diff --git a/plotting/layout.R b/plotting/layout.R
index afb19ca3b3e442a51b6971665b23536730a7a216..44a84f98694cbbeeb6bb3c9952d901a4ba0c005b 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -130,11 +130,12 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                              isplot=c('datasheet', 'matrix', 'map'),
                              figdir='', filedir_opt='', filename_opt='',
                              variable='', df_trend=NULL,
-                             p_threshold=0.1, unit2day=365.25, type='',
-                             trend_period=NULL, mean_period=NULL,
-                             axis_xlim=NULL, missRect=FALSE,
-                             time_header=NULL, info_header=TRUE,
-                             info_ratio=1, time_ratio=2, var_ratio=3,
+                             p_threshold=0.1, unit2day=365.25, var='',
+                             type='', trend_period=NULL,
+                             mean_period=NULL, axis_xlim=NULL,
+                             missRect=FALSE, time_header=NULL,
+                             info_header=TRUE, info_ratio=1,
+                             time_ratio=2, var_ratio=3,
                              df_shapefile=NULL) {
 
     # Name of the document
@@ -195,6 +196,12 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
             unit2day = replicate(nbp, unit2day)
         }}
 
+    if (all(class(var) != 'list')) {
+        var = list(var)
+        if (length(var) == 1) {
+            var = replicate(nbp, var)
+        }}
+
     if (all(class(type) != 'list')) {
         type = list(type)
         if (length(type) == 1) {
@@ -217,7 +224,7 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                        trend=df_trend[[i]],
                        p_threshold=p_threshold[[i]],
                        unit2day=unit2day[[i]],
-                       type=type[[i]],
+                       var=var[[i]], type=type[[i]],
                        missRect=missRect[[i]])
         # Stores it
         list_df2plot[[i]] = df2plot
diff --git a/plotting/map.R b/plotting/map.R
index 5dc1e2c830b9a27d83c453877e2717cd7141536b..9e6eb743a094ef8cc65f89defc3fd88ad07a86fc 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -156,7 +156,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 }
 
                 # Computes the mean of the data on the period
-                dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+                dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
                 # Normalises the trend value by the mean of the data
                 trendMean = df_trend_code_per$trend / dataMean
 
@@ -187,13 +187,13 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             break
         }
         # Extracts the variable of the plot
-        type = list_df2plot[[i]]$type
+        var = list_df2plot[[i]]$var
         # Createsa name for the map
-        outname = paste('map_', type, sep='')
+        outname = paste('map_', var, sep='')
         # If there is the verbose option
         if (verbose) {
             # Prints the name of the map
-            print(paste('Map for variable : ', type,
+            print(paste('Map for variable : ', var,
                         "   (", round(i/nbp*100, 1), " %)", 
                         sep=''))
         } 
@@ -368,7 +368,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             }
 
             # Computes the mean of the data on the period
-            dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+            dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
             # Normalises the trend value by the mean of the data
             trendMean = df_trend_code_per$trend / dataMean
 
@@ -485,7 +485,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                       size=0.6, color="#00A3A8") +
             # Writes title
             geom_shadowtext(data=tibble(x=-0.3, y=0.2,
-                                        label=type),
+                                        label=var),
                             aes(x=x, y=y, label=label),
                             fontface="bold",
                             color="#00A3A8",
diff --git a/plotting/matrix.R b/plotting/matrix.R
index 0bdf77343edfc8ea321e7a43e6d01bf9436a8df0..f8454d5175d045ddb94a539bef6b3f8c3bf1f434 100644
--- a/plotting/matrix.R
+++ b/plotting/matrix.R
@@ -156,7 +156,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 }
 
                 # Computes the mean of the data on the period
-                dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+                dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
                 # Normalises the trend value by the mean of the data
                 trendMean = df_trend_code_per$trend / dataMean
 
@@ -180,7 +180,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     # Blank vectors to store info about trend analyses
     Periods_trend = c()
     NPeriod_trend = c()
-    Type_trend = list()
+    Var_trend = list()
     Code_trend = c()
     Pthresold_trend = c()
     TrendMean_trend = c()
@@ -200,7 +200,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 df_trend = list_df2plot[[i]]$trend
                 p_threshold = list_df2plot[[i]]$p_threshold
                 # Extract the variable of the plot
-                type = list_df2plot[[i]]$type
+                var = list_df2plot[[i]]$var
                 # Extracts the data corresponding to the code
                 df_data_code = df_data[df_data$code == code,]
                 # Extracts the trend corresponding to the code
@@ -229,7 +229,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 }
 
