diff --git a/plotting/datasheet.R b/plotting/datasheet.R
index 56ecfb63ba9c28ec4dd6895e475f379e19aa9640..0cc1f5ede05c6c54ec2851818fea37e49db79ea8 100644
--- a/plotting/datasheet.R
+++ b/plotting/datasheet.R
@@ -429,7 +429,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, info_header, ti
                            lim_pct=lim_pct)
 
             # Stores the plot
-            P[[i+nbh]] = p 
+            P[[i+nbh]] = p            
         }
 
         if (!is.null(df_page)) {
diff --git a/plotting/layout.R b/plotting/layout.R
index cb2437bb9983b85542d4f9e1710cdda1e6ab8523..e0c659253eb640c0340fc6ec3e253229620780ef 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -488,7 +488,7 @@ palette_tester = function (n=256) {
 
 ### Summary panel
 summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp) {
-
+    
     text_title = paste(
         "<b>Analyse de Stationnarité Hydrologique</b>",
         sep='')
@@ -499,8 +499,6 @@ summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGl
 
     Sec_name = rle(df_page$section)$values
     nSec = length(Sec_name)
-
-    nlim = 50
     
     text_sum1 = ''
     text_page1 = ''
@@ -508,7 +506,7 @@ summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGl
     text_page2 = ''
     
     nline = 0
-    nline_max = 25
+    nline_max = 58
     for (idS in 1:nSec) {
         sec_name = Sec_name[idS]
         subSec_name = rle(df_page$subsection[df_page$section == sec_name])$values
@@ -534,7 +532,7 @@ summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGl
                 n_page = df_page$n[df_page$section == sec_name &
                                    df_page$subsection == subsec_name][1]
 
-                line = paste("     ", idS, ".", idSS, ". ",
+                line = paste(idS, ".", idSS, ". ",
                              subsec_name, "<br>", sep='')
                 page = paste("p.", n_page, "<br>", sep='')
                 
@@ -549,16 +547,23 @@ summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGl
                 nline = nline + 1
             }
         }
+        if (nline <= nline_max) {
+            text_sum1 = paste(text_sum1, "<br>", sep='')
+            text_page1 = paste(text_page1, "<br>", sep='')
+        } else {
+            text_sum2 = paste(text_sum2, "<br>", sep='')
+            text_page2 = paste(text_page2, "<br>", sep='')
+        }
+        nline = nline + 1
     }
-    # text_sum1 = gsub("é", "&#233;", text_sum1)
-    text_sum1 = gsub(" ", "<span style='color:white'>&#95;</span>",
-                     text_sum1)
+
+    # text_sum1 = gsub(" ", "<span style='color:white'>&#95;</span>",
+                     # text_sum1)
     text_sum1 = gsub('[.]', '&#46;', text_sum1)
     text_page1 = gsub('[.]', '&#46;', text_page1)
     
-    # text_sum2 = gsub("é", "&#233;", text_sum2)
-    text_sum2 = gsub(" ", "<span style='color:white'>&#95;</span>",
-                     text_sum2)
+    # text_sum2 = gsub(" ", "<span style='color:white'>&#95;</span>",
+                     # text_sum2)
     text_sum2 = gsub('[.]', '&#46;', text_sum2)
     text_page2 = gsub('[.]', '&#46;', text_page2)
 
@@ -640,7 +645,7 @@ summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGl
     title_height = 0.75
     subtitle_height = 1.25
     margin_size = 0.5
-    page_width = 0.5
+    page_width = 2
     height = 29.7
     width = 21
 
diff --git a/plotting/map.R b/plotting/map.R
index 991e0c3354f7887d8f586f4c03359002ec95c990..d86006ad4c3b09575f021b5fca9b9764aaa8e2a1 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -629,8 +629,8 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                     # For the station to highlight
                     geom_point(data=plot_map_code,
                                aes(x=lon, y=lat),
-                               shape=21, size=1.5, stroke=0.5,
-                               color='#00A3A8', fill='#00A3A8')
+                               shape=21, size=1.5, stroke=0.25,
+                               color='grey97', fill='#00A3A8')
             }
             
