diff --git a/plotting/map.R b/plotting/map.R
index 257bc7abacac12dda2b94cb99e22c2c6a5b13069..cdba53ce6c316e2f16a97824249bc411e525b4c1 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -69,46 +69,53 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         }
     }
 
-    # Blank list to store time info by station code
-    Start_code = vector(mode='list', length=nCode)
-    End_code = vector(mode='list', length=nCode)
-    Code_code = vector(mode='list', length=nCode)
-    Periods_code = vector(mode='list', length=nCode)
-    # For all the code
-    for (j in 1:nCode) {
+    tab_Start =  array(rep('', nCode*nbp*nPeriod_max),
+                       dim=c(nCode, nbp, nPeriod_max))
+    tab_End = array(rep('', nCode*nbp*nPeriod_max),
+                    dim=c(nCode, nbp, nPeriod_max))
+    tab_Code = array(rep('', nCode*nbp*nPeriod_max),
+                     dim=c(nCode, nbp, nPeriod_max))
+    tab_Periods = array(rep('', nCode*nbp*nPeriod_max),
+                        dim=c(nCode, nbp, nPeriod_max))
+    
+    # For all code
+    for (k in 1:nCode) {
         # Gets the code
-        code = Code[j]
-        # Extracts the trend corresponding to the code
-        df_trend_code = df_trend[df_trend$code == code,]
+        code = Code[k]
 
-        # Extract start and end of trend periods
-        Start = df_trend_code$period_start
-        End = df_trend_code$period_end
-        # Get the name of the different period
-        UStart = levels(factor(Start))        
-        UEnd = levels(factor(End))
-
-        # Compute the max of different start and end
-        # so the number of different period
-        nPeriod = max(length(UStart), length(UEnd))
-        
-        # Vector to store trend period
-        Periods = c()
-        # For all the period
-        for (i in 1:nPeriod_max) {
-            # Stocks period
-            Periods = append(Periods, 
-                             paste(substr(Start[i], 1, 4),
-                                   substr(End[i], 1, 4),
-                                   sep=' / '))
+        for (i in 1:nbp) {
+            df_trend = list_df2plot[[i]]$trend
+            # Extracts the trend corresponding to the code
+            df_trend_code = df_trend[df_trend$code == code,]
+            
+            # Extract start and end of trend periods
+            Start = df_trend_code$period_start
+            End = df_trend_code$period_end
+            # Get the name of the different period
+            UStart = levels(factor(Start))        
+            UEnd = levels(factor(End))
+            
+            # Compute the max of different start and end
+            # so the number of different period
+            nPeriod = max(length(UStart), length(UEnd))
+
+            # For all the period
+            for (j in 1:nPeriod_max) {
+                # Stocks period
+                Periods = paste(Start[j],
+                                End[j],
+                                sep=' / ')
+                
+                tab_Start[k, i, j] = as.character(Start[j])
+                tab_End[k, i, j] = as.character(End[j])
+                tab_Code[k, i, j] = code
+                tab_Periods[k, i, j] = Periods
+                
+            }
         }
-        # Stores time info by station
-        Start_code[[j]] = Start
-        End_code[[j]] = End
-        Code_code[[j]] = code
-        Periods_code[[j]] = Periods
     }
     
+    
     # Blank array to store mean of the trend for each
     # station, perdiod and variable
     TrendMean_code = array(rep(1, nPeriod_max*nbp*nCode),
@@ -134,9 +141,9 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 df_trend_code = df_trend[df_trend$code == code,]
 
                 # Gets the associated time info
-                Start = Start_code[Code_code == code][[1]][j]
-                End = End_code[Code_code == code][[1]][j]
-                Periods = Periods_code[Code_code == code][[1]][j]
+                Start = tab_Start[k, i, j]
+                End = tab_End[k, i, j]
+                Periods = tab_Periods[k, i, j]
 
                 # Extracts the corresponding data for the period
                 df_data_code_per =
@@ -334,7 +341,9 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         trend = c()
         p_threshold_Ok = c()
         # For all code
-        for (code in Code) {
+        for (k in 1:nCode) {
+            # Gets the code
+            code = Code[k]
             # Extracts the data corresponding to the current variable
             df_data = list_df2plot[[i]]$data
             # Extracts the trend corresponding to the
@@ -347,8 +356,13 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             df_trend_code = df_trend[df_trend$code == code,]
 
             # Gets the associated time info
-            Start = Start_code[Code_code == code][[1]][idPer]
-            End = End_code[Code_code == code][[1]][idPer]
+            # Start = Start_code[Code_code == code][[1]][idPer]
+            # End = End_code[Code_code == code][[1]][idPer]
+
+            # Gets the associated time info
+            Start = tab_Start[k, i, idPer]
+            End = tab_End[k, i, idPer]
+            Periods = tab_Periods[k, i, idPer]
 
