / lon
plots_sf_transform <- sf::st_transform(plots_sf, 4326)
extract bounding box
ext <- sf::st_bbox(plots_sf_transform)
set buffer
buffer <- 0.02
define location extent
loc <- c(ext$ymin - buffer, ext$xmin - buffer, ext$ymax + buffer, ext$xmax + buffer)
add required names for location extent
names(loc) <- c("bottom", "left", "top", "right")
load maps around plots
map <- ggmap::get_map(location = loc, source = "osm", zoom = 11)
draw map
ggmap::ggmap(map) + ggplot2::labs(title = "Field plot location", x = "Longitude",

y = "Latitude") + ggplot2::geom_sf(data = plots_sf_transform, inherit.aes = FALSE)

3

45.05°N

45.10°N

45.15°N

45.20°N

5.48°E5.50°E5.52°E5.54°E5.56°E5.58°E5.60°E
Longitude

La
tit

ud
e

Field plot location

In case tree positions have to be precisely calculated in a given projected coordinates system, it is necessary
to correct magnetic azimuth with magnetic declination at the time of inventory and meridian convergence
at the location. The values of magnetic declination and meridian convergence at each plot location are
loaded from an additional table.
get meta data about meridian convergence and declination by importing the
metadata file.
meta <- read.table(file = "../data/aba.model/field/plot.metadata.csv", sep = ";",

header = T)
keep only required attributes
meta <- meta[, c("Id", "Convergence_gr", "Declinaison_gr")]
rename attributes
names(meta) <- c("cluster_id", "convergence_gr", "declination_gr")
merge to add convergence and declination in plots data.frame
plots_sf <- merge(plots_sf, meta)
head(plots_sf, n = 3)

Simple feature collection with 3 features and 6 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 898137 ymin: 6455667 xmax: 898248.8 ymax: 6455708
Projected CRS: RGF93 / Lambert-93

4

cluster_id plot_id X Y convergence_gr declination_gr
1 Verc-01 Verc-01-1 898205.7 6455708 -1.49862 0.83
2 Verc-01 Verc-01-2 898248.8 6455667 -1.49862 0.83
3 Verc-01 Verc-01-3 898137.0 6455687 -1.49862 0.83
geometry
1 POINT (898205.7 6455708)
2 POINT (898248.8 6455667)
3 POINT (898137 6455687)

Compute tree coordinates

Tree coordinates can be computed from the plot center coordinates and from the azimuth, slope and
ground distance measurements. In case ground distance is measured to the tree edge, the tree diameter
has to be taken into account to compute the position of the tree center.
merge tree and plots data.frames to import plot center
trees <- merge(trees, plots_sf[, c("X", "Y", "convergence_gr", "declination_gr",

"plot_id")], by = "plot_id")
compute projected coordinates
dummy <- lidaRtRee::polar2Projected(trees$X, trees$Y, 0, trees$azimuth_gr/200 * pi,

trees$ground_distance_m, trees$slope_gr/200 * pi, trees$declination_gr/200 *
pi, trees$convergence_gr/200 * pi, trees$diameter_cm/100)

add coordinates to trees data.frame
trees[, c("X", "Y", "horiz_dist_m")] <- dummy[, c("x", "y", "d")]
head(trees, n = 3)

plot_id tree_id pole_id species azimuth_gr slope_gr diameter_cm
1 Verc-01-1 1 p1 PIAB 10 0 54.20817
2 Verc-01-1 2 p1 PIAB 12 -4 32.40395
3 Verc-01-1 3 p1 PIAB 28 -8 35.01409
ground_distance_m height_m appearance tilted remark X Y
1 6.00 33.8 live 0 170.3 898206.6 6455714
2 12.13 26.8 live 0 101.8 898207.9 6455720
3 13.90 29.1 live 0 110 898211.5 6455721
convergence_gr declination_gr geometry horiz_dist_m
1 -1.49862 0.83 POINT (898205.7 6455708) 6.271041
2 -1.49862 0.83 POINT (898205.7 6455708) 12.268084
3 -1.49862 0.83 POINT (898205.7 6455708) 13.965465

Import ALS data
The LAZ files provided with this tutorial are the point clouds already extracted around the plots. The
code presented afterwards will thus extract the point clouds in files which correspond to already extracted
data, but it can also perform the operation if the folder contains LAZ files corresponding to a wall to wall
cover. LAZ files should be non-overlapping, and normalized (i.e. the Z field contains the height above
ground).

