diff --git a/export/gaps.edges.detection.html b/export/gaps.edges.detection.html
index 3e32f883fe77450859f6b0759a98ca63972e3c57..5c4a1b43442125a414e4c44be3bab8ab8fa92f82 100644
--- a/export/gaps.edges.detection.html
+++ b/export/gaps.edges.detection.html
@@ -11,7 +11,7 @@
 
 <meta name="author" content="Jean-Matthieu Monnet" />
 
-<meta name="date" content="2021-05-17" />
+<meta name="date" content="2021-07-06" />
 
 <title>R workflow for forest gaps and edges detection from ALS data</title>
 
@@ -189,7 +189,7 @@ pre code {
 
 <h1 class="title toc-ignore">R workflow for forest gaps and edges detection from ALS data</h1>
 <h4 class="author">Jean-Matthieu Monnet</h4>
-<h4 class="date">2021-05-17</h4>
+<h4 class="date">2021-07-06</h4>
 
 </div>
 
@@ -197,23 +197,22 @@ pre code {
 <hr />
 <p>This tutorial presents R code for forest gaps and edges detection from Airborne Laser Scanning (ALS) data. The workflow is based on functions from packages <code>lidaRtRee</code> and <code>lidR</code>.</p>
 <p>Licence: GNU GPLv3 / <a href="https://gitlab.irstea.fr/jean-matthieu.monnet/lidartree_tutorials/-/blob/master/R/gap.edges.detection.Rmd">Source page</a></p>
+<p>Many thanks to Pascal Obstétar for checking code and improvement suggestions.</p>
 <div id="study-area-and-als-data" class="section level2">
 <h2>Study area and ALS data</h2>
 <p>The study area is a 200m x 200m forest located in the Jura mountain (France). The following code shows how to extract the ALS data from a folder containing normalized LAS files, and compute the Canopy Height Model (CHM) at 1 m resolution.</p>
 <pre class="r"><code># build catalog from folder with normalized LAS/LAZ files
-cata &lt;- lidR::catalog(&quot;/las.folder/&quot;)
+cata &lt;- lidR::readALSLAScatalog(&quot;/las.folder/&quot;)
 # set coordinate system
-sp::proj4string(cata) &lt;- sp::CRS(SRS_string = &quot;EPSG:2154&quot;)
-# set sensor type
-lidR::sensor(cata) &lt;- &quot;ALS&quot;
+lidR::projection(cata) &lt;- 2154
 # define region of interest where points should be extracted
 centre &lt;- c(944750, 6638750)
 size &lt;- 250
 # extract data on square area centered on centre
-las &lt;- lidR::clip_rectangle(cata, centre[1] - size, centre[2] - size, centre[1] + 
+las &lt;- lidR::clip_rectangle(cata, centre[1] - size, centre[2] - size, centre[1] +
     size, centre[2] + size)
 # compute canopy height model from normalized point cloud
-chm &lt;- lidaRtRee::points2DSM(las, 1, centre[1] - size, centre[1] + size, centre[2] - 
+chm &lt;- lidaRtRee::points2DSM(las, 1, centre[1] - size, centre[1] + size, centre[2] -
     size, centre[2] + size)
 # save chm in Rdata file save(chm, file=&#39;chm.rda&#39;)</code></pre>
 <p>If the CHM has been previously calculated.</p>
@@ -251,15 +250,15 @@ par(mfrow = c(1, 2))
 # max value of surface (log)
 z.lim &lt;- log(max(raster::values(gaps1$gap.surface)))
 # plot gap surface
-raster::plot(log(gaps1$gap.surface), main = &quot;log(Gap surface) (1)&quot;, zlim = c(0, z.lim), 
+raster::plot(log(gaps1$gap.surface), main = &quot;log(Gap surface) (1)&quot;, zlim = c(0, z.lim),
     col = rainbow(255, end = 5/6))
-raster::plot(log(gaps2$gap.surface), main = &quot;log(Gap surface) (2)&quot;, zlim = c(0, z.lim), 
+raster::plot(log(gaps2$gap.surface), main = &quot;log(Gap surface) (2)&quot;, zlim = c(0, z.lim),
     col = rainbow(255, end = 5/6))</code></pre>
 <p><img src="" width="70%" style="display: block; margin: auto;" /></p>
 <p>Gaps can be vectorized for display over the original CHM.</p>
 <pre class="r"><code># convert to vector
 gaps1.v &lt;- raster::rasterToPolygons(gaps1$gap.id, dissolve = TRUE)</code></pre>
-<pre><code>## Loading required namespace: rgeos</code></pre>
+<pre><code>## Le chargement a nécessité le package : rgeos</code></pre>
 <pre class="r"><code># display gaps over original CHM
 raster::plot(chm, main = &quot;Gaps over CHM (1)&quot;)
 sp::plot(gaps1.v, add = T)</code></pre>
@@ -300,10 +299,10 @@ legend(&quot;topright&quot;, c(&quot;1&quot;, &quot;2&quot;), fill = c(&quot;red
 chm &lt;- lidaRtRee::chmchablais3
 chm[is.na(chm)] &lt;- 0
 # Perform gap detection with distance ratio criterion
-gaps1 &lt;- lidaRtRee::gapDetection(chm, ratio = 2, gap.max.height = 1, min.gap.surface = 50, 
+gaps1 &lt;- lidaRtRee::gapDetection(chm, ratio = 2, gap.max.height = 1, min.gap.surface = 50,
     nlFilter = &quot;None&quot;)
 # Perform gap detection with distance ratio criterion and gap reconstruction
-gaps1r &lt;- lidaRtRee::gapDetection(chm, ratio = 2, gap.max.height = 1, min.gap.surface = 50, 
+gaps1r &lt;- lidaRtRee::gapDetection(chm, ratio = 2, gap.max.height = 1, min.gap.surface = 50,
     gapReconstruct = TRUE, nlFilter = &quot;None&quot;)
 # display detected gaps
 par(mfrow = c(1, 3))
diff --git a/export/gaps.edges.detection.pdf b/export/gaps.edges.detection.pdf
index 20a3d9422634a9f1b28e8fbfff974d64d8872a93..7498ab06af19da4880ea5710cf4cc33f232ba94f 100644
Binary files a/export/gaps.edges.detection.pdf and b/export/gaps.edges.detection.pdf differ