
R workflow for ABA prediction model calibration

Jean-Matthieu Monnet

2021-07-06

The code below presents a workflow to calibrate prediction models for the estimation of forest parameters
from ALS-derived metrics, using the area-based approach (ABA). The workflow is based on functions
from R packages lidaRtRee and lidR.

Licence: GNU GPLv3 / Source page

Many thanks to Pascal Obstétar for checking code and improvement suggestions.

Load data
The “Quatre Montagnes” dataset from France, prepared as described in the data preparation tutorial is
loaded from the R archive files located in the folder “data/aba.model/output.”

Field data
The file “plots.rda” contains the field data, organized as a data.frame named plots. For subsequent use in
the workflow, the data.frame should contain at least two fields: plotId (unique plot identifier) and a forest
stand parameter. Each line in the data.frame corresponds to a field plot. A factor variable is required to
calibrate stratified models. Plot coordinates are required for subsequent inference computations.

The provided data set includes one categorical variable: stratum, which corresponds to forest ownership,
XY coordinates and three forest stand parameters :

• basal area in m2/ha (G.m2.ha),
• stem density in /ha (N.ha),
• mean diameter at breast height in cm (D.mean.cm).

Scatterplots of stand parameters are presented below, colored by ownership (green for public forest, blue
otherwise).
load plot-level data
load(file = "../data/aba.model/output/plots.rda")
summary(plots)

plotId X Y clusterId
Length:96 Min. :895945 Min. :6439570 Length:96
Class :character 1st Qu.:896989 1st Qu.:6443484 Class :character
Mode :character Median :899661 Median :6451211 Mode :character
Mean :899394 Mean :6450228
3rd Qu.:900696 3rd Qu.:6455042
Max. :903303 Max. :6459820
G.m2.ha N.ha D.mean.cm stratum
Min. :15.67 Min. : 56.59 Min. :14.70 private:32
1st Qu.:31.22 1st Qu.: 488.08 1st Qu.:19.55 public :64
Median :37.35 Median : 714.43 Median :22.65
Mean :40.17 Mean : 810.07 Mean :24.78
3rd Qu.:44.78 3rd Qu.:1110.55 3rd Qu.:26.31
Max. :99.18 Max. :1994.74 Max. :75.53

1

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.2.model.calibration.Rmd
https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.1.data.preparation.Rmd

display forest variables
plot(plots[, c("G.m2.ha", "N.ha", "D.mean.cm")], col = ifelse(plots$stratum == "public",

"green", "blue"))

G.m2.ha

0
50

0
15

00

20 40 60 80 100

0 500 1000 1500 2000

N.ha

20
40

60
80

20 30 40 50 60 70

20
40

60

D.mean.cm

ALS data
Normalized ALS point clouds extracted over each plot, as well as terrain statistics previously computed
from the ALS ground points can also be prepared according to the data preparation tutorial. Point clouds
corresponding to each field plot are organized in a list of LAS objects. Meta data of one LAS object are
displayed below.
list of LAS objects: normalized point clouds inside plot extent
load("../data/aba.model/output/llas.height.rda")
display one point cloud # lidR::plot(llasn[[1]])
llas.height[[1]]

class : LAS (v1.2 format 1)
memory : 1.3 Mb
extent : 898185.8, 898225.7, 6455688, 6455728 (xmin, xmax, ymin, ymax)
coord. ref. : RGF93 / Lambert-93
area : 1248.7 m2
points : 15.6 thousand points
density : 12.51 points/m2

The first lines of the terrain statistics are displayed hereafter.

altitude azimut.gr slope.gr
Verc-01-1 1096.9 99.1 20.1
Verc-01-2 1083.4 94.0 16.1
Verc-01-3 1120.7 104.0 22.9

The following lines ensure that the plots are ordered in the same way in the three data objects.

2

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.1.data.preparation.Rmd

llas.height <- llas.height[plots$plotId]
metrics.terrain <- metrics.terrain[plots$plotId,]

ALS metrics computation
Two types of metrics can be computed.