Point cloud extraction

Normalized points clouds are extracted over each plot. For the delineation of single trees, a buffer has to
be added around the plot border. The attribute buffer is added and filled with TRUE for loaded points
which are located outside of the plot extent. Those points will be removed when statistics are computed
for the point cloud located inside the extent of the field plot.
folder with laz files lazdir <-
'/media/reseau/lessem/ProjetsCommuns/Lidar/data/38_Quatre_Montagnes/norm.laz/'
lazdir <- "../data/aba.model/ALS/plots.norm.laz/"
make catalog of las files
cata <- lidR::readALSLAScatalog(lazdir)
set coordinate system

5

lidR::projection(cata) <- 2154
disable display of catalog processing
lidR::opt_progress(cata) <- FALSE
extract from LAZ files in catalog
llas_height <- lidR::clip_circle(cata, plots_sf$X, plots_sf$Y, p_radius + 5)
add 'buffer' attribute equal to TRUE to points outside plot
for (i in 1:length(llas_height)) {

llas_height[[i]] <- lidR::add_attribute(llas_height[[i]], (llas_height[[i]]$X -
plots_sf$X[i])ˆ2 + (llas_height[[i]]$Y - plots_sf$Y[i])ˆ2 > p_radiusˆ2, "buffer")

}
set names of point clouds in list
names(llas_height) <- plots_sf$plot_id
set negative height values to 0
for (i in 1:length(llas_height)) {

llas_height[[i]]@data$Z[llas_height[[i]]@data$Z < 0] <- 0
}
write plot clouds for (i in names(llas_height))
{lidR::writeLAS(llas_height[[i]], file=paste0(lazdir, i, '.laz'))}

Point clouds with altitude values can be used to compute terrain statistics. The folder plots.laz contains
the point clouds with altitude value extracted on the extent of each field plot. No buffer is added when
loading those point clouds. The points not classified as ground are removed.
folder with laz files
lazdir <- "../data/aba.model/ALS/plots.laz/"
make catalog of las files
cata <- lidR::readALSLAScatalog(lazdir)
set coordinate system
lidR::projection(cata) <- 2154
disable plot of tile processing
cata@processing_options$progress <- FALSE
extract las point cloud without buffer
llas_ground <- lidR::clip_circle(cata, plots$X, plots$Y, p_radius)
names(llas_ground) <- plots$plot_id
keep only ground points in point clouds
llas_ground <- lapply(llas_ground, lidR::filter_ground)

Computation of terrain statistics

Terrain statistics can be extracted from the cloud of ground points with altitude values. The function
terrain_points_metrics computes the aspect, altitude and slope of a point cloud by fitting a plane to
points. The altitude is extracted by interpolating values at user-specified coordinates, or as the mean of
the range of altitude values if no coordinates are specified.
use mapply to apply points2terrainStats function to each point cloud while
providing the coordinates of each center
metrics_terrain <- mapply(function(x, y) {

lidaRtRee::terrain_points_metrics(x, plots[y, c("X", "Y")], p_radius)
}, x = llas_ground, y = as.list(1:length(llas_ground)), SIMPLIFY = FALSE)
bind results in data.frame
metrics_terrain <- do.call(rbind, metrics_terrain)
compute terrain stats without specifying centre
metrics_terrain2 <- lapply(llas_ground, lidaRtRee::terrain_points_metrics)
metrics_terrain2 <- do.call(rbind, metrics_terrain2)
display results for comparison
head(cbind(metrics_terrain, metrics_terrain2), n = 3)

altitude azimut_gr slope_gr adjR2_plane altitude azimut_gr slope_gr
Verc-01-1 1096.9 99.1 20.1 99.6 1096.7 99.1 20.1

