diff --git a/plotting/layout.R b/plotting/layout.R
index e46e4d5d423bc7bd782f975dde835e86a771df99..b118aecb8bb2cc2fa0fabf16cd680b436e3792f7 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -436,6 +436,10 @@ get_power = function (value) {
         # The magnitude is the number of character of integer part
         # of the value minus one
         power = nchar(as.character(as.integer(value))) - 1
+    # If value is zero
+    } else if (value == 0) {
+        # The power is zero
+        power = 0
     # If the value is less than one
     } else {
         # Extract the decimal part
diff --git a/plotting/map.R b/plotting/map.R
index cdba53ce6c316e2f16a97824249bc411e525b4c1..31acce4a9940e2122aa78af52969163be23793c1 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -69,6 +69,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         }
     }
 
+    # Blank array to store time info
     tab_Start =  array(rep('', nCode*nbp*nPeriod_max),
                        dim=c(nCode, nbp, nPeriod_max))
     tab_End = array(rep('', nCode*nbp*nPeriod_max),
@@ -82,7 +83,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
     for (k in 1:nCode) {
         # Gets the code
         code = Code[k]
-
+        # For all the variable
         for (i in 1:nbp) {
             df_trend = list_df2plot[[i]]$trend
             # Extracts the trend corresponding to the code
@@ -105,7 +106,8 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 Periods = paste(Start[j],
                                 End[j],
                                 sep=' / ')
-                
+
+                # Saves the time info
                 tab_Start[k, i, j] = as.character(Start[j])
                 tab_End[k, i, j] = as.character(End[j])
                 tab_Code[k, i, j] = code
@@ -118,7 +120,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
     
     # Blank array to store mean of the trend for each
     # station, perdiod and variable
-    TrendMean_code = array(rep(1, nPeriod_max*nbp*nCode),
+    TrendValue_code = array(rep(1, nPeriod_max*nbp*nCode),
                            dim=c(nPeriod_max, nbp, nCode))
     # For all the period
     for (j in 1:nPeriod_max) {
@@ -134,6 +136,8 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 # Extracts the trend corresponding to the
                 # current variable
                 df_trend = list_df2plot[[i]]$trend
+                # Extracts the type of the variable
+                type = list_df2plot[[i]]$type
                 p_threshold = list_df2plot[[i]]$p_threshold
                 # Extracts the data corresponding to the code
                 df_data_code = df_data[df_data$code == code,]
@@ -162,26 +166,32 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                     df_trend_code_per = df_trend_code_per[1,]
                 }
 
-                # Computes the mean of the data on the period
-                dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
-                # Normalises the trend value by the mean of the data
-                trendMean = df_trend_code_per$trend / dataMean
+                # If it is a flow variable
+                if (type == 'sévérité') {
+                    # Computes the mean of the data on the period
+                    dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
+                    # Normalises the trend value by the mean of the data
+                    trendValue = df_trend_code_per$trend / dataMean
+                # If it is a date variable
+                } else if (type == 'saisonnalité') {
+                    trendValue = df_trend_code_per$trend
+                }
 
                 # If the p value is under the threshold
                 if (df_trend_code_per$p <= p_threshold){
                     # Stores the mean trend
-                    TrendMean_code[j, i, k] = trendMean
+                    TrendValue_code[j, i, k] = trendValue
                 # Otherwise
                 } else {
                     # Do not stocks it
-                    TrendMean_code[j, i, k] = NA
+                    TrendValue_code[j, i, k] = NA
                 }
             }
         }
     }
     # Compute the min and the max of the mean trend for all the station
-    minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
-    maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)    
+    minTrendValue = apply(TrendValue_code, c(1, 2), min, na.rm=TRUE)
+    maxTrendValue = apply(TrendValue_code, c(1, 2), max, na.rm=TRUE)    
 
     # Number of ticks for the colorbar
     nbTick = 10
@@ -195,6 +205,8 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         }
         # Extracts the variable of the plot
         var = list_df2plot[[i]]$var
+        # Extracts the type of variable of the plot
+        type = list_df2plot[[i]]$type
         # Createsa name for the map
         outname = paste('map_', var, sep='')
         # If there is the verbose option
@@ -381,21 +393,27 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 df_trend_code_per = df_trend_code_per[1,]
             }
 
-            # Computes the mean of the data on the period
-            dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
-            # Normalises the trend value by the mean of the data
-            trendMean = df_trend_code_per$trend / dataMean
+            # If it is a flow variable
+            if (type == 'sévérité') {
+                # Computes the mean of the data on the period
+                dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
+                # Normalises the trend value by the mean of the data
+                trendValue = df_trend_code_per$trend / dataMean
+            # If it is a date variable
+            } else if (type == 'saisonnalité') {
+                trendValue = df_trend_code_per$trend
+            }
 
             # Computes the color associated to the mean trend
-            color_res = get_color(trendMean, 
-                                  minTrendMean[idPer, i],
-                                  maxTrendMean[idPer, i],
+            color_res = get_color(trendValue, 
+                                  minTrendValue[idPer, i],
+                                  maxTrendValue[idPer, i],
                                   palette_name='perso',
                                   reverse=TRUE,
                                   ncolor=256)
             # Computes the colorbar info 
-            palette_res = get_palette(minTrendMean[idPer, i],
-                                      maxTrendMean[idPer, i],
+            palette_res = get_palette(minTrendValue[idPer, i],
+                                      maxTrendValue[idPer, i],
                                       palette_name='perso',
                                       reverse=TRUE,
                                       ncolor=256,
@@ -406,7 +424,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 # The computed color is stored
                 filltmp = color_res
                 # If the mean tend is positive
-                if (trendMean >= 0) {
+                if (trendValue >= 0) {
                     # Uses a triangle up for the shape of the marker
                     shapetmp = 24
                 # If negative
@@ -433,7 +451,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             lat = c(lat, lattmp)
             fill = c(fill, filltmp)
             shape = c(shape, shapetmp)
-            trend = c(trend, trendMean)
+            trend = c(trend, trendValue)
             # If the trend analysis is significative a TRUE is stored
             p_threshold_Ok = c(p_threshold_Ok,
                                df_trend_code_per$p <= p_threshold)
@@ -468,7 +486,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                 geom_point(data=plot_map_code,
                            aes(x=lon, y=lat),
                            shape=21, size=1.5, stroke=0.5,
-                           color='grey40', fill='grey40')
+                           color='#00A3A8', fill='#00A3A8')
         }
         
         # Extracts the position of the tick of the colorbar
@@ -482,9 +500,17 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
         valNorm = nbTick * 10
         # Normalisation of the position of ticks
         ytick = posTick / max(posTick) * valNorm
-        # Formatting of label in pourcent
-        labTick = as.character(round(labTick*100, 2))
 