             # Extracts the corresponding data for the period
             df_data_code_per =
diff --git a/plotting/matrix.R b/plotting/matrix.R
index c043b1882b83049c4ad1ee0f324a19eccc9bd9e2..6b50d4f2f89eda31f6ed2d75ed4783f723157082 100644
--- a/plotting/matrix.R
+++ b/plotting/matrix.R
@@ -70,44 +70,53 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
         }
     }
 
-    # Blank list to store time info by station code
-    Start_code = vector(mode='list', length=nCode)
-    End_code = vector(mode='list', length=nCode)
-    Code_code = vector(mode='list', length=nCode)
-    Periods_code = vector(mode='list', length=nCode)
-    # For all the code
-    for (j in 1:nCode) {
+    tab_Start =  array(rep('', nCode*nbp*nPeriod_max),
+                       dim=c(nCode, nbp, nPeriod_max))
+    tab_End = array(rep('', nCode*nbp*nPeriod_max),
+                    dim=c(nCode, nbp, nPeriod_max))
+    tab_Code = array(rep('', nCode*nbp*nPeriod_max),
+                     dim=c(nCode, nbp, nPeriod_max))
+    tab_Periods = array(rep('', nCode*nbp*nPeriod_max),
+                        dim=c(nCode, nbp, nPeriod_max))
+    
+    # For all code
+    for (k in 1:nCode) {
         # Gets the code
-        code = Code[j]
-        # Extracts the trend corresponding to the code
-        df_trend_code = df_trend[df_trend$code == code,]
-
-        # Extract start and end of trend periods
-        Start = df_trend_code$period_start
-        End = df_trend_code$period_end
-        # Get the name of the different period
-        UStart = levels(factor(Start))        
-        UEnd = levels(factor(End))
-
-        # Compute the max of different start and end
-        # so the number of different period
-        nPeriod = max(length(UStart), length(UEnd))
-        # Vector to store trend period
-        Periods = c()
-        # For all the trend period
-        for (i in 1:nPeriod_trend) {
-            # Stocks period
-            Periods = append(Periods, 
-                             paste(Start[i],
-                                   End[i],
-                                   sep=' / '))
+        code = Code[k]
+
+        for (i in 1:nbp) {
+            df_trend = list_df2plot[[i]]$trend
+            # Extracts the trend corresponding to the code
+            df_trend_code = df_trend[df_trend$code == code,]
+            
+            # Extract start and end of trend periods
+            Start = df_trend_code$period_start
+            End = df_trend_code$period_end
+            # Get the name of the different period
+            UStart = levels(factor(Start))        
+            UEnd = levels(factor(End))
+            
+            # Compute the max of different start and end
+            # so the number of different period
+            nPeriod = max(length(UStart), length(UEnd))
+
+            # For all the period
+            for (j in 1:nPeriod_max) {
+                # Stocks period
+                Periods = paste(Start[j],
+                                End[j],
+                                sep=' / ')
+                
+                tab_Start[k, i, j] = as.character(Start[j])
+                tab_End[k, i, j] = as.character(End[j])
+                tab_Code[k, i, j] = code
+                tab_Periods[k, i, j] = Periods
+                
+            }
         }
-        # Stores time info by station
-        Start_code[[j]] = Start
-        End_code[[j]] = End
-        Code_code[[j]] = code
-        Periods_code[[j]] = Periods
     }
+
+    
     
     # Blank array to store mean of the trend for each
     # station, perdiod and variable
@@ -134,9 +143,9 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 df_trend_code = df_trend[df_trend$code == code,]
 
                 # Gets the associated time info
-                Start = Start_code[Code_code == code][[1]][j]
-                End = End_code[Code_code == code][[1]][j]
-                Periods = Periods_code[Code_code == code][[1]][j]
+                Start = tab_Start[k, i, j]
+                End = tab_End[k, i, j]
+                Periods = tab_Periods[k, i, j]
 
                 # Extracts the corresponding data for the period
                 df_data_code_per =
@@ -191,7 +200,9 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     # For all the trend period
     for (j in 1:nPeriod_trend) {
         # For all code
-        for (code in Code) {
+        for (k in 1:nCode) {
+            # Gets the code
+            code = Code[k]
             # For all variable
             for (i in 1:nbp) {
                 # Extracts the data corresponding to the current variable
@@ -210,9 +221,9 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 df_trend_code = df_trend[df_trend$code == code,]
 
                 # Gets the associated time info
-                Start = Start_code[Code_code == code][[1]][j]
-                End = End_code[Code_code == code][[1]][j]
-                Periods = Periods_code[Code_code == code][[1]][j]
+                Start = tab_Start[k, i, j]
+                End = tab_End[k, i, j]
+                Periods = tab_Periods[k, i, j]
 