6

Verc-01-2 1083.4 94.0 16.1 99.2 1083.2 94.0 16.1
Verc-01-3 1120.7 104.0 22.9 99.6 1120.4 104.0 22.9
adjR2_plane
Verc-01-1 99.6
Verc-01-2 99.2
Verc-01-3 99.6

Check field inventory data
Below are some checks that can be performed to correct possible errors in the field data.

Consistency with the inventory protocol (all trees)

To ensure that all trees were correctly inventoried according to the protocol :

• If the distance of the tree to the plot center was recorded, the horizontal distance between the plot
center and the tree center has to be checked to make sure the tree is included in the 15 meter radius.

• Diameters can also be checked to avoid that trees below the DBH limit remain in the inventory.
summary(trees[, c("diameter_cm", "horiz_dist_m")])

diameter_cm horiz_dist_m
Min. : 7.417 Min. : 0.790
1st Qu.:11.332 1st Qu.: 7.241
Median :17.500 Median :10.476
Mean :21.385 Mean : 9.884
3rd Qu.:27.900 3rd Qu.:12.945
Max. :95.100 Max. :18.201

Once values have been checked for potential writing errors, remaining errors should be removed.
nb_trees <- nrow(trees)
keep only trees inside plot
trees <- trees[trees$horiz_dist_m <= p_radius,]
keep trees above the DBH limit
trees <- trees[trees$diameter_cm >= dbh_min,]
number of removed trees nb_trees - nrow(trees)

In this case 59 trees were removed.

Consistency of trees azimuth and slope to center (by plot)

If tree 3D spherical coordinates have been recorded, azimuth can be checked against slope. For each
plot, if the slope and azimuth are constant on the whole surface, then plotting the tree slope from the
plot center against the tree azimuth from the plot center should draw a sinusoid-shaped point cloud.
Outliers are likely to be errors in slope or azimuth values. For trees located close to the plot center, slope
measurement precision is lower, so that larger deviation might be accepted.
example plot to test
plot_test <- "Verc-01-1"
plot slope as a function of azimuth, symbol size proportional to horizontal
distance from center
plot(slope_gr ~ azimuth_gr, data = trees, subset = which(trees$plot_id == plot_test),

cex = horiz_dist_m/p_radius, main = "Trees slope and azimuth to plot center")

7

0 100 200 300 400

−
20

−
10

0
10

20

Trees slope and azimuth to plot center

azimuth_gr

sl
op

e_
gr

The following lines create a spatial polygon corresponding to one plot extent.
extract example plot
plots_sf.t <- plots_sf[plots_sf$plot_id == plot_test,]
create polygon with buffer of plot radius
plots_extent_t <- sf::st_buffer(plots_sf.t, p_radius, nQuadSegs = 10)

Consistency of field operator path (by plot)

In case trees have been numbered in the order of inventory on the field, plotting tree positions with lines
linking the trees in the order of inventory should trace the path of field operators. Any detour might
indicate an error in distance or azimuth values.
extraction of trees of plot to test
trees_t <- trees[trees$plot_id == plot_test,]
display plot limits
plot(sf::st_geometry(plots_extent_t), border = "red", axes = TRUE)
display plot center
plot(sf::st_geometry(plots_sf.t), col = "red", pch = 3, add = TRUE)
add inventoried trees
lidaRtRee::plot_tree_inventory(trees_t[, c("X", "Y")], trees_t$height_m, species = as.character(trees_t$species),

pch = as.numeric(trees_t$appearance) - 1, add = TRUE)
draw lines between trees
lines(trees_t[order(trees_t$tree_id), c("X", "Y")])