+        # If it is a flow variable
+        if (type == 'sévérité') {
+            # Formatting of label in pourcent
+            labTick = as.character(round(labTick*100, 2))
+        # If it is a date variable
+        } else if (type == 'saisonnalité') {
+            # Formatting of label
+            labTick = as.character(round(labTick, 2))
+        }
+        
         # X position of ticks all similar
         xtick = rep(0, times=nbTick)
 
@@ -522,6 +548,14 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                        shape=21, size=5, stroke=1,
                        color='white', fill=colTick)
 
+        # If it is a flow variable
+        if (type == 'sévérité') {
+            unit = bquote(bold("% par an"))
+        # If it is a date variable
+        } else if (type == 'saisonnalité') {
+            unit = bquote(bold("jour par an"))
+        }
+        
         pal = pal +
             # Name of the colorbar
             annotate('text',
@@ -532,7 +566,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
             # Unit legend of the colorbar
             annotate('text',
                      x=-0.2, y= valNorm + 13,
-                     label=bquote(bold("% par an")),
+                     label=unit,
                      hjust=0, vjust=0.5,
                      size=4, color='grey40')
         # For all the ticks
@@ -584,8 +618,8 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
 
         # Normalises all the trend values for each station
         # according to the colorbar
-        yTrend = (trend - minTrendMean[idPer, i]) /
-            (maxTrendMean[idPer, i] - minTrendMean[idPer, i]) * valNorm
+        yTrend = (trend - minTrendValue[idPer, i]) /
+            (maxTrendValue[idPer, i] - minTrendValue[idPer, i]) * valNorm
         # Takes only the significative ones
         yTrend = yTrend[p_threshold_Ok]
 
@@ -656,21 +690,22 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp=''
                        # color="grey20", fill="grey20")
                        alpha=0.4)
 
-
-        pal = pal +
-            # Arrow to show a worsening of the situation
-            geom_segment(aes(x=2.7, y=valNorm*0.75,
-                             xend=2.7, yend=valNorm*0.25),
-                         color='grey50', size=0.3,
-                         arrow=arrow(length=unit(2, "mm"))) +
-            # Text associated to the arrow
-            annotate('text',
-                     x=2.8, y=valNorm*0.5,
-                     label= "Plus sévère",
-                     angle=90,
-                     hjust=0.5, vjust=1,
-                     size=3, color='grey50')
-        
+        # If it is a flow variable
+        if (type == 'sévérité') {
+            pal = pal +
+                # Arrow to show a worsening of the situation
+                geom_segment(aes(x=2.7, y=valNorm*0.75,
+                                 xend=2.7, yend=valNorm*0.25),
+                             color='grey50', size=0.3,
+                             arrow=arrow(length=unit(2, "mm"))) +
+                # Text associated to the arrow
+                annotate('text',
+                         x=2.8, y=valNorm*0.5,
+                         label= "Plus sévère",
+                         angle=90,
+                         hjust=0.5, vjust=1,
+                         size=3, color='grey50')
+        }
         
         pal = pal +
             # X axis of the colorbar
diff --git a/plotting/matrix.R b/plotting/matrix.R
index e376c8ee0ca0900cbf53b62282e8ea210787280b..aeeb47b34bd4cdf66ff150bf94d194f517b16a04 100644
--- a/plotting/matrix.R
+++ b/plotting/matrix.R
@@ -70,6 +70,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
         }
     }
 
+    # Blank array to store time info
     tab_Start =  array(rep('', nCode*nbp*nPeriod_max),
                        dim=c(nCode, nbp, nPeriod_max))
     tab_End = array(rep('', nCode*nbp*nPeriod_max),
@@ -83,7 +84,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     for (k in 1:nCode) {
         # Gets the code
         code = Code[k]
-
+        # For all the variable
         for (i in 1:nbp) {
             df_trend = list_df2plot[[i]]$trend
             # Extracts the trend corresponding to the code
@@ -106,7 +107,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 Periods = paste(Start[j],
                                 End[j],
                                 sep=' / ')
-                
+
+                # Saves the time info
                 tab_Start[k, i, j] = as.character(Start[j])
                 tab_End[k, i, j] = as.character(End[j])
                 tab_Code[k, i, j] = code
@@ -120,7 +122,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     
     # Blank array to store mean of the trend for each
     # station, perdiod and variable
-    TrendMean_code = array(rep(1, nPeriod_trend*nbp*nCode),
+    TrendValue_code = array(rep(1, nPeriod_trend*nbp*nCode),
                            dim=c(nPeriod_trend, nbp, nCode))
     # For all the trend period
     for (j in 1:nPeriod_trend) {
@@ -136,6 +138,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 # Extracts the trend corresponding to the
                 # current variable
                 df_trend = list_df2plot[[i]]$trend
+                # Extracts the type of the variable
+                type = list_df2plot[[i]]$type
                 p_threshold = list_df2plot[[i]]$p_threshold
                 # Extracts the data corresponding to the code
                 df_data_code = df_data[df_data$code == code,]
@@ -163,28 +167,35 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     # Takes only the first because they are similar
                     df_trend_code_per = df_trend_code_per[1,]
                 }
-
                 # Computes the mean of the data on the period
                 dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
-                # Normalises the trend value by the mean of the data
-                trendMean = df_trend_code_per$trend / dataMean
+                
+                # If it is a flow variable
+                if (type == 'sévérité') {
+                    # Normalises the trend value by the mean of the data
+                    trendValue = df_trend_code_per$trend / dataMean
+                # If it is a date variable
+                } else if (type == 'saisonnalité') {
+                    # Just stocks the trend value
+                    trendValue = df_trend_code_per$trend
+                }
 
                 # If the p value is under the threshold
                 if (df_trend_code_per$p <= p_threshold){
                     # Stores the averaged trend
-                    TrendMean_code[j, i, k] = trendMean
+                    TrendValue_code[j, i, k] = trendValue
                 # Otherwise
                 } else {
                     # Do not stocks it
-                    TrendMean_code[j, i, k] = NA
+                    TrendValue_code[j, i, k] = NA
                 }
             }
         }
     }
     # Computes the min and the max of the mean trend for
     # all the station
-    minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE)
-    maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE)
+    minTrendValue = apply(TrendValue_code, c(1, 2), min, na.rm=TRUE)
+    maxTrendValue = apply(TrendValue_code, c(1, 2), max, na.rm=TRUE)
 
     # Blank vectors to store info about trend analyses
     Periods_trend = c()
@@ -193,7 +204,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     Type_trend = c()
     Code_trend = c()
     Pthresold_trend = c()
-    TrendMean_trend = c()
+    TrendValue_trend = c()
     DataMean_trend = c()
     Fill_trend = c()
     Color_trend = c()
@@ -244,15 +255,23 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
 
