diff --git a/plotting/layout.R b/plotting/layout.R
index b3631f909af26391f275f52d4d89cd0c2da89175..487421e8c31d412a960e4efe56794510199cb956 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -116,7 +116,7 @@ panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_op
             
             Htime = time_panel(time_header_code, df_trend_code=NULL,
                                period=period, missRect=TRUE,
-                               unit2day=365.25, type='Q')
+                               unit2day=365.25, type='Q', first=FALSE)
 
             P[[2]] = Htime
         }
@@ -134,21 +134,22 @@ panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_op
             df_data_code = df_data[df_data$code == code,] 
             df_trend_code = df_trend[df_trend$code == code,]
 
-            if (df_trend_code$p <= p_threshold){
-                color_res = get_color(df_trend_code$trend, 
-                                      minTrend[i],
-                                      maxTrend[i], 
-                                      palette_name='perso',
-                                      reverse=FALSE)
-
-                color = color_res$color
-                palette = color_res$palette
-
-            } else {            
-                color = NULL
-                palette = NULL
+            color = c()
+            for (j in 1:nrow(df_trend_code)) {
+                if (df_trend_code$p[j] <= p_threshold){
+                    color_res = get_color(df_trend_code$trend[j], 
+                                          minTrend[i],
+                                          maxTrend[i], 
+                                          palette_name='perso',
+                                          reverse=FALSE)
+                    colortmp = color_res$color 
+                } else {  
+                    colortmp = NA
+                }
+
+                color = append(color, colortmp)                
             }
-            
+                        
             p = time_panel(df_data_code, df_trend_code, type=type,
                            p_threshold=p_threshold, missRect=missRect,
                            unit2day=unit2day, last=(i > nbp-nbcol),
diff --git a/plotting/panel.R b/plotting/panel.R
index d3ae1d1695c6fbad2c604d5247541ed0ecdd6a84..b939c2bb6b7f1e96187b4893c44aead704784fce 100644
--- a/plotting/panel.R
+++ b/plotting/panel.R
@@ -10,7 +10,7 @@ library(ggh4x)
 library(RColorBrewer)
 
 
-time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missRect=FALSE, unit2day=365.25, period=NULL, last=FALSE, color=NULL) {
+time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missRect=FALSE, unit2day=365.25, period=NULL, last=FALSE, first=FALSE, color=NULL) {
 
     if (type == 'sqrt(Q)') {
         df_data_code$Qm3s = sqrt(df_data_code$Qm3s)
@@ -85,11 +85,22 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
           )
 
     if (last) {
-        p = p +
-            theme(plot.margin=margin(1, 5, 5, 5, unit="mm"))
+        if (first) {
+            p = p +
+                theme(plot.margin=margin(5, 5, 5, 5, unit="mm"))
+        } else {
+            p = p +
+                theme(plot.margin=margin(0, 5, 5, 5, unit="mm"))
+        }
+
     } else {
-        p = p +
-            theme(plot.margin=margin(1, 5, 1, 5, unit="mm"))
+        if (first) {
+            p = p +
+                theme(plot.margin=margin(5, 5, 0, 5, unit="mm"))
+        } else {
+            p = p +
+                theme(plot.margin=margin(0, 5, 0, 5, unit="mm"))
+        }
     }
         
 
@@ -119,21 +130,31 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
     }
 
     if ((type == 'sqrt(Q)' | type == 'Q') & !is.null(period)) {
-            period = as.Date(period)
-            p = p + 
-                geom_rect(aes(xmin=min(df_data_code$Date),
-                              ymin=0, 
-                              xmax=period[1], 
-                              ymax= maxQ*1.1),
-                          linetype=0, fill='grey85', alpha=0.3) +
-                
-                geom_rect(aes(xmin=period[2],
-                              ymin=0, 
-                              xmax=max(df_data_code$Date), 
-                              ymax= maxQ*1.1),
-                          linetype=0, fill='grey85', alpha=0.3) 
+        
+        period = as.list(period)
+        Imin = 10^99
+        for (per in period) {
+            I = interval(per[1], per[2])
+            if (I < Imin) {
+                Imin = I
+                period_min = as.Date(per)
+            }
         }
 