8

898180 898200 898220

64
55

69
5

64
55

71
0

ABAL
FASY
PIAB
TABA

Height / diameter allometry (all trees)

The allometry of trees can also be checked in case heights were also measured. Plotting the heights
against diameters can be informative to detect errors in diameter or height values. In this case, the
information about the appearance of trees sometimes provides explanation for outliers (mostly damaged
or dead trees).
symbol size proportional to horizontal distance from center
plot(height_m ~ diameter_cm, data = trees, col = lidaRtRee::species_color()[as.character(trees$species),

"col"], pch = as.numeric(trees$appearance) - 1, main = "Height VS diameter, all trees")
legend("bottomright", legend = levels(trees$appearance), pch = (1:length(levels(trees$appearance)) -

1))

9

20 40 60 80

0
10

20
30

40
Height VS diameter, all trees

diameter_cm

he
ig

ht
_m

missing or lying
live
live with broken treetop
dead with branches
dead without branches (snag)

The ggplot2 package provides useful syntax and functions for producing informative graphics. The next
plot displays the diameter / height relationship for the three most abundant species in the dataset.
g <- ggplot(trees[is.element(trees$species, c("ABAL", "PIAB", "FASY")),], aes(x = diameter_cm,

y = height_m, shape = appearance))
g + geom_point(aes(color = species)) + scale_x_sqrt() + geom_smooth(aes(group = species),

color = "black", linetype = "dashed") + facet_grid(. ~ species) + labs(x = "diameter_cm (sqrt scale)")

ABAL FASY PIAB

25 50 75 100 25 50 75 100 25 50 75 100

0

10

20

30

40

diameter_cm (sqrt scale)

he
ig

ht
_m

appearance

missing or lying

live

live with broken treetop

dead with branches

dead without branches (snag)

NA

species

ABAL

FASY

PIAB

Diameter distribution (by plot)

For each plot, displaying the histogram of trees, colored by species is also informative to make sure the
forest structure is coherent.
plot diameter distribution remove unused levels in species factor column
trees_t$species <- factor(trees_t$species)

10

stacked histogram : data.frame split by species
dummy <- split(trees_t$diameter_cm, trees_t$species)
lidaRtRee::hist_stack(dummy, col = lidaRtRee::species_color()[names(dummy), "col"],

breaks = seq(from = dbh_min, by = 5, to = 5 * ceiling(max(trees_t$diameter_cm -
2.5)/5) + 2.5), main = paste0("Diameter distribution of plot ", plot_test),

ylab = "Number of trees", xlab = "Diameter (cm)",)
legend("topright", names(dummy), fill = lidaRtRee::species_color()[names(dummy),

"col"])

7.5 17.5 27.5 37.5 47.5 57.5 67.5

ABAL
FASY
PIAB
TABA

plot diameter distribution change order of levels to display more abundant
species at the bottom
trees_t$species <- factor(trees_t$species, levels = names(sort(table(trees_t$species))))
load custom species table with associated colors
table.species <- lidaRtRee::species_color()
extract species present on the plot
table.species <- table.species[levels(trees_t$species), "col"]
stacked histogram : data.frame split by species
ggplot(trees_t, aes(x = diameter_cm, fill = species)) + geom_histogram(breaks = seq(from = 7.5,

to = max(trees_t$diameter_cm) + 5, by = 5), color = "black") + scale_fill_manual(values = table.species) +
labs(title = paste0("Diameter distribution of plot ", plot_test), y = "Number of trees",

x = "Diameter (cm)")

11

0

5

10

15

20 40 60
Diameter (cm)

N
um

be
r

of
 tr

ee
s species

TABA

FASY

ABAL

PIAB

Diameter distribution of plot Verc−01−1

Trees positions and remote sensing data (by plot)

In case remote sensing data is available, plotting trees positions, sizes and species on high-resolution
remote sensing background also helps in identifying errors or incoherence. Airborne laser scanning data
is particularly helpful. Please refer to the field plot coregistration and tree segmentation tutorials for
additional information.