                 # Computes the mean of the data on the period
                 dataMean = mean(df_data_code_per$Value, na.rm=TRUE)
-                # Normalises the trend value by the mean of the data
-                trendMean = df_trend_code_per$trend / dataMean
+
+                # If it is a flow variable
+                if (type == 'sévérité') {
+                    # Normalises the trend value by the mean of the data
+                    trendValue = df_trend_code_per$trend / dataMean
+                # If it is a date variable
+                } else if (type == 'saisonnalité') {
+                    # Just stocks the trend value
+                    trendValue = df_trend_code_per$trend
+                }
 
                 # If the p value is under the threshold
                 if (df_trend_code_per$p <= p_threshold){
                     # Gets the color associated to the averaged trend
-                    color_res = get_color(trendMean, 
-                                          minTrendMean[j, i],
-                                          maxTrendMean[j, i],
+                    color_res = get_color(trendValue, 
+                                          minTrendValue[j, i],
+                                          maxTrendValue[j, i],
                                           palette_name='perso',
                                           reverse=TRUE)
                     # Specifies the color fill and contour of
@@ -274,7 +293,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 Type_trend = append(Type_trend, type)
                 Code_trend = append(Code_trend, code)
                 Pthresold_trend = append(Pthresold_trend, Pthresold)
-                TrendMean_trend = append(TrendMean_trend, trendMean)
+                TrendValue_trend = append(TrendValue_trend, trendValue)
                 DataMean_trend = append(DataMean_trend, dataMean)
                 Fill_trend = append(Fill_trend, fill)
                 Color_trend = append(Color_trend, color)
@@ -291,7 +310,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
         Type_mean = c()
         Code_mean = c()
         DataMean_mean = c()
-        BreakMean_mean = c()
+        breakValue_mean = c()
         
         # Convert 'mean_period' to list
         mean_period = as.list(mean_period)
@@ -299,7 +318,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
         nPeriod_mean = length(mean_period)
 
         # Blank array to store difference of mean between two periods
-        BreakMean_code = array(rep(1, nPeriod_mean*nbp*nCode),
+        breakValue_code = array(rep(1, nPeriod_mean*nbp*nCode),
                                dim=c(nPeriod_mean, nbp, nCode))
         # Blank array to store mean for a temporary period in order
         # to compute the difference of mean with a second period
@@ -353,11 +372,20 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         # Stocks NA
                         Break = NA
                     }
-                    # Normalises the break by the mean of the
-                    # initial period
-                    BreakMean = Break / dataMeantmp[i, k]
+
+                    # If it is a flow variable
+                    if (type == 'sévérité') {
+                        # Normalises the break by the mean of the
+                        # initial period
+                        breakValue = Break / dataMeantmp[i, k]
+                    # If it is a date variable
+                    } else if (type == 'saisonnalité') {
+                        # Just stocks the break value
+                        breakValue = Break
+                    }
+                    
                     # Stores the result
-                    BreakMean_code[j, i, k] = BreakMean
+                    breakValue_code[j, i, k] = breakValue
                     # Stores temporarily the mean of the current period
                     dataMeantmp[i, k] = dataMean
                     
@@ -368,16 +396,16 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     Type_mean = append(Type_mean, type)
                     Code_mean = append(Code_mean, code)
                     DataMean_mean = append(DataMean_mean, dataMean)
-                    BreakMean_mean = append(BreakMean_mean,
-                                            BreakMean)
+                    breakValue_mean = append(breakValue_mean,
+                                            breakValue)
                 }
             }
         }
         # Computes the min and the max of the averaged trend for
         # all the station
-        minBreakMean = apply(BreakMean_code, c(1, 2),
+        minBreakValue = apply(breakValue_code, c(1, 2),
                              min, na.rm=TRUE)
-        maxBreakMean = apply(BreakMean_code, c(1, 2),
+        maxBreakValue = apply(breakValue_code, c(1, 2),
                              max, na.rm=TRUE)
         # Blanks vector to store color info
         Fill_mean = c()
@@ -392,11 +420,11 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 # For all variable
                 for (i in 1:nbp) {
                     # Extracts averaged breaking
-                    BreakMean = BreakMean_mean[ii]
+                    breakValue = breakValue_mean[ii]
                     # Gets the color associated
-                    color_res = get_color(BreakMean, 
-                                          minBreakMean[j, i],
-                                          maxBreakMean[j, i],
+                    color_res = get_color(breakValue, 
+                                          minBreakValue[j, i],
+                                          maxBreakValue[j, i],
                                           palette_name='perso',
                                           reverse=TRUE)
                     # Gets the fill and contour color
@@ -473,7 +501,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 subType_trend = Type_trend[CodefL_trend]
                 subCode_trend = Code_trend[CodefL_trend]
                 subPthresold_trend = Pthresold_trend[CodefL_trend]
-                subTrendMean_trend = TrendMean_trend[CodefL_trend]
+                subTrendValue_trend = TrendValue_trend[CodefL_trend]
                 subDataMean_trend = DataMean_trend[CodefL_trend]
                 subFill_trend = Fill_trend[CodefL_trend]
                 subColor_trend = Color_trend[CodefL_trend]
@@ -488,7 +516,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 subType_mean = Type_mean[CodefL_mean]
                 subCode_mean = Code_mean[CodefL_mean]
                 subDataMean_mean = DataMean_mean[CodefL_mean]
-                subBreakMean_mean = BreakMean_mean[CodefL_mean]
+                subbreakValue_mean = breakValue_mean[CodefL_mean]
                 subFill_mean = Fill_mean[CodefL_mean]
                 subColor_mean = Color_mean[CodefL_mean]
                 
@@ -553,8 +581,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         subCode_trend[subNPeriod_trend == j]
                     Pthresold_trend_per =
                         subPthresold_trend[subNPeriod_trend == j]
-                    TrendMean_trend_per =
-                        subTrendMean_trend[subNPeriod_trend == j]
+                    TrendValue_trend_per =
+                        subTrendValue_trend[subNPeriod_trend == j]
                     DataMean_trend_per =
                         subDataMean_trend[subNPeriod_trend == j]
                     Fill_trend_per =
@@ -625,14 +653,28 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                             gg_circle(r=0.45, xc=Xc, yc=Y[i],
                                       fill='white', color='grey40') 
                     }
+
                     # For all averaged trends on this periods
-                    for (i in 1:length(TrendMean_trend_per)) {
+                    for (i in 1:length(TrendValue_trend_per)) {
                         # Extracts the value of the averaged trend
-                        trendMean = TrendMean_trend_per[i]
-                        # Converts it to the right format with two
-                        # significant figures
-                        trendMeanC = signif(trendMean*100, 2)
+                        trendValue = TrendValue_trend_per[i]
+                        type = Type_trend_per[i]
 