• Point cloud metrics are directly computed from the point cloud or from the derived surface model
on the whole plot extent. These are the metrics generally used in the area-based approach.

• Tree metrics are computed from the characteristics of trees detected in the point cloud (or in the
derived surface model). They are more CPU-intensive to compute and require ALS data with higher
density, but in some cases they allow a slight improvement in models prediction accuracy.

Point cloud metrics
Point cloud metrics are computed with the function lidaRtRee::cloudMetrics, which applies
the lidR::cloud_metrics to all point clouds in the list. Default computed metrics are those
proposed by the function lidR::stdmetrics. Additional metrics are available with the function
lidaRtRee::ABAmodelMetrics.
define function for later use
aba.pointMetricsFUN <- ~lidaRtRee::ABAmodelMetrics(Z, Intensity, ReturnNumber, Classification,

2)
apply function on each point cloud in list
metrics.points <- lidaRtRee::cloudMetrics(llas.height, aba.pointMetricsFUN)
round(head(metrics.points[, 1:8], n = 3), 2)

zmax zmean zsd zskew zkurt zentropy pzabovezmean pzabove2
Verc-01-1 33.87 16.99 8.21 -0.35 1.80 0.93 57.78 99.98
Verc-01-2 30.54 16.79 5.66 -0.44 2.70 0.90 54.00 99.99
Verc-01-3 29.89 18.64 5.15 -0.65 3.33 0.88 54.50 99.99

Tree metrics
Tree metrics rely on a preliminary detection of trees, which is performed with the lidaRtRee::treeSegmentation
function. For more details, please refer to the tree detection tutorial. Tree segmentation requires
point clouds or canopy height models with an additional buffer in order to avoid border effects
when computing tree characteristics. Once trees are detected, metrics are derived with the function
lidaRtRee::stdTreeMetrics. A user-specific function can be specified to compute other metrics from
the features of detected trees. Plot radius has to be specified as it is required to exclude trees detected
outside of the plot, and to compute the plot surface. Tree segmentation is not relevant when the point
cloud density is too low, typically below five points per m2. The function first computes a canopy height
model which default resolution is 0.5 m, but this should be set to 1 m with low point densities.
resolution of canopy height model (m)
aba.resCHM <- 0.5
specify plot radius to exclude trees located outside plots
plot.radius <- 15
compute tree metrics
metrics.tree <- lidaRtRee::cloudTreeMetrics(llas.height, plots[, c("X", "Y")], plot.radius,

res = aba.resCHM, func = function(x) {
lidaRtRee::stdTreeMetrics(x, area.ha = pi * plot.radiusˆ2/10000)

})
round(head(metrics.tree[, 1:5], n = 3), 2)

Tree.meanH Tree.sdH Tree.giniH Tree.density TreeInf10.density
Verc-01-1 27.11 6.39 0.11 226.35 14.15
Verc-01-2 25.80 3.27 0.06 268.80 0.00
Verc-01-3 25.74 3.88 0.08 268.80 0.00

3

https://github.com/Jean-Romain/lidR/wiki/stdmetrics
https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/tree.detection.Rmd

Other metrics
In case terrain metrics have been computed from the cloud of ground points only, they can also be added
as variables, and so do other environmental variables which might be relevant in modeling.
metrics <- cbind(metrics.points[plots$plotId,], metrics.tree[plots$plotId,], metrics.terrain[plots$plotId,

1:3])

Model calibration
Calibration for a single variable
Once a dependent variable (forest parameter of interest) has been chosen, the function lidaRtRee::ABAmodel
is used to select the linear regression model that yields the highest adjusted-R2 with a defined number
of independent variables, while checking linear model assumptions. A Box-Cox transformation of the
dependent variable can be applied to normalize its distribution, or a log transformation of all variables
(parameter transform). Model details and cross-validation statistics are available from the returned
object.
variable <- "G.m2.ha"
no subsample in this case
subsample <- 1:nrow(plots)
model calibration
model.ABA <- lidaRtRee::ABAmodel(plots[subsample, variable], metrics[subsample,],

transform = "boxcox", nmax = 4, xy = plots[subsample, c("X", "Y")])