The tree positions can be plotted with the canopy height model computed with the ALS data.
compute background compute canopy height model
chm <- lidaRtRee::points2DSM(llas_height[[plot_test]], res = 0.5)
display CHM
raster::plot(chm, col = gray(seq(0, 1, 1/255)), main = "Canopy Height Model and tree positions")
add inventoried trees
lidaRtRee::plot_tree_inventory(trees_t[, c("X", "Y")], trees_t$height_m, species = as.character(trees_t$species),

pch = as.numeric(trees_t$appearance) - 1, add = TRUE)
display plot limits
plot(plots_extent_t, border = "red", color = NA, add = TRUE)

12

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/coregistration.Rmd
https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/tree.detection.Rmd

898180 898200 898220

64
55

69
0

64
55

71
0

Canopy Height Model and tree positions

0
5
10
15
20
25
30

ABAL
FASY
PIAB
TABA

Similar output with ggplot2.
convert raster to data.frame for display with ggplot
chm.df <- raster::as.data.frame(chm, xy = TRUE)
rename columns
names(chm.df) <- c("x", "y", "CHM")
create graph
g1 <- ggplot() +

raster background
geom_raster(data = chm.df, aes(x = x, y = y, fill = CHM)) +
background scale in black and white
scale_fill_gradientn(colours = c("black", "white"), na.value = "white") +
add trees
geom_point(data = trees_t, aes(x = X, y = Y, shape = appearance, size = diameter_cm, colour = species)) +#
shape radius (not area) proportional to diameter
scale_radius(name = "diameter_cm") +
custom colors for species
scale_colour_manual(values = table.species) +
shapes are empty
scale_shape(solid = FALSE) +
add plot extent
geom_sf(data = plots_extent_t, fill = NA, color = "red") +
specify coordinate system
coord_sf(datum = 2154) +
add title
labs(title = paste0("Map of plot ", plot_test))

print(g1)

13

6455690

6455700

6455710

6455720

6455730

898190 898200 898210 898220
x

y

diameter_cm

20

40

60

appearance

live

live with broken treetop

species

TABA

FASY

ABAL

PIAB

0

10

20

30

CHM

Map of plot Verc−01−1

Stand level parameters
Compute stand level forest parameters

Three stand level parameters are computed by aggregating the tree level information at the plot level:

• basal area (G_m2_ha, m2/ha)
• mean diameter (D_mean_cm, cm)
• stem density (N_ha, /ha).

Only live trees are considered in this analysis.
keep only live trees
trees <- trees[is.element(trees$appearance, c("live", "live with broken treetop")),

]
Basal area in m2/ha
dummy <- aggregate(diameter_cm ~ plot_id, trees, FUN = function(x) {

sum(pi * (x/200)ˆ2, na.rm = T) * (10000/(pi * p_radiusˆ2))
})
rename colum of result
names(dummy)[2] <- "G_m2_ha"
add information to plots data.frame
plots <- merge(plots, dummy)
Stem density in m2/ha
dummy <- aggregate(diameter_cm ~ plot_id, trees, FUN = function(x) {

length(x) * (10000/(pi * p_radiusˆ2))
})
names(dummy)[2] <- "N_ha"
plots <- merge(plots, dummy)
Mean diameter in cm
dummy <- aggregate(diameter_cm ~ plot_id, trees, FUN = function(x) {

mean(x)
})
names(dummy)[2] <- "D_mean_cm"
plots <- merge(plots, dummy)
Summary statistics
summary(plots[, c("G_m2_ha", "N_ha", "D_mean_cm")])

G_m2_ha N_ha D_mean_cm
Min. :15.67 Min. : 56.59 Min. :14.70
1st Qu.:31.22 1st Qu.: 488.08 1st Qu.:19.55