+                        # If it is a flow variable
+                        if (type == 'sévérité') {
+                            Nsign_mean = 2
+                            # Converts it to the right format with
+                            # two significant figures
+                            trendValueC = signif(trendValue*100, 2)
+                        # If it is a date variable
+                        } else if (type == 'saisonnalité') {
+                            # Fixes the significants number for mean to 3
+                            Nsign_mean = 3
+                            # Converts the trend value with two
+                            # significant figures
+                            trendValueC = signif(trendValue, 2)
+                        }
+                        
                         # If it is significative
                         if (!is.na(Pthresold_trend_per[i])) {
                             # The text color is white
@@ -646,12 +688,12 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         # Same for averaged variables over
                         # the current period
                         dataMean = DataMean_trend_per[i]
-                        dataMeanC = signif(dataMean, 2)
+                        dataMeanC = signif(dataMean, Nsign_mean)
 
                         mat = mat +
                             # Writes the mean trend
                             annotate('text', x=X[i], y=Y[i],
-                                     label=trendMeanC,
+                                     label=trendValueC,
                                      hjust=0.5, vjust=0.5, 
                                      size=3, color=Tcolor) + 
                             # Writes the mean of the associated variable
@@ -676,10 +718,26 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     for (i in 1:nbpMod) {
                         # Extract the variable of the plot
                         var = subVar_trend[i]
+                        type = subType_trend[i]
+                        
+                        # If it is a flow variable
+                        if (type == 'sévérité') {
+                            # Fixes the unit of the mean and the trend
+                            # for the flow
+                            unit_mean = bquote('['*m^3*'.'*s^{-1}*']')
+                            unit_trend = bquote('[%.'*an^{-1}*']')
+                        # If it is a date variable
+                        } else if (type == 'saisonnalité') {
+                            # Fixes the unit of the mean and the trend
+                            # for the date
+                            unit_mean = bquote('[jour]')
+                            unit_trend = bquote('[jour.'*an^{-1}*']')
+                        }
+                        
                         mat = mat +
                             # Writes the unit of the variable
                             annotate('text', x=X[i], y=max(Y) + 0.63,
-                                     label=bquote('[%.'*ans^{-1}*']'),
+                                     label=unit_trend,
                                      hjust=0.5, vjust=0.5, 
                                      size=2, color='grey40') +
                             # Writes the type of the variable
@@ -689,7 +747,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                                      size=3.25, color='grey20') +
                             # Writes the unit of the averaged variable
                             annotate('text', x=Xm[i], y=max(Y) + 0.63,
-                                     label=bquote('['*m^3*'.'*s^{-1}*']'),
+                                     label=unit_mean,
                                      hjust=0.5, vjust=0.5, 
                                      size=2, color='grey40') +
                             # Writes the type of the averaged variable
@@ -742,8 +800,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         subCode_mean[subNPeriod_mean == j]
                     DataMean_mean_per =
                         subDataMean_mean[subNPeriod_mean == j]
-                    BreakMean_mean_per =
-                        subBreakMean_mean[subNPeriod_mean == j]
+                    breakValue_mean_per =
+                        subbreakValue_mean[subNPeriod_mean == j]
                     Fill_mean_per =
                         subFill_mean[subNPeriod_mean == j]
                     Color_mean_per =
@@ -839,14 +897,27 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                                           color=Color_mean_per[i])
                         }
                     }
-
+                    
                     # For all averaged variables on this period
                     for (i in 1:length(DataMean_mean_per)) {
+                        type = Type_mean_per[i]
+                        # If it is a flow variable
+                        if (type == 'sévérité') {
+                            # The number of significant figures for
+                            # flow mean is 2
+                            Nsign_mean = 2
+                        # If it is a date variable
+                        } else if (type == 'saisonnalité') {
+                            # The number of significant figures for
+                            # date mean is 3
+                            Nsign_mean = 3
+                        }
                         # Extracts values of averaged variables
                         dataMean = DataMean_mean_per[i]
+                                                
                         # Converts it to the right format with two
                         # significant figures
-                        dataMeanC = signif(dataMean, 2)
+                        dataMeanC = signif(dataMean, Nsign_mean)
                         # Writes averaged variables values
                         mat = mat +
                             annotate('text', x=Xm_mean[i], y=Y[i],
@@ -856,14 +927,23 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         # If this is not the first period
                         if (j > 1) {
                             # Extracts values of breaking between periods
-                            BreakMean = BreakMean_mean_per[i]
-                            # Converts it to the right format with two
-                            # significant figures
-                            BreakMeanC = signif(BreakMean*100, 2)
+                            breakValue = breakValue_mean_per[i]
+                            # If it is a flow variable
+                            if (type == 'sévérité') {
+                                # Converts it to the right format with two
+                                # significant figures
+                                breakValueC = signif(breakValue*100, 2)
+                            # If it is a date variable
+                            } else if (type == 'saisonnalité') {
+                                # Converts the break value with two
+                                # significant figures
+                                breakValueC = signif(breakValue, 2)
+                            }
+
                             # Writes breaking values
                             mat = mat +
                                 annotate('text', x=Xr_mean[i], y=Y[i],
-                                         label=BreakMeanC,
+                                         label=breakValueC,
                                          hjust=0.5, vjust=0.5, 
                                          size=3, color='white')   
                         }
@@ -884,11 +964,27 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     for (i in 1:nbpMod) {
                         # Extract the variable of the plot
                         var = subVar_mean[i]
+                        type = subType_mean[i]
+
+                        # If it is a flow variable
+                        if (type == 'sévérité') {
+                            # Fixes the unit of the mean and the break
+                            # for the flow
+                            unit_mean = bquote('['*m^3*'.'*s^{-1}*']')
+                            unit_break = bquote('[%]')
+                            # If it is a date variable
+                            # Fixes the unit of the mean and the break
+                            # for the date
+                        } else if (type == 'saisonnalité') {
+                            unit_mean = bquote('[jour]')
+                            unit_break = bquote('[jour]')
+                        }
+                        
                         mat = mat +
                             # Writes the unit of the averaged variable
                             annotate('text',
                                      x=Xm_mean[i], y=max(Y) + 0.63,
-                                     label=bquote('['*m^3*'.'*s^{-1}*']'),
+                                     label=unit_mean,
                                      hjust=0.5, vjust=0.5, 
                                      size=2, color='grey40') +
                             # Writes the type of the averaged variable
@@ -904,7 +1000,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                                 # Writes the unit of the breaking variable
                                 annotate('text', x=Xr_mean[i],
                                          y=max(Y) + 0.63,
-                                         label=bquote('[%]'),
+                                         label=unit_break,
                                          hjust=0.5, vjust=0.5, 
                                          size=2, color='grey40') +
                                 # Writes the type of the breaking variable
diff --git a/processing/analyse.R b/processing/analyse.R
index 5bcb229c29015c2c72af23cc44a7af30f645912d..b58519d2e35c8dc339bd67e843139e231602b70d 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -97,8 +97,12 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
 ### 1.1. QA
 # Realise the trend analysis of the average annual flow (QA)
 # hydrological variable
-get_QAtrend = function (df_data, period, p_thresold) {
+get_QAtrend = function (df_data, df_meta, period, p_thresold) {
 