             # Extracts the position of the tick of the colorbar
diff --git a/processing/analyse.R b/processing/analyse.R
index b0b841a7b6826cedd55d8a2822b0d22ffa72c5a9..6ee5525f3be62205b29a3c63b268581f0fb8eba6 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -97,11 +97,12 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
 ### 1.1. QA
 # Realise the trend analysis of the average annual flow (QA)
 # hydrological variable
-get_QAtrend = function (df_data, df_meta, period, alpha) {
+get_QAtrend = function (df_data, df_meta, period, alpha, yearLac_day) {
 
     # Removes incomplete data from time series
-    df_data = remove_incomplete_data(df_data, df_meta,
-                                     yearLac_pct=1, yearStart='01-01')
+    df_data = missing_data(df_data, df_meta,
+                           yearLac_day=yearLac_day,
+                           yearStart='01-01')
     
     # Make sure to convert the period to a list
     period = as.list(period)
@@ -150,11 +151,11 @@ get_QAtrend = function (df_data, df_meta, period, alpha) {
 ### 1.2. QMNA
 # Realise the trend analysis of the monthly minimum flow in the
 # year (QMNA) hydrological variable
-get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
+get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day) {
 
     # Removes incomplete data from time series
-    df_data = remove_incomplete_data(df_data, df_meta,
-                                     yearLac_pct=1, yearStart='01-01')
+    df_data = missing_data(df_data, df_meta,
+                           yearLac_day=yearLac_day, yearStart='01-01')
     # Samples the data
     df_data = sampling_data(df_data, df_meta,
                             sampleSpan=sampleSpan)
@@ -219,11 +220,11 @@ get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
 ### 1.3. VCN10
 # Realises the trend analysis of the minimum 10 day average flow
 # over the year (VCN10) hydrological variable
-get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan) {
+get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day) {
 
     # Removes incomplete data from time series
-    df_data = remove_incomplete_data(df_data, df_meta,
-                                     yearLac_pct=1, yearStart='01-01')
+    df_data = missing_data(df_data, df_meta,
+                           yearLac_day=yearLac_day, yearStart='01-01')
 
     # Samples the data
     df_data = sampling_data(df_data, df_meta,
@@ -327,7 +328,7 @@ which_underfirst = function (L, UpLim, select_longest=TRUE) {
     return (id)
 }
 
-get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, thresold_type='VCN10', select_longest=TRUE) {
+get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, thresold_type='VCN10', select_longest=TRUE) {
 
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -352,18 +353,18 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, thresold_t
     }
 
     # Removes incomplete data from time series
-    df_data = remove_incomplete_data(df_data,
-                                     df_meta=df_meta,
-                                     yearLac_pct=1)
+    df_data = missing_data(df_data,
+                           df_meta=df_meta,
+                           yearLac_day=yearLac_day)
     # Samples the data
     df_data = sampling_data(df_data,
                             df_meta=df_meta,
                             sampleSpan=sampleSpan)
     
     # Removes incomplete data from the averaged time series
-    df_data_roll = remove_incomplete_data(df_data_roll,
-                                          df_meta=df_meta,
-                                          yearLac_pct=1)
+    df_data_roll = missing_data(df_data_roll,
+                                df_meta=df_meta,
+                                yearLac_day=yearLac_day)
     # Samples the data
     df_data_roll = sampling_data(df_data_roll,
                                  df_meta=df_meta,
@@ -481,7 +482,7 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, thresold_t
 ### 1.5. CEN date
 # Realises the trend analysis of the date of the minimum 10 day
 # average flow over the year (VCN10) hydrological variable
-get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
+get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -503,9 +504,9 @@ get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
     }
 