14

Median :37.35 Median : 714.43 Median :22.65
Mean :40.17 Mean : 810.07 Mean :24.78
3rd Qu.:44.78 3rd Qu.:1110.55 3rd Qu.:26.31
Max. :99.18 Max. :1994.74 Max. :75.53

display histograms
par(mfrow = c(1, 3))
hist(plots$G_m2_ha, main = "Basal area", xlab = "(m2/ha)", ylab = "Plot number")
hist(plots$N_ha, main = "Stem density", xlab = "(/ha)", ylab = "Plot number")
hist(plots$D_mean_cm, main = "Mean diameter", xlab = "(cm)", ylab = "Plot number")

Basal area

(m2/ha)

P
lo

t n
um

be
r

20 40 60 80 100

0
5

10
15

20
25

30

Stem density

(/ha)

P
lo

t n
um

be
r

0 500 1000 1500 2000

0
5

10
15

Mean diameter

(cm)

P
lo

t n
um

be
r

10 20 30 40 50 60 70 80

0
10

20
30

40
50

Add stratum information from external data

In this area, public forests are generally managed in a different way compared to private forests, resulting
in different forest structures. Ownership is also linked to species composition. This classification could be
used as a stratification when calibrating relationships between ALS metrics and forest parameters.

Plots will be attributed to strata based on external GIS layers. The first layer is a vector map of public
forests (Forêts publiques, ONF Paris, 2019) which is available under the Open Licence Etalab Version 2.0.

The following lines load the public forests layer and intersects it with the plot locations.
load GIS layer of public forests
public <- sf::st_read("../data/aba.model/GIS/Public4Montagnes.shp", stringsAsFactors = TRUE,

quiet = TRUE)
set coordinate system
sf::st_crs(public) <- 2154
spatial query
plots_sf <- sf::st_join(plots_sf, public)
rename column and levels
plots_sf$stratum <- factor(ifelse(is.na(plots_sf$FID), "private", "public"))
also add to data.frame
plots <- merge(plots, sf::st_drop_geometry(plots_sf[, c("plot_id", "stratum")]))
remove column
plots_sf$FID <- NULL

The following map displays the plots colored based on ownership, after spatial extraction of this information
from the polygons of public forests (black borders).
project points into map system
plots_sf_transform <- sf::st_transform(plots_sf, 4326)
public_transform <- sf::st_transform(public, 4326)
display plots
ggmap::ggmap(map) + ggplot2::geom_sf(data = sf::st_geometry(public_transform), inherit.aes = FALSE,

fill = NA, colour = "black") + ggplot2::geom_sf(data = plots_sf_transform, inherit.aes = FALSE,
aes(color = stratum))

15

https://www.etalab.gouv.fr/licence-ouverte-open-licence

45.05°N

45.10°N

45.15°N

45.20°N

5.48°E5.50°E5.52°E5.54°E5.56°E5.58°E5.60°E
lon

la
t

stratum

private

public

Save data before next tutorial
The following lines save the data required for the area-based model calibration step.
save(plots, file = "../data/aba.model/output/plots.rda")
save(llas_height, file = "../data/aba.model/output/llas_height.rda", compress = "bzip2")
save(metrics_terrain, file = "../data/aba.model/output/metrics_terrain.rda")

16

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.2.model.calibration.Rmd

	Import field inventory data
	Tree-level inventory
	Plot-level information
	Compute tree coordinates

	Import ALS data
	Point cloud extraction
	Computation of terrain statistics

	Check field inventory data
	Consistency with the inventory protocol (all trees)
	Consistency of trees azimuth and slope to center (by plot)
	Consistency of field operator path (by plot)
	Height / diameter allometry (all trees)
	Diameter distribution (by plot)
	Trees positions and remote sensing data (by plot)

	Stand level parameters
	Compute stand level forest parameters
	Add stratum information from external data

	Save data before next tutorial