Reordering variables and trying again:
renames outputs with variable name
row.names(model.ABA$stats) <- variable
display selected linear regression model
model.ABA$model

##
Call:
stats::lm(formula = dep.var ~ Tree.density + TreeCanopy.meanH +
TreeCanopy.coverInPlot, data = df.transform)
##
Coefficients:
(Intercept) Tree.density TreeCanopy.meanH
1.7867460 0.0005366 0.0240784
TreeCanopy.coverInPlot
0.5459090
display calibration and validation statistics
model.ABA$stats

n formula adjR2
G.m2.ha 96 Tree.density + TreeCanopy.meanH + TreeCanopy.coverInPlot 0.6896275
transform lambda rmse cvrmse pwil pttest paov
G.m2.ha boxcox -0.1437872 8.303605 0.2066882 0.7134264 0.9925296 0.9966434
cor looR2 var.res
G.m2.ha 0.8193955 0.6708864 0.01283462

The function computes values predicted in leave-one-out cross-validation, by using the same combination
of dependent variables and fitting the regression coefficients with all observations except one. Predicted
values can be plotted against field values with the function lidaRtRee::ABAmodelPlot. It is also
informative to check the correlation of prediction errors with other forest or environmental variables.

In this example, only tree metrics are selected in the basal area prediction model. The model seems to
fail to predict large values. The prediction errors are positively correlated with basal area because large
values are under-estimated.

4

check correlation between errors and other variables
round(cor(cbind(model.ABA$values$residual, plots[subsample, c("G.m2.ha", "N.ha",

"D.mean.cm")], metrics.terrain[subsample, 1:3])), 2)[1,]

model.ABA$values$residual G.m2.ha N.ha
1.00 0.61 0.09
D.mean.cm altitude azimut.gr
0.16 0.10 -0.06
slope.gr
-0.01
significance of correlation value
cor.test(model.ABA$values$residual, plots[subsample, variable])

##
Pearson's product-moment correlation
##
data: model.ABA$values$residual and plots[subsample, variable]
t = 7.3748, df = 94, p-value = 6.396e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4608659 0.7186695
sample estimates:
cor
0.6054134
plot predicted VS field values
par(mfrow = c(1, 2))
lidaRtRee::ABAmodelPlot(model.ABA, main = variable)
plot(plots[subsample, c("G.m2.ha")], model.ABA$values$residual, ylab = "Prediction errors",

xlab = "Field values")
abline(h = 0, lty = 2)

20 40 60 80 100

20
40

60
80

G.m2.ha

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

20 40 60 80 100

−
20

−
10

0
10

20

Field values

P
re

di
ct

io
n

er
ro

rs

In case only point cloud metrics are used as potential inputs, the errors are hardly better distributed.
Coloring points by ownership shows that plots located in private forests have the largest basal area values
which tend to be under-estimated.

5

model.ABA.metrics.points <- lidaRtRee::ABAmodel(plots[subsample, variable], metrics.points[subsample,
], transform = "boxcox", nmax = 4, xy = plots[subsample, c("X", "Y")])

renames outputs
row.names(model.ABA.metrics.points$stats) <- names(model.ABA.metrics.points$model) <- variable
model.ABA.metrics.points$model[[variable]]
model.ABA.metrics.points$stats

n formula adjR2 transform lambda
G.m2.ha 96 pzabovezmean + zpcum8 + p.1st.hmin 0.6519446 boxcox -0.1437872
rmse cvrmse pwil pttest paov cor looR2
G.m2.ha 8.517813 0.2120202 0.5048285 0.9790591 0.9904006 0.808511 0.653687
var.res
G.m2.ha 0.0143929
cor.test(model.ABA.metrics.points$values$residual, plots[subsample,
variable])
par(mfrow = c(1, 2))
plot predicted VS field values
lidaRtRee::ABAmodelPlot(model.ABA.metrics.points, main = variable, col = ifelse(plots$stratum ==