                 # Computes the mean of the data on the period
-                dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+                dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
                 # Normalises the trend value by the mean of the data
                 trendMean = df_trend_code_per$trend / dataMean
 
@@ -256,7 +256,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 # Stores info needed to plot
                 Periods_trend = append(Periods_trend, Periods)
                 NPeriod_trend = append(NPeriod_trend, j)
-                Type_trend = append(Type_trend, type)
+                Var_trend = append(Var_trend, var)
                 Code_trend = append(Code_trend, code)
                 Pthresold_trend = append(Pthresold_trend, Pthresold)
                 TrendMean_trend = append(TrendMean_trend, trendMean)
@@ -272,7 +272,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
         # Blank vectors to store info about breaking analysis
         Periods_mean = c()
         NPeriod_mean = c()
-        Type_mean = list()
+        Var_mean = list()
         Code_mean = c()
         DataMean_mean = c()
         BreakMean_mean = c()
@@ -302,7 +302,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     # the current variable
                     df_data = list_df2plot[[i]]$data
                     # Extract the variable of the plot
-                    type = list_df2plot[[i]]$type
+                    var = list_df2plot[[i]]$var
                     # Extracts the data corresponding to the code
                     df_data_code = df_data[df_data$code == code,] 
                     
@@ -323,7 +323,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                                     sep=' / ')
 
                     # Mean of the flow over the sub period
-                    dataMean = mean(df_data_code_per$Qm3s,
+                    dataMean = mean(df_data_code_per$Value,
                                     na.rm=TRUE)
 
                     # If this in not the first period
@@ -346,7 +346,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     # Stores info needed to plot
                     Periods_mean = append(Periods_mean, Periods)
                     NPeriod_mean = append(NPeriod_mean, j)
-                    Type_mean = append(Type_mean, type)
+                    Var_mean = append(Var_mean, var)
                     Code_mean = append(Code_mean, code)
                     DataMean_mean = append(DataMean_mean, dataMean)
                     BreakMean_mean = append(BreakMean_mean,
@@ -435,7 +435,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
             # Extracts those info
             subPeriods_trend = Periods_trend[CodefL_trend]
             subNPeriod_trend = NPeriod_trend[CodefL_trend]
-            subType_trend = Type_trend[CodefL_trend]
+            subVar_trend = Var_trend[CodefL_trend]
             subCode_trend = Code_trend[CodefL_trend]
             subPthresold_trend = Pthresold_trend[CodefL_trend]
             subTrendMean_trend = TrendMean_trend[CodefL_trend]
@@ -448,7 +448,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
             # Extracts right info
             subPeriods_mean = Periods_mean[CodefL_mean]
             subNPeriod_mean = NPeriod_mean[CodefL_mean]
-            subType_mean = Type_mean[CodefL_mean]
+            subVar_mean = Var_mean[CodefL_mean]
             subCode_mean = Code_mean[CodefL_mean]
             subDataMean_mean = DataMean_mean[CodefL_mean]
             subBreakMean_mean = BreakMean_mean[CodefL_mean]
@@ -500,8 +500,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     subPeriods_trend[subNPeriod_trend == j]
                 NPeriods_trend_per =
                     subNPeriod_trend[subNPeriod_trend == j]
-                Type_trend_per =
-                    subType_trend[subNPeriod_trend == j]
+                Var_trend_per =
+                    subVar_trend[subNPeriod_trend == j]
                 Code_trend_per =
                     subCode_trend[subNPeriod_trend == j]
                 Pthresold_trend_per =
@@ -517,7 +517,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
 
                 # Converts the vector of hydrological variable to
                 # a vector of integer associated to those variable
-                Xtmp = as.integer(factor(as.character(Type_trend_per)))
+                Xtmp = as.integer(factor(as.character(Var_trend_per)))
                 # Computes X position of the column for the period dates
                 Xc = j + (j - 1)*nbp*2
                 # Computes X positions of columns for the mean of
@@ -620,11 +620,11 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 # For all variable
                 for (i in 1:nbp) {
                     # Extract the variable of the plot
-                    type = list_df2plot[[i]]$type
+                    var = list_df2plot[[i]]$var
                     mat = mat +
                         # Writes the type of the variable
                         annotate('text', x=X[i], y=max(Y) + 0.82,
-                                 label=bquote(.(type)),
+                                 label=bquote(.(var)),
                                  hjust=0.5, vjust=0.5, 
                                  size=3.25, color='grey20') +
                         # Writes the unit of the variable
@@ -634,7 +634,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                                  size=2, color='grey40') +
                         # Writes the type of the averaged variable
                         annotate('text', x=Xm[i], y=max(Y) + 0.82,
-                                 label=bquote('µ'*.(type)),
+                                 label=bquote('µ'*.(var)),
                                  hjust=0.5, vjust=0.5, 
                                  size=3.25, color='grey20') +
                         # Writes the unit of the averaged variable
@@ -678,8 +678,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     subPeriods_mean[subNPeriod_mean == j]
                 NPeriods_mean_per =
                     subNPeriod_mean[subNPeriod_mean == j]
-                Type_mean_per =
-                    subType_mean[subNPeriod_mean == j]
+                Var_mean_per =
+                    subVar_mean[subNPeriod_mean == j]
                 Code_mean_per =
                     subCode_mean[subNPeriod_mean == j]
                 DataMean_mean_per =
@@ -693,7 +693,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
 