+        p = p + 
+            geom_rect(aes(xmin=min(df_data_code$Date),
+                          ymin=0, 
+                          xmax=period_min[1], 
+                          ymax= maxQ*1.1),
+                      linetype=0, fill='grey85', alpha=0.3) +
+            
+            geom_rect(aes(xmin=period_min[2],
+                          ymin=0, 
+                          xmax=max(df_data_code$Date), 
+                          ymax= maxQ*1.1),
+                      linetype=0, fill='grey85', alpha=0.3) 
+    }
+
 
     if (!is.null(df_trend_code)) {
         
@@ -152,14 +173,13 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
         # }    
         
         ltype = c('solid', 'dashed', 'dotted', 'twodash')
+        lty = c('solid', '22')
         for (i in 1:nPeriod) {
 
             df_trend_code_per = 
                 df_trend_code[df_trend_code$period_start == Start[i] 
                               & df_trend_code$period_end == End[i],]
 
-            # print(df_trend_code_per)
-
             if (df_trend_code_per$p <= p_threshold) {
 
                 iStart = which.min(abs(df_data_code$Date - Start[i]))
@@ -167,19 +187,6 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
 
                 abs = c(df_data_code$Date[iStart],
                         df_data_code$Date[iEnd])
-
-                # abs = seq(df_data_code$Date[1],
-                          # df_data_code$Date[length(df_data_code$Date)],
-                          # length.out=10)
-
-                # abs[abs <= df_data_code$Date[iStart]] = NA
-                # abs[abs >= df_data_code$Date[iEnd]] = NA
-                
-
-                # print(abs)
-                # print(df_trend_code_per$trend)
-                # print(df_trend_code_per$intercept)
-                
                 
                 abs_num = as.numeric(abs) / unit2day
 
@@ -189,61 +196,54 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
 
                 plot = tibble(abs=abs, ord=ord)
 
-                if (!is.null(color)) {
+                if (!is.na(color[i])) {
                     p = p + 
                         geom_line(data=plot, aes(x=abs, y=ord), 
                                       color=color[i], 
                                       linetype=ltype[i], size=0.7)
-                } else {
+                } else {                    
                     p = p + 
                         geom_line(aes(x=abs, y=ord), 
                                   color='cornflowerblue')
                 }
-            }
-        }
-    }
 
+                codeDate = df_data_code$Date
+                codeQ = df_data_code$Qm3s
+                
+                x = gpct(3, codeDate, shift=TRUE)
+                xend = x + gpct(3, codeDate)
+               
+                dy = gpct(5, codeQ, ref=0)
+                y = gpct(108, codeQ, ref=0) - (i-1)*dy
+
+                xt = xend + gpct(1, codeDate)
+                label = bquote(bold(.(format(df_trend_code$trend, scientific=TRUE, digits=3)))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']')
+    
+                p = p +
+                    annotate("segment",
+                             x=x, xend=xend,
+                             y=y, yend=y,
+                             color=color[i],
+                             lty=lty[i], lwd=1) +
+                    
+                    annotate("text", 
+                             label=label, size=3,
+                             x=xt, y=y, 
+                             hjust=0, vjust=0.4,
+                             color=color[i])
+                
+                
+                
+                # bquote(bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']')
 
 
-            
-    #         if (norm) {
-    #             p = p +
-    #                 ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
-    #         } else {
-    #             p = p +
-    #                 ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']'~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
-    #         }
-            
-    #     } else {
-    #         if (norm) {
-    #             p = p +
-    #                 ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
-    #         } else {
-    #             p = p +
-    #                 ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']'~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
-    #         }
-    #     }
-    # } else { 
-    #     if (norm) {
-    #         p = p +
-    #             ggtitle(bquote(bold(.(type))~' ['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}))
-    #     } else {
-    #         p = p +
-    #                 ggtitle(bquote(bold(.(type))~' ['*m^{3}*'.'*s^{-1}*']'))
-    #     }
-    # }
-    
+            }
+        }
+    }
 
-    # if (norm) {
-    #     p = p +
-    #         ylab(bquote('débit ['*m^{3}*'.'*s^{-1}*']  x'~10^{.(as.character(power))}))
-    # } else {
-    #     p = p +
-    #         ylab(expression(paste('débit [', m^{3}, '.', 
-    #                               s^{-1}, ']', sep='')))
-    # }
+    p = p +
+        ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']')) +
 