"public", "green", "blue"))
legend("topleft", c("public", "private"), col = c("green", "blue"), pch = 1)
plot(plots[subsample, c("G.m2.ha")], model.ABA.metrics.points$values$residual, ylab = "Prediction errors",

xlab = "Field values", col = ifelse(plots$stratum == "public", "green", "blue"))
abline(h = 0, lty = 2)

20 40 60 80 100

20
40

60
80

G.m2.ha

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

public
private

20 40 60 80 100

−
20

−
10

0
10

20

Field values

P
re

di
ct

io
n

er
ro

rs

Calibration for several variables
The following code calibrates models for several forest parameters. In case different transformations have
to be performed on the parameters, models have to be calibrated one by one.
models.ABA <- list()
for (i in c("G.m2.ha", "D.mean.cm", "N.ha")) {

models.ABA[[i]] <- lidaRtRee::ABAmodel(plots[, i], metrics, transform = "boxcox",
nmax = 4, xy = plots[, c("X", "Y")])

}

Reordering variables and trying again:

6

Reordering variables and trying again:
Reordering variables and trying again:
bind model stats in a data.frame
model.stats <- do.call(rbind, lapply(models.ABA, function(x) {

x[["stats"]]
}))

The obtained models are presented below. The table columns correspond to:

• n number of plots,
• metrics selected in the model,
• adj-R2.% adjusted R-squared of fitted model (%),
• CV-R2.% coefficient of determination of values predicted in cross-validation (CV) VS field values

(%),
• CV-RMSE.% coefficient of variation of the Root Mean Square Errors of prediction in CV (%),
• CV-RMSE Root Mean Square Error of prediction in CV.

n metrics adj-
R2.%

CV-
R2.%

CV-
RMSE.%

CV-
RMSE

G.m2.ha 96 Tree.density + TreeCanopy.meanH +
TreeCanopy.coverInPlot

69.0 67.1 20.7 8.3

D.mean.cm 96 ipcumzq70 + Tree.density +
TreeCanopy.meanH + altitude

82.0 89.5 12.6 3.1

N.ha 96 zentropy + mCH + p.1st.hmin +
TreeSup10.density

90.5 87.5 19.6 158.4

20 40 60 80 100

20
40

60
80

G.m2.ha

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

20 30 40 50 60 70

20
30

40
50

60
70

80

D.mean.cm

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

N.ha

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

Stratified models
Motivation
When calibrating a statistical relationship between forest stand parameters, which are usually derived
from diameter measurements, and ALS metrics, one relies on the hypothesis that the interaction of laser
pulses with the leaves and branches structure is constant on the whole area. However, differences can be
expected either due to variations in acquisition settings (flight parameters, scanner model), in forests
(stand structure and composition) or in topography (slope). Better models might be obtained when
calibrating stratum-specific relationships, provided each stratum is more homogeneous regarding the laser
/ vegetation interaction. A trade-off has to be achieved between the within-strata homogeneity and the
number of available plots for calibration in each stratum. A minimum number of plots is approximately
50, while 100 would be recommended. In this example we hypothesize that ownership reflects both
structure and composition differences in forest stands.

7

Calibration of stratum-specific models
Stratum-specific models are computed and stored in a list during a for loop. The function
lidaRtRee::ABAmodelCombineStrata then combines the list of models corresponding to each stratum
to compute aggregated statistics for all plots, making it easier to compare stratified with non-stratified
models.