+    # Removes incomplete data from time series
+    df_data = remove_incomplete_data(df_data, df_meta,
+                                     yearLac_pct=1, yearStart='01-01')
+    
     # Make sure to convert the period to a list
     period = as.list(period)
 
@@ -146,8 +150,15 @@ get_QAtrend = function (df_data, period, p_thresold) {
 ### 1.2. QMNA
 # Realise the trend analysis of the monthly minimum flow in the
 # year (QMNA) hydrological variable
-get_QMNAtrend = function (df_data, period, p_thresold) {
-
+get_QMNAtrend = function (df_data, df_meta, period, p_thresold) {
+
+    # Removes incomplete data from time series
+    df_data = remove_incomplete_data(df_data, df_meta,
+                                     yearLac_pct=1, yearStart='01-01')
+    # Samples the data
+    df_data = sampling_data(df_data, df_meta,
+                            sampleSpan=c('05-01', '11-30'))
+    
     # Make sure to convert the period to a list
     period = as.list(period)
     
@@ -210,6 +221,14 @@ get_QMNAtrend = function (df_data, period, p_thresold) {
 # over the year (VCN10) hydrological variable
 get_VCN10trend = function (df_data, df_meta, period, p_thresold) {
 
+    # Removes incomplete data from time series
+    df_data = remove_incomplete_data(df_data, df_meta,
+                                     yearLac_pct=1, yearStart='01-01')
+
+    # Samples the data
+    df_data = sampling_data(df_data, df_meta,
+                            sampleSpan=c('05-01', '11-30'))
+    
     # Get all different stations code
     Code = levels(factor(df_meta$code))
     # Blank tibble to store the data averaged
@@ -286,22 +305,22 @@ get_tINItrend = function (df_data, df_meta, period, p_thresold) {
     # Gets the number of station
     nCode = length(Code)
     
-    # Blank tibble to store the data averaged
-    df_data_roll = tibble() 
-
-    # For all the code
-    for (code in Code) {
-        # Get the data associated to the code
-        df_data_code = df_data[df_data$code == code,]
-        # Perform the roll mean of the flow over 10 days
-        df_data_roll_code = tibble(Date=df_data_code$Date,
-                                   Value=rollmean(df_data_code$Value, 
-                                                  10,
-                                                  fill=NA),
-                                   code=code)
-        # Store the results
-        df_data_roll = bind_rows(df_data_roll, df_data_roll_code)
-    }
+    # # Blank tibble to store the data averaged
+    # df_data_roll = tibble() 
+
+    # # For all the code
+    # for (code in Code) {
+    #     # Get the data associated to the code
+    #     df_data_code = df_data[df_data$code == code,]
+    #     # Perform the roll mean of the flow over 10 days
+    #     df_data_roll_code = tibble(Date=df_data_code$Date,
+    #                                Value=rollmean(df_data_code$Value, 
+    #                                               10,
+    #                                               fill=NA),
+    #                                code=code)
+    #     # Store the results
+    #     df_data_roll = bind_rows(df_data_roll, df_data_roll_code)
+    # }
 
     # Make sure to convert the period to a list
     period = as.list(period)
@@ -322,16 +341,46 @@ get_tINItrend = function (df_data, df_meta, period, p_thresold) {
             code = Code[k]
             # print(code)
             
+            # Get the data associated to the code
+            df_data_code = df_data[df_data$code == code,]
+            # Perform the roll mean of the flow over 10 days
+            df_data_roll_code = tibble(Date=df_data_code$Date,
+                                       Value=rollmean(df_data_code$Value, 
+                                                      10,
+                                                      fill=NA),
+                                       code=code)
+      
             per.start = df_meta$start_year[df_meta$code == code]
             per.start = paste(sprintf("%02d", per.start), '-01', sep='')
-            
-            # Get the data associated to the code
-            df_data_roll_code = df_data_roll[df_data_roll$code == code,]
 
             # print('aa')
             
-            # Get the data associated to the code
-            df_data_code = df_data[df_data$code == code,]
+            # Removes incomplete data from time series
+            df_data_code = remove_incomplete_data(df_data_code,
+                                                  df_meta=NULL,
+                                                  yearLac_pct=1,
+                                                  yearStart=per.start,
+                                                  Code=code)
+            # Samples the data
+            df_data_code = sampling_data(df_data_code,
+                                         df_meta=NULL,
+                                         sampleSpan=c('05-01',
+                                                      '11-30'),
+                                         Code=code)
+            
+            # Removes incomplete data from the averaged time series
+            df_data_roll_code =
+                remove_incomplete_data(df_data_roll_code,
+                                       df_meta=NULL,
+                                       yearLac_pct=1,
+                                       yearStart=per.start,
+                                       Code=code)
+            # Samples the data
+            df_data_roll_code = sampling_data(df_data_roll_code,
+                                              df_meta=NULL,
+                                              sampleSpan=c('05-01',
+                                                           '11-30'),
+                                              Code=code)
 
             # print('bb')
             
@@ -436,7 +485,7 @@ get_tINItrend = function (df_data, df_meta, period, p_thresold) {
 # Realises the trend analysis of the date of the minimum 10 day
 # average flow over the year (VCN10) hydrological variable
 get_tMIDtrend = function (df_data, df_meta, period, p_thresold) {
-
+    
     # Get all different stations code
     Code = levels(factor(df_meta$code))
     # Blank tibble to store the data averaged
@@ -456,6 +505,14 @@ get_tMIDtrend = function (df_data, df_meta, period, p_thresold) {
         df_data_roll = bind_rows(df_data_roll, df_data_roll_code)
     }
 