-    p = p + 
         # xlab('date') + 
         scale_x_date(date_breaks=paste(as.character(datebreak), 
                                        'year', sep=' '),
@@ -269,33 +269,38 @@ text_panel = function(code, df_meta) {
     df_meta_code = df_meta[df_meta$code == code,]
 
     text1 = paste(
-        "<b>", code, '</b>  -  ', df_meta_code$nom, "<br>", 
+        "<b>", code, '</b>  -  ', df_meta_code$nom, ' &#40;',
+        df_meta_code$region_hydro, '&#41;', 
         sep='')
 
     text2 = paste(
         "<b>",
-        "Région hydro : ", df_meta_code$region_hydro, "<br>", 
+        "Gestionnaire : ", df_meta_code$gestionnaire, "<br>", 
         "</b>",
         sep='')
 
     text3 = paste(
         "<b>",
-        "Superficie : ", df_meta_code$surface_km2, "  [km<sup>2</sup>] <br>",
-        "X = ", df_meta_code$L93X, "  [m ; Lambert 93]", 
+        "Superficie : ", df_meta_code$surface_km2_IN, 
+        ' (', df_meta_code$surface_km2_BH, ')', "  [km<sup>2</sup>] <br>",
+        "X = ", df_meta_code$L93X_m_IN, 
+        ' (', df_meta_code$L93X_m_BH, ')', "  [m ; Lambert 93]", 
         "</b>",
         sep='')
         
     text4 = paste(
         "<b>",
-        "Altitude : ", df_meta_code$altitude_m, "  [m]<br>",
-        "Y = ", df_meta_code$L93Y, "  [m ; Lambert 93]",
+        "Altitude : ", df_meta_code$altitude_m_IN, 
+        ' (', df_meta_code$altitude_m_BH, ')', "  [m]<br>",
+        "Y = ", df_meta_code$L93Y_m_IN, 
+        ' (', df_meta_code$L93Y_m_BH, ')', "  [m ; Lambert 93]",
         "</b>",
         sep='')
 
     text5 = paste(
         "<b>",
-        "(Banque Hydro)<br>",
-        "(Banque Hydro)",
+        "INRAE (Banque Hydro)<br>",
+        "INRAE (Banque Hydro)",
         "</b>",
         sep='')
 
@@ -306,10 +311,10 @@ text_panel = function(code, df_meta) {
                            gp=gpar(col="#00A3A8", fontsize=14))
 
     gtext2 = richtext_grob(text2,
-                           x=0, y=0.6,
+                           x=0, y=0.55,
                            margin=unit(c(t=0, r=5, b=0, l=5), "mm"),
                            hjust=0, vjust=1,
-                           gp=gpar(col="grey20", fontsize=9))
+                           gp=gpar(col="grey20", fontsize=8))
     
     gtext3 = richtext_grob(text3,
                            x=0, y=1,
@@ -363,11 +368,6 @@ matrice_panel = function (list_df2plot, df_meta) {
     # Get all different stations code
     Code = levels(factor(df_meta$code))
 