In this example, the model for “private” yields a large error on the plot “Verc-C5-1,” which considerably
lowers the accuracy of the stratified approach.
stratification variable
strat <- "stratum"
create list of models
model.ABA.stratified <- list()
calibrate each stratum model
for (i in levels(plots[, strat])) {

subsample <- which(plots[, strat] == i)
if (length(subsample) > 0) {

model.ABA.stratified[[i]] <- lidaRtRee::ABAmodel(plots[subsample, variable],
metrics[subsample,], transform = "boxcox", nmax = 4, xy = plots[subsample,

c("X", "Y")])
}

}

Reordering variables and trying again:
backup list of models for later use
model.ABA.stratified.boxcox <- model.ABA.stratified
combine list of models into single object
model.ABA.stratified <- lidaRtRee::ABAmodelCombineStrata(model.ABA.stratified, plots$plotId)
model.ABA.stratified$stats

n metrics adj-
R2.%

CV-
R2.%

CV-
RMSE.%

CV-
RMSE

NOT.STRATIFIED96 Tree.density + TreeCanopy.meanH +
TreeCanopy.coverInPlot

69.0 67.1 20.7 8.3

private 32 zpcum7 + ikurt + p.1st.hmin 62.8 29.2 23.4 12.5
public 64 Tree.meanH + TreeCanopy.coverInPlot 49.1 45.8 18.1 6.0
COMBINED 96 NA NA 63.4 21.8 8.8

8

20 40 60 80 100

20
40

60
80

G.m2.ha, not stratified

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

20 40 60 80 100

20
40

60
80

10
0

12
0

G.m2.ha, stratified

Field
P

re
di

ct
ed

 in
 L

O
O

C
V

private
public

Stratified models with stratum-specific variable tranformations
In case one wants to apply different variable transformations, or use different subsets of ALS metrics
depending on the strata, the following example can be used. First models using only the point cloud
metrics are calibrated without transformation of the data. The statistics for all plots are then calculated
by combining the following stratum-specific models :

• public ownership, all metrics, Box-Cox transformation of basal area values (calibrated in the previous
paragraph),

• private ownership, only point cloud metrics, no data transformation.
create list of models for no transformation
model.ABA.stratified.none <- list()
calibrate each stratum model
for (i in levels(plots[, strat])) {

subsample <- which(plots[, strat] == i)
if (length(subsample) > 0) {

model.ABA.stratified.none[[i]] <- lidaRtRee::ABAmodel(plots[subsample, variable],
metrics.points[subsample,], transform = "none", xy = plots[subsample,

c("X", "Y")])
}

}
combine list of models into single object
model.ABA.stratified.mixed <- lidaRtRee::ABAmodelCombineStrata(list(private = model.ABA.stratified.none[["private"]],

public = model.ABA.stratified.boxcox[["public"]]), plots$plotId)
bind model stats in a data.frame for comparison
model.stats <- rbind(model.ABA$stats, model.ABA.stratified.mixed$stats)
row.names(model.stats)[1] <- "NOT.STRATIFIED"

n metrics transform adj-
R2.%

CV-
R2.%

CV-
RMSE.%

CV-
RMSE

NOT.STRATIFIED96 Tree.density + TreeCanopy.meanH +
TreeCanopy.coverInPlot

boxcox 69.0 67.1 20.7 8.3

private 32 zpcum7 + ikurt none 50.8 42.3 21.1 11.3
public 64 Tree.meanH + TreeCanopy.coverInPlot boxcox 49.1 45.8 18.1 6.0
COMBINED96 NA NA NA 68.0 20.4 8.2

9

20 40 60 80 100

20
40

60
80

G.m2.ha, not stratified

Field

P
re

di
ct

ed
 in

 L
O

O
C

V

20 40 60 80 100

20
40

60
80

G.m2.ha, stratified

Field
P

re
di

ct
ed

 in
 L

O
O

C
V

private
public

Save data before next tutorial
The following lines save the data required for the area-based mapping step.
save(model.ABA.stratified.mixed, model.ABA, aba.pointMetricsFUN, aba.resCHM, file = "../data/aba.model/output/models.rda")

10

https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/area-based.3.mapping.Rmd

	Load data
	Field data
	ALS data

	ALS metrics computation
	Point cloud metrics
	Tree metrics
	Other metrics

	Model calibration
	Calibration for a single variable
	Calibration for several variables

	Stratified models
	Motivation
	Calibration of stratum-specific models
	Stratified models with stratum-specific variable tranformations

	Save data before next tutorial