+    # Removes incomplete data from time series
+    df_data_roll = remove_incomplete_data(df_data_roll, df_meta,
+                                          yearLac_pct=1,
+                                          yearStart='01-01')
+    # Samples the data
+    df_data_roll = sampling_data(df_data_roll, df_meta,
+                                 sampleSpan=c('05-01', '11-30'))
+
     # Make sure to convert the period to a list
     period = as.list(period)
     # Set the max interval period as the minimal possible
@@ -507,27 +564,27 @@ get_tMIDtrend = function (df_data, df_meta, period, p_thresold) {
 ### 2.1. Hydrograph
 xref = matrix(
     c(0.099, 0.100, 0.101, 0.099, 0.088, 0.078, 0.072,
-      0.064, 0.064, 0.069, 0.076, 0.089
+      0.064, 0.064, 0.069, 0.076, 0.089,
       0.133, 0.126, 0.111, 0.110, 0.081, 0.056, 0.038,
-      0.027, 0.042, 0.063, 0.098, 0.117
+      0.027, 0.042, 0.063, 0.098, 0.117,
       0.128, 0.142, 0.122, 0.128, 0.105, 0.065, 0.035,
-      0.024, 0.031, 0.044, 0.074, 0.101
+      0.024, 0.031, 0.044, 0.074, 0.101,
       0.157, 0.130, 0.119, 0.094, 0.062, 0.042, 0.028,
-      0.021, 0.035, 0.062, 0.099, 0.150
+      0.021, 0.035, 0.062, 0.099, 0.150,
       0.204, 0.163, 0.118, 0.102, 0.060, 0.030, 0.018,
-      0.012, 0.023, 0.041, 0.087, 0.143
+      0.012, 0.023, 0.041, 0.087, 0.143,
       0.156, 0.154, 0.117, 0.119, 0.086, 0.044, 0.025,
-      0.015, 0.025, 0.044, 0.089, 0.127
+      0.015, 0.025, 0.044, 0.089, 0.127,
       0.139, 0.092, 0.082, 0.099, 0.087, 0.039, 0.015,
-      0.012, 0.036, 0.108, 0.159, 0.131
+      0.012, 0.036, 0.108, 0.159, 0.131,
       0.112, 0.098, 0.101, 0.125, 0.122, 0.072, 0.036,
-      0.024, 0.039, 0.067, 0.102, 0.102
+      0.024, 0.039, 0.067, 0.102, 0.102,
       0.058, 0.050, 0.100, 0.142, 0.158, 0.092, 0.067,
-      0.050, 0.042, 0.058, 0.083, 0.100
+      0.050, 0.042, 0.058, 0.083, 0.100,
       0.050, 0.050, 0.058, 0.083, 0.150, 0.167, 0.117,
-      0.083, 0.058, 0.058, 0.067, 0.058
+      0.083, 0.058, 0.058, 0.067, 0.058,
       0.033, 0.025, 0.033, 0.075, 0.167, 0.217, 0.142,
-      0.092, 0.067, 0.058, 0.050, 0.042
+      0.092, 0.067, 0.058, 0.050, 0.042,
       0.017, 0.008, 0.017, 0.042, 0.108, 0.183, 0.200,
       0.175, 0.117, 0.067, 0.042, 0.025),
     ncol=12, byrow=TRUE)
diff --git a/processing/format.R b/processing/format.R
index a46934fef19d3fd7853a0602238fb6738f40bb69..911ff7762bb36ea63da5af96e9568c13a54d97df 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -33,8 +33,145 @@
 library(dplyr)
 
 
-## 1. INPUT
-### 1.1. Preparation
+## 1. BEFORE TREND ANALYSE
+### 1.1. Joining selection
+# Joins tibbles of different selection of station as a unique one
+join = function (df_data_AG, df_data_IN, df_meta_AG, df_meta_IN) {
+
+    # If there is an INRAE and an Agence de l'eau Adour-Garonne selection
+    if (!is.null(df_data_IN) & !is.null(df_data_AG)) {
+
+        # Gets the station in common
+        common = levels(factor(df_meta_IN[df_meta_IN$code %in% df_meta_AG$code,]$code)) 
+        # Gets the Nv station to add
+        INadd = levels(factor(df_meta_IN[!(df_meta_IN$code %in% df_meta_AG$code),]$code))
+
+        # Selects only the IN meta to add
+        df_meta_INadd = df_meta_IN[df_meta_IN$code %in% INadd,]
+
+        # Names the source of the selection
+        df_meta_AG$source = 'AG'
+        df_meta_INadd$source = 'IN'
+        
+        # Joins IN data to AG data
+        df_meta = full_join(df_meta_AG, df_meta_INadd)
+
+        # Selects only the IN data to add
+        df_data_INadd = df_data_IN[df_data_IN$code %in% INadd,]
+        # Joins IN meta to AG meta
+        df_data = full_join(df_data_AG, df_data_INadd)
+
+    # If there is just an Agence de l'eau Adour-Garonne selection
+    } else if (is.null(df_data_IN) & !is.null(df_data_AG)) {
+        df_meta_AG$source = 'AG'
+        df_meta = df_meta_AG
+        df_data = df_data_AG
+        
+    # If there is just an INRAE selection
+    } else if (!is.null(df_data_IN) & is.null(df_data_AG)) {
+        df_meta_IN$source = 'IN'
+        df_meta = df_meta_IN
+        df_data = df_data_IN
+
+    # If there is no selection
+    } else {
+        stop('No data')
+    }
+    return (list(data=df_data, meta=df_meta))
+}
+
+### 1.2. Remove incomplete data
+remove_incomplete_data = function (df_data, df_meta, yearLac_pct=1, yearStart='01-01', Code=NULL) {
+
+    if (is.null(Code)) {
+        # Get all different stations code
+        Code = levels(factor(df_meta$code))
+        nCode = length(Code)
+    } else {
+        nCode = length(Code)
+    }
+ 
+    for (code in Code) {        
+        # Extracts the data corresponding to the code
+        df_data_code = df_data[df_data$code == code,]
+        DateMD = substr(df_data_code$Date, 6, 10)
+        
+        idyearStart = which(DateMD == yearStart)
+        if (DateMD[1] != yearStart) {
+            idyearStart = c(1, idyearStart)
+        }
+        NidyearStart = length(idyearStart)
+        
+        for (i in 1:NidyearStart) {
+            Start = df_data_code$Date[idyearStart[i]]
+            if (i < NidyearStart) {
+                End = df_data_code$Date[idyearStart[i+1] - 1]
+            } else {
+                End = df_data_code$Date[length(df_data_code$Date)]
+            }
+            
+            OkYear = df_data_code$Date >= Start & df_data_code$Date <= End
+            df_data_code_year = df_data_code[OkYear,]
+
+            StartReal = as.Date(paste(substr(Start, 1, 4),
+                                      yearStart, sep='-'))
+            EndReal = as.Date(paste(as.numeric(substr(Start, 1, 4)) + 1,
+                                    yearStart, sep='-'))
+
+            nbDate = as.numeric(difftime(EndReal, StartReal,
+                                         units="days"))
+                        
+            nbNA = sum(as.numeric(is.na(df_data_code_year$Value)))
+            nbNA = nbNA + abs(as.numeric(difftime(StartReal, Start,
+                                                  units="days")))
+            nbNA = nbNA + abs(as.numeric(difftime(EndReal, End+1,
+                                                  units="days")))
+
+            yearLacMiss_pct = nbNA/nbDate * 100
+            
+            if (yearLacMiss_pct > yearLac_pct) {
+                df_data_code_year$Value = NA
+                df_data_code[OkYear,] = df_data_code_year
+            }
+        }
+        df_data[df_data$code == code,] = df_data_code        
+    }
+    
+    return (df_data)
+}
+
+### 1.3. Sampling of the data
+sampling_data = function (df_data, df_meta, sampleSpan=c('05-01', '11-30'), Code=NULL) {
+
+    if (is.null(Code)) {
+        # Get all different stations code
+        Code = levels(factor(df_meta$code))
+        nCode = length(Code)
+    } else {
+        nCode = length(Code)
+    }
+    
+    sampleStart = as.Date(paste('1970', sampleSpan[1], sep='-'))
+    sampleEnd = as.Date(paste('1970', sampleSpan[2], sep='-'))
+    
+    for (code in Code) {        
+        # Extracts the data corresponding to the code
+        df_data_code = df_data[df_data$code == code,]
+        
+        DateMD = substr(df_data_code$Date, 6, 10)
+        Date = paste('1970', DateMD, sep='-')
+        
+        df_data_code$Value[Date < sampleStart | Date > sampleEnd] = NA
+
+        df_data[df_data$code == code,] = df_data_code
+    }
+    
+    return (df_data)
+}
+
+
+## 2. DURING TREND ANALYSE
+### 2.1. Preparation
 # Prepares the data in order to have a list of a data tibble with
 # date, group and flow column and a info tibble with the station code
 # and group column to fit the entry of the 'extract.Var' function in
@@ -65,7 +202,7 @@ prepare = function(df_data, colnamegroup=NULL) {
     return (res)
 }
 