                 # Converts the vector of hydrological variable to
                 # a vector of integer associated to those variable
-                Xtmp_mean = as.integer(factor(as.character(Type_mean_per)))
+                Xtmp_mean = as.integer(factor(as.character(Var_mean_per)))
                 # Computes X position of the column for the period dates
                 Xc_mean = j + (j - 1)*nbp + X[length(X)]
                 # Computes X positions of columns for the mean of
@@ -818,11 +818,11 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 # For all variables
                 for (i in 1:nbp) {
                     # Extract the variable of the plot
-                    type = list_df2plot[[i]]$type
+                    var = list_df2plot[[i]]$var
                     mat = mat +
                         # Writes the type of the averaged variable
                         annotate('text', x=Xm_mean[i], y=max(Y) + 0.82,
-                                 label=bquote('µ'*.(type)),
+                                 label=bquote('µ'*.(var)),
                                  hjust=0.5, vjust=0.5, 
                                  size=3.25, color='grey20') +
                         # Writes the unit of the averaged variable
@@ -837,7 +837,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                             # Writes the type of the breaking variable
                             annotate('text', x=Xr_mean[i],
                                      y=max(Y) + 0.82,
-                                     label=bquote('d'*.(type)),
+                                     label=bquote('d'*.(var)),
                                      hjust=0.5, vjust=0.5, 
                                      size=3.25, color='grey20') +
                             # Writes the unit of the breaking variable
diff --git a/processing/analyse.R b/processing/analyse.R
index a56cf5741fd4a204db398c3a6b17e29c12790dcc..9e8eb65ba0f4292107c600aeffc4e26d389bf05e 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -80,7 +80,7 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
                        & df_Xtrend$period_end == End[i])
 
             # Compute mean of flow and time period
-            mu_X = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+            mu_X = mean(df_data_code_per$Value, na.rm=TRUE)
             mu_t = as.numeric(mean(c(Start[i],
                                      End[i]),
                                    na.rm=TRUE)) / unit2day
@@ -223,7 +223,7 @@ get_VCN10trend = function (df_data, df_meta, period, p_thresold) {
         df_data_code = tibble(Date=rollmean(df_data_code$Date,
                                             10,
                                             fill=NA),
-                              Qm3s=rollmean(df_data_code$Qm3s, 
+                              Value=rollmean(df_data_code$Value, 
                                             10,
                                             fill=NA),
                               code=c)
@@ -291,7 +291,7 @@ get_dateVCN10trend = function (df_data, df_meta, period, p_thresold) {
         df_data_code = df_data[df_data$code == c,]
         # Perform the roll mean of the flow over 10 days
         df_data_code = tibble(Date=df_data_code$Date,
-                              Qm3s=rollmean(df_data_code$Qm3s, 
+                              Value=rollmean(df_data_code$Value, 
                                             10,
                                             fill=NA),
                               code=c)
@@ -365,10 +365,10 @@ get_break = function (df_data, df_meta, p_thresold=0.05) {
         # Get the associated data
         df_data_code = df_data[df_data$code == code,] 
         # Remove NA data
-        df_data_codeNoNA = df_data_code[!is.na(df_data_code$Qm3s),]
+        df_data_codeNoNA = df_data_code[!is.na(df_data_code$Value),]
 
         # Perform the break analysis thanks to the Pettitt test
-        res_break = pettitt.test(df_data_codeNoNA$Qm3s)
+        res_break = pettitt.test(df_data_codeNoNA$Value)
 
