diff --git a/plotting/map.R b/plotting/map.R
index a7ccdbd36169662bf3e11c1814433c172d33ccd3..c918ea0e5123385faf2574399077a36fae28edc5 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -27,6 +27,7 @@
 
 
 ## 1. MAP PANEL
+# Generates a map plot of the tendancy of a hydrological variable
 map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp='', codeLight=NULL, margin=NULL, showSea=TRUE, verbose=TRUE) {
 
     # Extract shapefiles
@@ -100,14 +101,15 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                                    substr(End[i], 1, 4),
                                    sep=' / '))
         }
-
+        # Stores time info by station
         Start_code[[j]] = Start
         End_code[[j]] = End
         Code_code[[j]] = code
         Periods_code[[j]] = Periods
-        
     }
-
+    
+    # Blank array to store mean of the trend for each
+    # station, perdiod and variable
     TrendMean_code = array(rep(1, nPeriod_max*nbp*nCode),
                            dim=c(nPeriod_max, nbp, nCode))
     # For all the period
@@ -130,54 +132,72 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 # Extracts the trend corresponding to the code
                 df_trend_code = df_trend[df_trend$code == code,]
 
+                # Gets the associated time info
                 Start = Start_code[Code_code == code][[1]][j]
                 End = End_code[Code_code == code][[1]][j]
                 Periods = Periods_code[Code_code == code][[1]][j]
 
+                # Extracts the corresponding data for the period
                 df_data_code_per =
                     df_data_code[df_data_code$Date >= Start 
                                  & df_data_code$Date <= End,]
-
+                # Same for trend
                 df_trend_code_per = 
                     df_trend_code[df_trend_code$period_start == Start 
                                   & df_trend_code$period_end == End,]
 
+                # Computes the number of trend analysis selected
                 Ntrend = nrow(df_trend_code_per)
+                # If there is more than one trend on the same period
                 if (Ntrend > 1) {
+                    # Takes only the first because they are similar
                     df_trend_code_per = df_trend_code_per[1,]
                 }
-                
+
+                # Computes the mean of the data on the period
                 dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+                # Normalises the trend value by the mean of the data
                 trendMean = df_trend_code_per$trend / dataMean
 
+                # If the p value is under the threshold
                 if (df_trend_code_per$p <= p_threshold){
+                    # Stores the mean trend
                     TrendMean_code[j, i, k] = trendMean
+                # Otherwise
                 } else {
+                    # Do not stocks it
                     TrendMean_code[j, i, k] = NA
                 }
             }
         }
     }
-
+    # Compute the min and the max of the mean trend for all the station
     minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
     maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)    
 
-    ncolor = 256
+    # Number of ticks for the colorbar
     nbTick = 10
     # For all variable
     for (i in 1:nbp) {
-        
+        # If there is a specified station code to highlight (mini map)
+        # and there has already been one loop
         if (i > 1 & !is.null(codeLight)) {
+            # Stop the for loop over the variable
             break
         }
-        # Extract the variable of the plot
+        # Extracts the variable of the plot
         type = list_df2plot[[i]]$type
+        # Createsa name for the map
         outname = paste('map_', type, sep='')
+        # If there is the verbose option
         if (verbose) {
+            # Prints the name of the map
             print(paste('Map for variable :', type))
         } 
 
+        # If there is no specified station code to highlight (mini map)
         if (is.null(codeLight)) {
+            # Sets the size of the countour
             sizefr = 0.45
             sizebs = 0.4
             sizerv = 0.3
@@ -186,19 +206,20 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             sizebs = 0.3
             sizerv = 0.2
         }
-        
+
+        # Open a new plot with the personalise theme
         map = ggplot() + theme_void() +
-            
             # theme(plot.background=element_rect(fill=NA,
                                                # color="#EC4899")) +
             # Fixed coordinate system
             coord_fixed() +
-            
+            # Plot the background of France
             geom_polygon(data=df_france,
                          aes(x=long, y=lat, group=group),
                          color=NA, fill="grey97")
-
+        # If the river shapefile exists
         if (!is.null(df_river)) {
+            # Plot the river
             map = map +
                 geom_path(data=df_river,
                           aes(x=long, y=lat, group=group),
@@ -206,30 +227,44 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         }
         
         map = map +
+            # Plot the hydrological basin
             geom_polygon(data=df_bassin,
                          aes(x=long, y=lat, group=group),
                          color="grey70", fill=NA, size=sizebs) +
-            
+            # Plot the countour of France
             geom_polygon(data=df_france,
                          aes(x=long, y=lat, group=group),
                          color="grey40", fill=NA, size=sizefr)
-        
+
+        # If the sea needs to be shown
         if (showSea) {
+            # Leaves space around the France
             xlim = c(280000, 790000)
             ylim = c(6110000, 6600000)
+        # Otherwise
         } else {
+            # Leaves minimal space around France
             xlim = c(305000, 790000)
             ylim = c(6135000, 6600000)
         }
 