-### 1.2. Re-preparation
+### 2.2. Re-preparation
 # Re-prepares the data in outing of the 'extract.Var' function in
 # the 'StatsAnalysisTrend' package in order to fit again to the
 # entry of the same function
@@ -106,10 +243,7 @@ reprepare = function(df_XEx, df_Xlist, colnamegroup=NULL) {
     return (df_XlistEx)
 }
 
-
-
-
-
+### 2.3. Prepare date 
 prepare_date = function(df_XEx, df_Xlist, per.start="01-01") {
 
     df_dateStart = summarise(group_by(df_Xlist$data, group),
@@ -175,93 +309,8 @@ prepare_date = function(df_XEx, df_Xlist, per.start="01-01") {
 }
 
 
-
-
-
-
-## 2. OUTPUT
-# Cleans the trend results of the function 'Estimate.stats' in the
-# 'StatsAnalysisTrend' package. It adds the station code and the
-# intercept of the trend to the trend results. Also makes the data
-# more presentable.
-clean = function (df_Xtrend, df_XEx, df_Xlist) {
-
-    # Reprepares the list of data and info in order to be presentable
-    df_Xlist = reprepare(df_XEx, df_Xlist, colnamegroup=c('code'))
-
-    # Adds a column of station code
-    df_Xlist$data$code = NA
-    # For all the group
-    for (g in df_Xlist$info$group) {
-        # Adds the station code corresponding to each group info
-        df_Xlist$data$code[which(df_Xlist$data$group == g)] = df_Xlist$info$code[df_Xlist$info$group == g]
-    }
-
-    # Adds the info to trend tibble
-    df_Xtrend = bind_cols(df_Xtrend,
-                          df_Xlist$info[df_Xtrend$group1,
-                                       2:ncol(df_Xlist$info)])
-    # Renames the column of group of trend results
-    colnames(df_Xtrend)[1] = 'group'
-    # Adds the intercept value of trend
-    df_Xtrend = get_intercept(df_Xtrend, df_Xlist, unit2day=365.25)
-    # Changes the position of the intercept column
-    df_Xtrend = relocate(df_Xtrend, intercept, .after=trend)
-
-    # Creates a list of results to return
-    res = list(trend=df_Xtrend, data=df_Xlist$data, info=df_Xlist$info)
-    return (res)
-}
-
-
-## 3. OTHER
-### 3.1. Joining selection
-# Joins tibbles of different selection of station as a unique one
-join = function (df_data_AG, df_data_IN, df_meta_AG, df_meta_IN) {
-
-    # If there is an INRAE and an Agence de l'eau Adour-Garonne selection
-    if (!is.null(df_data_IN) & !is.null(df_data_AG)) {
-
-        # Gets the station in common
-        common = levels(factor(df_meta_IN[df_meta_IN$code %in% df_meta_AG$code,]$code)) 
-        # Gets the Nv station to add
-        INadd = levels(factor(df_meta_IN[!(df_meta_IN$code %in% df_meta_AG$code),]$code))
-
-        # Selects only the IN meta to add
-        df_meta_INadd = df_meta_IN[df_meta_IN$code %in% INadd,]
-
-        # Names the source of the selection
-        df_meta_AG$source = 'AG'
-        df_meta_INadd$source = 'IN'
-        
-        # Joins IN data to AG data
-        df_meta = full_join(df_meta_AG, df_meta_INadd)
-
-        # Selects only the IN data to add
-        df_data_INadd = df_data_IN[df_data_IN$code %in% INadd,]
-        # Joins IN meta to AG meta
-        df_data = full_join(df_data_AG, df_data_INadd)
-
-    # If there is just an Agence de l'eau Adour-Garonne selection
-    } else if (is.null(df_data_IN) & !is.null(df_data_AG)) {
-        df_meta_AG$source = 'AG'
-        df_meta = df_meta_AG
-        df_data = df_data_AG
-        
-    # If there is just an INRAE selection
-    } else if (!is.null(df_data_IN) & is.null(df_data_AG)) {
-        df_meta_IN$source = 'IN'
-        df_meta = df_meta_IN
-        df_data = df_data_IN
-
-    # If there is no selection
-    } else {
-        stop('No data')
-    }
-    return (list(data=df_data, meta=df_meta))
-}
-
-### 3.2. Period of trend
+## 3. AFTER TREND ANALYSE
+### 3.1. Period of trend
 # Compute the start and the end of the period for a trend analysis
 # according to the accessible data 
 get_period = function (per, df_Xtrend, df_XEx, df_Xlist) {
@@ -308,3 +357,38 @@ get_period = function (per, df_Xtrend, df_XEx, df_Xlist) {
     }
     return (df_Xtrend)
 }
+
+### 3.2. Cleaning
+# Cleans the trend results of the function 'Estimate.stats' in the
+# 'StatsAnalysisTrend' package. It adds the station code and the
+# intercept of the trend to the trend results. Also makes the data
+# more presentable.
+clean = function (df_Xtrend, df_XEx, df_Xlist) {
+
+    # Reprepares the list of data and info in order to be presentable
+    df_Xlist = reprepare(df_XEx, df_Xlist, colnamegroup=c('code'))
+
+    # Adds a column of station code
+    df_Xlist$data$code = NA
+    # For all the group
+    for (g in df_Xlist$info$group) {
+        # Adds the station code corresponding to each group info
+        df_Xlist$data$code[which(df_Xlist$data$group == g)] = df_Xlist$info$code[df_Xlist$info$group == g]
+    }
+
+    # Adds the info to trend tibble
+    df_Xtrend = bind_cols(df_Xtrend,
+                          df_Xlist$info[df_Xtrend$group1,
+                                       2:ncol(df_Xlist$info)])
+    # Renames the column of group of trend results
+    colnames(df_Xtrend)[1] = 'group'
+    # Adds the intercept value of trend
+    df_Xtrend = get_intercept(df_Xtrend, df_Xlist, unit2day=365.25)
+    # Changes the position of the intercept column
+    df_Xtrend = relocate(df_Xtrend, intercept, .after=trend)
+
+    # Creates a list of results to return
+    res = list(trend=df_Xtrend, data=df_Xlist$data, info=df_Xlist$info)
+    return (res)
+}
+
diff --git a/script.R b/script.R
index d48b522f4cc6fd8e37c99a6a8ca2b57e8a41f016..ce5eb3868deb231729f75a44187ea614e248fd3e 100644
--- a/script.R
+++ b/script.R
@@ -55,20 +55,20 @@ filedir =
 # Name of the file that will be analysed from the BH directory
 # (if 'all', all the file of the directory will be chosen)
 filename =
-    ""
+    # ""
 