-    # Type = vector(mode='list', length=nbp)
-    # for (i in 1:nbp) {
-    #     Type[[i]] = 
-    # }
-
     Type_mat = list()
     Code_mat = c()
     Trend_mat = c()
@@ -616,3 +616,24 @@ gg_circle = function(r, xc, yc, color="black", fill=NA, ...) {
     ymin = yc + r*sin(seq(0, -pi, length.out=100))
     annotate("ribbon", x=x, ymin=ymin, ymax=ymax, color=color, fill=fill, ...)
 }
+
+
+
+gpct = function (pct, L, ref=NULL, shift=FALSE) {
+    
+    if (is.null(ref)) {
+        minL = min(L, na.rm=TRUE)
+    } else {
+        minL = ref
+    }
+    
+    maxL = max(L, na.rm=TRUE)
+    spanL = maxL - minL
+ 
+    xL = pct/100 * as.numeric(spanL)
+
+    if (shift) {
+        xL = xL + minL
+    }
+    return (xL)
+}
diff --git a/processing/extract.R b/processing/extract.R
index 606877d4aa4cb3f57921aaf381a92854501eac21..b7835335745c4b9efde67ff754a98e8956e40f88 100644
--- a/processing/extract.R
+++ b/processing/extract.R
@@ -263,9 +263,21 @@ extract_meta = function (computer_data_path, filedir, filename, verbose=TRUE) {
             tibble(code=trimws(substr(metatxt[11], 38, nchar(metatxt[11]))),
                    nom=trimws(substr(metatxt[12], 39, nchar(metatxt[12]))),
                    territoire=trimws(substr(metatxt[13], 39, nchar(metatxt[13]))),
-                   L93X=as.numeric(substr(metatxt[16], 38, 50)),
-                   L93Y=as.numeric(substr(metatxt[16], 52, 63)),
-                   surface_km2=as.numeric(substr(metatxt[19], 38, 50)),
+
+                   gestionnaire=trimws(substr(metatxt[7], 60, nchar(metatxt[7]))),
+                   
+                   L93X_m_IN=as.numeric(substr(metatxt[16], 65, 77)),
+                   L93X_m_BH=as.numeric(substr(metatxt[16], 38, 50)),
+
+                   L93Y_m_IN=as.numeric(substr(metatxt[16], 79, 90)),
+                   L93Y_m_BH=as.numeric(substr(metatxt[16], 52, 63)),
+
+                   surface_km2_IN=as.numeric(substr(metatxt[19], 52, 63)),
+                   surface_km2_BH=as.numeric(substr(metatxt[19], 38, 50)),
+
+                   altitude_m_IN=as.numeric(substr(metatxt[20], 52, 63)),
+                   altitude_m_BH=as.numeric(substr(metatxt[20], 38, 50)),
+                   
                    statut=iStatut[trimws(substr(metatxt[26], 38, 50))],
                    finalite=iFinalite[trimws(substr(metatxt[26], 52, 56))],
                    type=iType[trimws(substr(metatxt[26], 58, 58))],
@@ -289,9 +301,9 @@ extract_meta = function (computer_data_path, filedir, filename, verbose=TRUE) {
 
 # Example
 # df_meta = extract_meta(
-    # "/home/louis/Documents/bouleau/INRAE/CDD_stationnarite/data",
-    # '',
-    # c('H5920011_HYDRO_QJM.txt', 'K4470010_HYDRO_QJM.txt'))
+#     "/home/louis/Documents/bouleau/INRAE/CDD_stationnarite/data",
+#     "BanqueHydro_Export2021",
+#     c('H5920011_HYDRO_QJM.txt', 'K4470010_HYDRO_QJM.txt'))
 
 
 # Extraction of data
diff --git a/script.R b/script.R
index d7763d0ea80cacc1820e3d50b3932aecaf58902d..7f1d69bbf4c6d4f72e2c2dd7e602761d1c0ec841 100644
--- a/script.R
+++ b/script.R
@@ -38,6 +38,7 @@ filename =
       "O1442910_HYDRO_QJM.txt")
 
 
+
 ### AGENCE ADOUR GARONNE SELECTION ###
 # Path to the list file of AG data that will be analysed
 AGlistdir = 
@@ -199,7 +200,7 @@ res_VCN10trend = get_VCN10trend(df_data, df_meta,
 #                     res_VCN10trend$trend), 
 #               type=list(bquote(Q[A]), bquote(Q[MNA]), bquote(V[CN10])),
 #               missRect=list(TRUE, TRUE, TRUE),
-#               period=period_all,
+#               period=list(period_all, period2),
 #               info_header=TRUE,
 #               time_header=df_data,
 #               time_ratio=2, 
@@ -215,7 +216,7 @@ panels_layout(list(res_QAtrend$data, res_VCN10trend$data),
                     res_VCN10trend$trend), 
               type=list(bquote(Q[A]), bquote(V[CN10])),
               missRect=list(TRUE, TRUE),
-              period=period_all,
+              period=list(period_all, period2),
               info_header=TRUE,
               time_header=df_data,
               time_ratio=2, 
@@ -231,7 +232,7 @@ panels_layout(list(res_QAtrend$data, res_VCN10trend$data),
 #               df_trend=list(res_QAtrend$trend), 
 #               type=list(bquote(Q[A])),
 #               missRect=list(TRUE),
-#               period=period_all,
+#               period=list(period_all, period2),
 #               info_header=TRUE,
 #               time_header=df_data,
 #               time_ratio=2,