                 # Extracts the corresponding data for the period
                 df_data_code_per =
diff --git a/processing/analyse.R b/processing/analyse.R
index cda2470bdfec193ef759cccdfb51b0202d4da69b..b8ae689e56e9c0616f166203f653ae862acdc0c3 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -320,6 +320,7 @@ get_tINItrend = function (df_data, df_meta, period, p_thresold) {
         for (k in 1:nCode) {
             # Gets the code
             code = Code[k]
+            # print(code)
             
             per.start = df_meta$start_year[df_meta$code == code]
             per.start = paste(sprintf("%02d", per.start), '-01', sep='')
@@ -387,18 +388,22 @@ get_tINItrend = function (df_data, df_meta, period, p_thresold) {
                                           per.start=per.start)
 
             # print('hh')
+            # print(df_tINIEx_code)
             
             # Store the results
-            df_tINIEx = bind_rows(df_tINIEx, df_tINIEx_code)            
+            df_tINIEx = bind_rows(df_tINIEx, df_tINIEx_code)
             
             df_tINIlist$data = bind_rows(df_tINIlist$data,
                                          df_tINIlist_code$data)
+            
             df_tINIlist$info = bind_rows(df_tINIlist$info,
                                          df_tINIlist_code$info)
 
             # print('ii')
             
         }
+
+        # print('11')
         
         # Compute the trend analysis
         df_tINItrend = Estimate.stats(data.extract=df_tINIEx,
@@ -414,7 +419,7 @@ get_tINItrend = function (df_data, df_meta, period, p_thresold) {
             df_tINIExB = df_tINIEx
         }
 
-        print(per.start)
+        # print(per.start)
         
         # Specify the period of analyse
         df_tINItrend = get_period(per, df_tINItrend, df_tINIEx,
diff --git a/processing/format.R b/processing/format.R
index fde65227d705f8194503192f024b2373cee39d10..a46934fef19d3fd7853a0602238fb6738f40bb69 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -169,6 +169,8 @@ prepare_date = function(df_XEx, df_Xlist, per.start="01-01") {
         df_XEx$values[OkXEx_code] = XEx_code
     }
 
+    df_XEx$datetime = as.double(df_XEx$datetime)
+    
     return (df_XEx)
 }
 
@@ -294,11 +296,11 @@ get_period = function (per, df_Xtrend, df_XEx, df_Xlist) {
         iStart = which.min(abs(DateStart - as.Date(per[1])))
         iEnd = which.min(abs(DateEnd - as.Date(per[2])))
 
-        print(nrow(df_XEx))
-        print(as.Date(DateStart[iStart]))
-        print(head(df_XEx))
-        print(tail(df_XEx))
-        print(as.Date(DateEnd[iEnd]))
+        # print(nrow(df_XEx))
+        # print(as.Date(DateStart[iStart]))
+        # print(head(df_XEx))
+        # print(tail(df_XEx))
+        # print(as.Date(DateEnd[iEnd]))
 
         # Stores the start and end of the trend analysis
         df_Xtrend$period_start[id] = as.Date(DateStart[iStart])
diff --git a/script.R b/script.R
index 8a1f5805f75ea37376a92e0af7d6f743483bcd9a..db71de4bc7e11166aec1d4bc0dcf868eabb1f8bb 100644
--- a/script.R
+++ b/script.R
@@ -58,13 +58,15 @@ filename =
     # ""
 
     c(
-      # "S2235610_HYDRO_QJM.txt",
-      # "P1712910_HYDRO_QJM.txt",
-      # "P0885010_HYDRO_QJM.txt",
-      # "O5055010_HYDRO_QJM.txt",
-      "O0384010_HYDRO_QJM.txt"
-      # "S4214010_HYDRO_QJM.txt"
-      # "Q7002910_HYDRO_QJM.txt"
+        # "S2235610_HYDRO_QJM.txt",
+        # "P1712910_HYDRO_QJM.txt",
+        # "P0885010_HYDRO_QJM.txt",
+        # "O5055010_HYDRO_QJM.txt",
+        # "O0384010_HYDRO_QJM.txt",
+        # "S4214010_HYDRO_QJM.txt",
+        "Q7002910_HYDRO_QJM.txt",
+        "O3035210_HYDRO_QJM.txt",
+        "O3121010_HYDRO_QJM.txt"   
     )
 
 
@@ -286,8 +288,8 @@ df_shapefile = ini_shapefile(computer_data_path,
 
 ### 4.2. Analysis layout 
 datasheet_layout(toplot=c(
-                     'datasheet'
-                     # 'matrix',
+                     # 'datasheet',
+                     'matrix',
                      # 'map'
                  ),
                  df_meta=df_meta,