+        # If there is no specified station code to highlight (mini map)
         if (is.null(codeLight)) {
+            # Sets a legend scale start
             xmin = gpct(7, xlim, shift=TRUE)
+            # Sets graduations
             xint = c(0, 10*1E3, 50*1E3, 100*1E3)
+            # Sets the y postion
             ymin = gpct(5, ylim, shift=TRUE)
+            # Sets the height of graduations
             ymax = ymin + gpct(1, ylim)
+            # Size of the value
             size = 3
+            # Size of the 'km' unit
             sizekm = 2.5
+        # If there is a specified station code
         } else {
+            # Same but with less graduation and smaller size
             xmin = gpct(5, xlim, shift=TRUE)
             xint = c(0, 100*1E3)
             ymin = gpct(1, ylim, shift=TRUE)
@@ -239,38 +274,47 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         }
         
         map = map +
-            
+            # Adds the base line of the scale
             geom_line(aes(x=c(xmin, max(xint)+xmin),
                           y=c(ymin, ymin)),
                       color="grey40", size=0.2) +
+            # Adds the 'km' unit
             annotate("text",
                      x=max(xint)+xmin+gpct(1, xlim), y=ymin,
                      vjust=0, hjust=0, label="km",
                      color="grey40", size=sizekm)
-
+        # For all graduations
         for (x in xint) {
             map = map +
+                # Draws the tick
                 annotate("segment",
                          x=x+xmin, xend=x+xmin, y=ymin, yend=ymax,
                          color="grey40", size=0.2) +
+                # Adds the value
                 annotate("text",
                          x=x+xmin, y=ymax+gpct(0.5, ylim),
                          vjust=0, hjust=0.5, label=x/1E3,
                          color="grey40", size=size)
         }
         
-        map = map +          
+        map = map +
+            # Allows to crop shapefile without graphical problem
             coord_sf(xlim=xlim, ylim=ylim,
                      expand=FALSE)
-            
+        
+        # If there is no margins specified
         if (is.null(margin)) {
-            map = map +
+            # Sets all margins to 0
+            map = map + 
                 theme(plot.margin=margin(t=0, r=0, b=0, l=0, unit="mm"))
+            # Otherwise
         } else {
-            map = map +
+            # Sets margins to the given ones
+            map = map + 
                 theme(plot.margin=margin)
         }
-        
+
+        # Blank vector to store data about station
         lon = c()
         lat = c()
         fill = c()
@@ -314,13 +358,13 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                                   maxTrendMean[idPer, i],
                                   palette_name='perso',
                                   reverse=TRUE,
-                                  ncolor=ncolor)
+                                  ncolor=256)
 
             palette_res = get_palette(minTrendMean[idPer, i],
                                       maxTrendMean[idPer, i],
                                       palette_name='perso',
                                       reverse=TRUE,
-                                      ncolor=ncolor,
+                                      ncolor=256,
                                       nbTick=nbTick)
             
             if (df_trend_code_per$p <= p_threshold){
@@ -355,12 +399,14 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         plot_map = tibble(lon=lon, lat=lat, fill=fill,
                           shape=shape, code=Code)
 
+        # If there is no specified station code to highlight (mini map)
         if (is.null(codeLight)) {
             map = map +
                 geom_point(data=plot_map,
                            aes(x=lon, y=lat),
                            shape=shape, size=5, stroke=1,
                            color='grey50', fill=fill)
+        # If there is a specified station code
         } else {
             plot_map_codeNo = plot_map[plot_map$code != codeLight,]
             plot_map_code = plot_map[plot_map$code == codeLight,]
@@ -513,7 +559,6 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             yTrend = c(yTrend, rep(mids[ii], times=counts[ii]))
         }
 
-
         ## No touch distribution ##
         # start_hist = 1.25
         # min_xsep = 0.15
@@ -533,10 +578,11 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         #     }
         # }
         