         # Extract p value
         p_value = res_break$p
@@ -386,8 +386,8 @@ get_break = function (df_data, df_meta, p_thresold=0.05) {
                                 df_data_codeNoNA$Date[ibreak])
             Code_break = append(Code_break, code)
         }
-        # step1 = mean(df_data_codeNoNA$Qm3s[1:ibreak])
-        # step2 = mean(df_data_codeNoNA$Qm3s[(ibreak+1):nbreak])
+        # step1 = mean(df_data_codeNoNA$Value[1:ibreak])
+        # step2 = mean(df_data_codeNoNA$Value[(ibreak+1):nbreak])
     }
     # Create a tibble with the break analysis results
     df_break = tibble(code=Code_break, Date=as.Date(date_break))
diff --git a/processing/extract.R b/processing/extract.R
index 20e36435b13e4a3dc92690fdf83b3d02f2d928aa..1207e0457ae43615c4421044d1ac6b086e1a4b01 100644
--- a/processing/extract.R
+++ b/processing/extract.R
@@ -457,7 +457,7 @@ extract_data = function (computer_data_path, filedir, filename,
         # of the station
         df_data = tibble(Date=as.Date(as.character(df_data$Date),
                                       format="%Y%m%d"),
-                         Qm3s=df_data$Qls * 1E-3,
+                         Value=df_data$Qls * 1E-3,
                          df_data[-1:-2],
                          code=code)
         return (df_data)
diff --git a/processing/format.R b/processing/format.R
index c0a5de02aa873d96a79d68142185d1bcacab00b2..1068f9857d513ab6622dba3f5fd08c4028455845 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -51,7 +51,7 @@ prepare = function(df_data, colnamegroup=NULL) {
     # Creates a new tibble of data with a group column
     data = tibble(Date=df_data$Date, 
                   group=group_indices(df_data),
-                  Qm3s=df_data$Qm3s)
+                  Value=df_data$Value)
     
     # Gets the different value of the group
     Gkey = group_keys(df_data)
@@ -73,7 +73,7 @@ reprepare = function(df_XEx, df_Xlist, colnamegroup=NULL) {
 
     # Changes the column name of the results of the
     # 'extract.Var' function
-    colnames(df_XEx) = c('Date', 'group', 'Qm3s')
+    colnames(df_XEx) = c('Date', 'group', 'Value')
 
     # Converts Date column as character
     df_XEx$Date = as.character(df_XEx$Date)
diff --git a/script.R b/script.R
index e4f30aa9b3a5f25a7ff3e5d77c03fdf4df424403..037d0c2d9886bf4fc372eb4a888455720c1d376c 100644
--- a/script.R
+++ b/script.R
@@ -57,19 +57,19 @@ filedir =
 filename =
     # ""
 
-    c(
-      "S2235610_HYDRO_QJM.txt", 
-      "P1712910_HYDRO_QJM.txt", 
-      "P0885010_HYDRO_QJM.txt",
-      "O5055010_HYDRO_QJM.txt",
-      "O0384010_HYDRO_QJM.txt"
-      )
-
     # c(
+      # "S2235610_HYDRO_QJM.txt", 
+      # "P1712910_HYDRO_QJM.txt", 
+      # "P0885010_HYDRO_QJM.txt",
+      # "O5055010_HYDRO_QJM.txt",
+      # "O0384010_HYDRO_QJM.txt"
+      # )
+
+    c(
       # "S4214010_HYDRO_QJM.txt"
       # "O0384010_HYDRO_QJM.txt",
-      # "Q7002910_HYDRO_QJM.txt"
-      # )
+      "Q7002910_HYDRO_QJM.txt"
+      )
 
 
 
@@ -274,7 +274,7 @@ df_shapefile = ini_shapefile(computer_data_path,
                  # layout_matrix=c(1, 2),
                  # df_meta=df_meta,
                  # missRect=list(TRUE, TRUE), 
-                 # type=list('Q', 'sqrt(Q)'), 
+                 # var=list('Q', 'sqrt(Q)'), 
                  # info_header=TRUE,
                  # time_header=NULL,
                  # var_ratio=3,
@@ -296,7 +296,8 @@ datasheet_layout(isplot=c(
                                res_QMNAtrend$trend,
                                res_VCN10trend$trend,
                                res_dateVCN10trend$trend),
-                 type=list('QA', 'QMNA', 'VCN10', 'VCN10 date'),
+                 var=list('QA', 'QMNA', 'VCN10', 'date du VCN10'),
+                 type=list('flow', 'flow', 'flow', 'date'),
                  
                  layout_matrix=matrix(c(1, 2, 3, 4), ncol=1),