     # Removes incomplete data from time series
-    df_data_roll = remove_incomplete_data(df_data_roll, df_meta,
-                                          yearLac_pct=1,
-                                          yearStart='01-01')
+    df_data_roll = missing_data(df_data_roll, df_meta,
+                                yearLac_day=yearLac_day,
+                                yearStart='01-01')
     # Samples the data
     df_data_roll = sampling_data(df_data_roll, df_meta,
                                  sampleSpan=sampleSpan)
@@ -523,10 +524,10 @@ get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
         df_CENlist = prepare(df_data_roll, colnamegroup=c('code'))
         # Compute the yearly min over the averaged data
         df_CENEx = extract.Var(data.station=df_CENlist,
-                                 funct=which.min,
-                                 period=per,
-                                 timestep='year',
-                                 pos.datetime=1)
+                               funct=which.min,
+                               period=per,
+                               timestep='year',
+                               pos.datetime=1)
 
         # Converts index of the CEN to the julian date associated
         df_CENEx = prepare_date(df_CENEx, df_CENlist)
diff --git a/processing/format.R b/processing/format.R
index 731578bd173017a45b3233e1f306faa003f3e43b..316169a0f80cf0b853d61d704e8740ae87e6c7d1 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -31,6 +31,7 @@
 
 # Usefull library
 library(dplyr)
+library(Hmisc)
 
 
 ## 1. BEFORE TREND ANALYSE
@@ -80,8 +81,8 @@ join = function (df_data_AG, df_data_IN, df_meta_AG, df_meta_IN) {
     return (list(data=df_data, meta=df_meta))
 }
 
-### 1.2. Remove incomplete data
-remove_incomplete_data = function (df_data, df_meta, yearLac_pct=1, yearStart='01-01', Code=NULL) {
+### 1.2. Manages missing data
+missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Code=NULL) {
 
     if (is.null(Code)) {
         # Get all different stations code
@@ -129,9 +130,20 @@ remove_incomplete_data = function (df_data, df_meta, yearLac_pct=1, yearStart='0
 
             yearLacMiss_pct = nbNA/nbDate * 100
             
-            if (yearLacMiss_pct > yearLac_pct) {
+            if (nbNA > yearLac_day) {
                 df_data_code_year$Value = NA
                 df_data_code[OkYear,] = df_data_code_year
+                
+            } else if (nbNA <= yearLac_day & nbNA > 1) {
+                DateJ = as.numeric(df_data_code_year$Date)
+                Value = df_data_code_year$Value
+               
+                Value = approxExtrap(x=DateJ,
+                                     y=Value,
+                                     xout=DateJ,
+                                     method="linear",
+                                     na.rm=TRUE)$y                
+                df_data_code$Value[OkYear] = Value
             }
         }
         df_data[df_data$code == code,] = df_data_code        
@@ -150,19 +162,23 @@ sampling_data = function (df_data, df_meta, sampleSpan=c('05-01', '11-30'), Code
     } else {
         nCode = length(Code)
     }
-    
-    sampleStart = as.Date(paste('1970', sampleSpan[1], sep='-'))
-    sampleEnd = as.Date(paste('1970', sampleSpan[2], sep='-'))
+
+    # 1972 is leap year reference is case of leap year comparison
+    sampleStart = as.Date(paste('1972', sampleSpan[1], sep='-'))
+    sampleEnd = as.Date(paste('1972', sampleSpan[2], sep='-'))
     
     for (code in Code) {        
         # Extracts the data corresponding to the code
         df_data_code = df_data[df_data$code == code,]
         
         DateMD = substr(df_data_code$Date, 6, 10)
-        Date = paste('1970', DateMD, sep='-')
+        Date = paste('1972', DateMD, sep='-')
         
         df_data_code$Value[Date < sampleStart | Date > sampleEnd] = NA
 
+        # Leap year verification
+        # print(df_data_code[df_data_code$Date > as.Date("1992-02-25"),])
+
         df_data[df_data$code == code,] = df_data_code
     }
     