-    # c(
-        # "S2235610_HYDRO_QJM.txt",
+    c(
+        # "S2235610_HYDRO_QJM.txt"
         # "P1712910_HYDRO_QJM.txt",
         # "P0885010_HYDRO_QJM.txt",
         # "O5055010_HYDRO_QJM.txt",
-        # "O0384010_HYDRO_QJM.txt",
+        "O0384010_HYDRO_QJM.txt"
         # "S4214010_HYDRO_QJM.txt",
-        # "Q7002910_HYDRO_QJM.txt",
+        # "Q7002910_HYDRO_QJM.txt"
         # "O3035210_HYDRO_QJM.txt",
-        # "O3121010_HYDRO_QJM.txt"
-        # "O7635010_HYDRO_QJM.txt"
-    # )
+        # "O3121010_HYDRO_QJM.txt",
+        # "O0362510_HYDRO_QJM.txt"
+    )
 
 
 ## AGENCE EAU ADOUR GARONNE SELECTION
@@ -78,8 +78,8 @@ AGlistdir =
     ""
 
 AGlistname = 
-    # ""
-    "Liste-station_RRSE.docx" 
+    ""
+    # "Liste-station_RRSE.docx" 
 
 
 ## NIVALE SELECTION
@@ -179,10 +179,6 @@ if (AGlistname != ""){
     # Get filenames of the selection
     filename = df_selec_AG[df_selec_AG$ok,]$filename
 
-    #####
-    # filename = filename[(1):(10)]
-    #####
-
     # Extract metadata about selected stations
     df_meta_AG = extract_meta(computer_data_path, filedir, filename)
     # Extract data about selected stations
@@ -200,10 +196,6 @@ if (INlistname != ""){
     # Get filenames of the selection
     filename = df_selec_IN[df_selec_IN$ok,]$filename
 
-    #####
-    # filename = filename[(1+20):(16+20)]
-    #####
-
     # Extract metadata about selected stations
     df_meta_IN = extract_meta(computer_data_path, filedir, filename)
     # Extract data about selected stations
@@ -233,11 +225,13 @@ df_meta = get_hydrograph(df_data, df_meta, period=mean_period[[1]])$meta
 
 ### 3.2. Trend analysis
 # QA trend
-res_QAtrend = get_QAtrend(df_data, period=trend_period,
+res_QAtrend = get_QAtrend(df_data, df_meta,
+                          period=trend_period,
                           p_thresold=p_thresold)
 
 # QMNA tend
-res_QMNAtrend = get_QMNAtrend(df_data, period=trend_period,
+res_QMNAtrend = get_QMNAtrend(df_data, df_meta,
+                              period=trend_period,
                               p_thresold=p_thresold)
 
 # VCN10 trend
@@ -246,10 +240,10 @@ res_VCN10trend = get_VCN10trend(df_data, df_meta,
                                 p_thresold=p_thresold)
 
 # Start date for low water trend
-# res_tINItrend = get_tINItrend(df_data, df_meta, 
-                              # period=trend_period,
-                              # p_thresold=p_thresold)
-res_tINItrend = read_listofdf(resdir, 'res_tINItrend')
+res_tINItrend = get_tINItrend(df_data, df_meta, 
+                              period=trend_period,
+                              p_thresold=p_thresold)
+# res_tINItrend = read_listofdf(resdir, 'res_tINItrend')
 
 # Center date for low water trend
 res_tMIDtrend = get_tMIDtrend(df_data, df_meta, 
@@ -274,7 +268,7 @@ df_shapefile = ini_shapefile(computer_data_path,
                              fr_shpdir, fr_shpname,
                              bs_shpdir, bs_shpname,
                              sbs_shpdir, sbs_shpname,
-                             rv_shpdir, rv_shpname, riv=TRUE)
+                             rv_shpdir, rv_shpname, riv=FALSE)
 
 ### 4.1. Simple time panel to criticize station data
 # Plot time panel of debit by stations
@@ -291,9 +285,9 @@ df_shapefile = ini_shapefile(computer_data_path,
 
 ### 4.2. Analysis layout 
 datasheet_layout(toplot=c(
-                     'datasheet',
-                     'matrix',
-                     'map'
+                     'datasheet'
+                     # 'matrix',
+                     # 'map'
                  ),
                  df_meta=df_meta,
                  
@@ -315,11 +309,11 @@ datasheet_layout(toplot=c(
                           'tINI',
                           'tMID'),
                  
-                 type=list('flow',
-                           'flow',
-                           'flow',
-                           'date',
-                           'date'),
+                 type=list('sévérité',
+                           'sévérité',
+                           'sévérité',
+                           'saisonnalité',
+                           'saisonnalité'),
                  
                  layout_matrix=matrix(c(1, 2, 3, 4, 5), ncol=1),