-        
+        # Makes a tibble to plot the trend distribution
         plot_trend = tibble(xTrend=xTrend, yTrend=yTrend)
         
         pal = pal +
+            # Plots the point of the trend distribution
             geom_point(data=plot_trend,
                        aes(x=xTrend, y=yTrend),
                        # shape=21, size=1,
@@ -545,11 +591,12 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
 
 
         pal = pal +
+            # Arrow to show a worsening of the situation
             geom_segment(aes(x=2.7, y=valNorm*0.75,
                              xend=2.7, yend=valNorm*0.25),
                          color='grey50', size=0.3,
                          arrow=arrow(length=unit(2, "mm"))) +
-            
+            # Text associated to the arrow
             annotate('text',
                      x=2.8, y=valNorm*0.5,
                      label= "Plus sévère",
@@ -559,23 +606,24 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         
         
         pal = pal +
-            
+            # X axis of the colorbar
             scale_x_continuous(limits=c(-1, 1 + 3),
                                expand=c(0, 0)) +
-            
+            # Y axis of the colorbar
             scale_y_continuous(limits=c(-60, valNorm + 35),
                                expand=c(0, 0)) +
-            
+            # Margin of the colorbar
             theme(plot.margin=margin(t=0, r=5, b=5, l=0, unit="mm"))
 
-        
+        # Stores the map, the title and the colorbarin a list
         Map = list(map, title, pal)
-        
+        # Arranges the graphical object
         plot = grid.arrange(grobs=Map, layout_matrix=
                                            matrix(c(1, 1, 1, 2,
                                                     1, 1, 1, 3),
                                                   nrow=2, byrow=TRUE))
 
+        # If there is no specified station code to highlight (mini map)
         if (is.null(codeLight)) {
             # Saving matrix plot
             ggsave(plot=plot,
@@ -584,6 +632,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                    width=29.7, height=21, units='cm', dpi=100)
         }
     }
+    # Returns the map object
     return (map)
 }
  
diff --git a/plotting/matrix.R b/plotting/matrix.R
index 16750b96509ab76efcca743382ffdc29a0a5ff7c..ba442bb566d9df2558a1fea7b4d50ade401d8c94 100644
--- a/plotting/matrix.R
+++ b/plotting/matrix.R
@@ -101,14 +101,15 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                                    End[i],
                                    sep=' / '))
         }
-
+        # Stores time info by station
         Start_code[[j]] = Start
         End_code[[j]] = End
         Code_code[[j]] = code
         Periods_code[[j]] = Periods
-        
     }
-
+    
+    # Blank array to store mean of the trend for each
+    # station, perdiod and variable
     TrendMean_code = array(rep(1, nPeriod_trend*nbp*nCode),
                            dim=c(nPeriod_trend, nbp, nCode))
     # For all the trend period
@@ -131,35 +132,46 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 # Extracts the trend corresponding to the code
                 df_trend_code = df_trend[df_trend$code == code,]
 
+                # Gets the associated time info
                 Start = Start_code[Code_code == code][[1]][j]
                 End = End_code[Code_code == code][[1]][j]
                 Periods = Periods_code[Code_code == code][[1]][j]
 
+                # Extracts the corresponding data for the period
                 df_data_code_per =
                     df_data_code[df_data_code$Date >= Start 
                                  & df_data_code$Date <= End,]
-
+                # Same for trend
                 df_trend_code_per = 
                     df_trend_code[df_trend_code$period_start == Start 
                                   & df_trend_code$period_end == End,]
 
+                # Computes the number of trend analysis selected
                 Ntrend = nrow(df_trend_code_per)
+                # If there is more than one trend on the same period
                 if (Ntrend > 1) {
+                    # Takes only the first because they are similar
                     df_trend_code_per = df_trend_code_per[1,]
                 }
-                
+
+                # Computes the mean of the data on the period
                 dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE)
+                # Normalises the trend value by the mean of the data
                 trendMean = df_trend_code_per$trend / dataMean
 
+                # If the p value is under the threshold
                 if (df_trend_code_per$p <= p_threshold){
+                    # Stores the mean trend
                     TrendMean_code[j, i, k] = trendMean
+                # Otherwise
                 } else {
+                    # Do not stocks it
                     TrendMean_code[j, i, k] = NA
                 }
             }
         }
     }
-
+    # Compute the min and the max of the mean trend for all the station
     minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
     maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)