diff --git a/script.R b/script.R
index 6eb0fb9ea5d2aed0900c1a2e6ffd78f5bbea4257..a8ce827b0026981f29f7c456b3aff311f3d4b7de 100644
--- a/script.R
+++ b/script.R
@@ -55,19 +55,20 @@ filedir =
 # Name of the file that will be analysed from the BH directory
 # (if 'all', all the file of the directory will be chosen)
 filename =
-    # ""
-    c(
+    ""
+    # c(
         # "S2235610_HYDRO_QJM.txt",
         # "P1712910_HYDRO_QJM.txt",
         # "P0885010_HYDRO_QJM.txt",
         # "O5055010_HYDRO_QJM.txt",
         # "O0384010_HYDRO_QJM.txt",
         # "S4214010_HYDRO_QJM.txt",
-        "Q7002910_HYDRO_QJM.txt"
+        # "Q7002910_HYDRO_QJM.txt"
+        # "Q0214010_HYDRO_QJM.txt"
         # "O3035210_HYDRO_QJM.txt"
         # "O0554010_HYDRO_QJM.txt",
         # "O1584610_HYDRO_QJM.txt"
-    )
+    # )
 
 
 ## AGENCE EAU ADOUR GARONNE SELECTION
@@ -77,8 +78,8 @@ AGlistdir =
     ""
 
 AGlistname = 
-    ""
-    # "Liste-station_RRSE.docx" 
+    # ""
+    "Liste-station_RRSE.docx" 
 
 
 ## NIVALE SELECTION
@@ -105,6 +106,9 @@ mean_period = list(period1, period2)
 # alpha the risk
 alpha = 0.1
 
+# Number of missing days per year before remove the year 
+yearLac_day = 3
+
 # Sampling span of the data
 sampleSpan = c('05-01', '11-30')
 
@@ -239,19 +243,22 @@ df_meta = get_hydrograph(df_data, df_meta, period=mean_period[[1]])$meta
 # QA trend
 res_QAtrend = get_QAtrend(df_data, df_meta,
                           period=trend_period,
-                          alpha=alpha)
+                          alpha=alpha,
+                          yearLac_day=yearLac_day)
 
 # QMNA tend
 res_QMNAtrend = get_QMNAtrend(df_data, df_meta,
                               period=trend_period,
                               alpha=alpha,
-                              sampleSpan=sampleSpan)
+                              sampleSpan=sampleSpan,
+                              yearLac_day=yearLac_day)
 
 # VCN10 trend
 res_VCN10trend = get_VCN10trend(df_data, df_meta,
                                 period=trend_period,
                                 alpha=alpha,
-                                sampleSpan=sampleSpan)
+                                sampleSpan=sampleSpan,
+                                yearLac_day=yearLac_day)
 
 # Start date for low water trend
 res_DEBtrend = get_DEBtrend(df_data, df_meta, 
@@ -259,14 +266,16 @@ res_DEBtrend = get_DEBtrend(df_data, df_meta,
                             alpha=alpha,
                             sampleSpan=sampleSpan,
                             thresold_type='VCN10',
-                            select_longest=TRUE)
+                            select_longest=TRUE,
+                            yearLac_day=yearLac_day)
 # res_DEBtrend = read_listofdf(resdir, 'res_DEBtrend')
 
 # Center date for low water trend
 res_CENtrend = get_CENtrend(df_data, df_meta, 
                             period=trend_period,
                             alpha=alpha,
-                            sampleSpan=sampleSpan)
+                            sampleSpan=sampleSpan,
+                            yearLac_day=yearLac_day)
 
 ### 3.3. Break analysis
 # df_break = get_break(res_QAtrend$data, df_meta)
@@ -286,7 +295,7 @@ df_shapefile = ini_shapefile(computer_data_path,
                              fr_shpdir, fr_shpname,
                              bs_shpdir, bs_shpname,
                              sbs_shpdir, sbs_shpname,
-                             rv_shpdir, rv_shpname, riv=FALSE)
+                             rv_shpdir, rv_shpname, riv=TRUE)
 
 ### 4.1. Simple time panel to criticize station data
 # Plot time panel of debit by stations
diff --git a/script_install.R b/script_install.R
index 762033e8f281c249e65199797f045d7bb31b418d..6f05ba5956e5ffb38e99716ab0d32e240fdecd2a 100644
--- a/script_install.R
+++ b/script_install.R
@@ -16,6 +16,7 @@ install.packages("RColorBrewer")
 install.packages('trend')
 install.packages("shadowtext")
 install.packages("png")
+install.packages("Hmisc")
 
 
 # linux