diff --git a/plotting/datasheet.R b/plotting/datasheet.R
index 37c776404c4364a1d31cc328cb0336e3d5aee6a9..eb6213794b3bf58a049a17e75116ff3fda9725ca 100644
--- a/plotting/datasheet.R
+++ b/plotting/datasheet.R
@@ -31,11 +31,11 @@ source('processing/analyse.R', encoding='UTF-8') # hydrograph
 source('plotting/shortcut.R', encoding='UTF-8')
 
 
-## 1. DATASHEET PANEL ________________________________________________
+## 1. DATASHEET PANEL MANAGER ________________________________________
 # Manages datasheets creations for all stations. Makes the call to
 # the different headers, trend analysis graphs and realises arranging
 # every plots.
-datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, info_header, time_header, foot_note, layout_matrix, info_height, time_ratio, var_ratio, foot_height, resources_path, logo_dir, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
+datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, colorForce, info_header, time_header, foot_note, layout_matrix, info_height, time_ratio, var_ratio, foot_height, resources_path, logo_dir, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
 
     # The percentage of augmentation and diminution of the min
     # and max limits for y axis
@@ -55,7 +55,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
         nPeriod_trend = length(trend_period)
 
         # Extracts the min and the max of the mean trend for all the station
-        res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode)
+        res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode, colorForce)
         minTrendValue = res$min
         maxTrendValue = res$max
     }
@@ -179,7 +179,8 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
                           max(time_header_code$Date))
             # Gets the time serie plot
             Htime = time_panel(time_header_code, df_trend_code=NULL,
-                               trend_period=trend_period, missRect=TRUE,
+                               trend_period=trend_period,
+                               axis_xlim=axis_xlim, missRect=TRUE,
                                unit2day=365.25, var='Q', type='sévérité',
                                grid=TRUE, ymin_lim=0,
                                NspaceMax=NspaceMax[k],
@@ -197,7 +198,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
             # Extracts the trend corresponding to the
             # current variable
             df_trend = list_df2plot[[i]]$trend
-            alpha = list_df2plot[[i]]$alpha
+            
             unit2day = list_df2plot[[i]]$unit2day
             missRect = list_df2plot[[i]]$missRect
             # Extract the variable of the plot
@@ -216,6 +217,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
                 for (j in 1:nPeriod_trend) {
                     
                     # If the trend is significant
+                    # if (df_trend_code$p[j] <= alpha | colorForce){
                     if (df_trend_code$p[j] <= alpha){
                         # Extract start and end of trend periods
                         Start = df_trend_code$period_start[j]
@@ -259,10 +261,11 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
                                               reverse=TRUE)
                         # Stores it temporarily
                         colortmp = color_res
+
                         # Otherwise
                     } else {
                         # Stores the default grey color
-                        colortmp = paste('grey85', sep='')
+                        colortmp = 'grey85'
                         
                     }
                     # Stores the color
@@ -289,7 +292,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
             
             # Computes the time panel associated to the current variable
             p = time_panel(df_data_code, df_trend_code, var=var,
-                           type=type, alpha=alpha,
+                           type=type, alpha=alpha, colorForce=colorForce,
                            missRect=missRect, trend_period=trend_period,
                            mean_period=mean_period, axis_xlim=axis_xlim, 
                            unit2day=unit2day, grid=grid,
@@ -411,9 +414,9 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, in
 }
 
 
-## 2. OTHER PANEL FOR THE DATASHEET __________________________________
+## 2. PANEL FOR THE DATASHEET __________________________________
 ### 2.1. Time panel __________________________________________________
-time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRect=FALSE, unit2day=365.25, trend_period=NULL, mean_period=NULL, axis_xlim=NULL, grid=TRUE, ymin_lim=NULL, color=NULL, NspaceMax=NULL, first=FALSE, last=FALSE, lim_pct=10) {
+time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, colorForce=FALSE, missRect=FALSE, unit2day=365.25, trend_period=NULL, mean_period=NULL, axis_xlim=NULL, grid=TRUE, ymin_lim=NULL, color=NULL, NspaceMax=NULL, first=FALSE, last=FALSE, lim_pct=10) {
     
     # Compute max and min of flow
     maxQ = max(df_data_code$Value, na.rm=TRUE)
@@ -547,31 +550,8 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
             theme(plot.margin=margin(t=2, r=0, b=2, l=0, unit="mm"))
     }
 
-    
     ## Sub period background ##
     if (!is.null(trend_period)) {
-        
-        # trend_period = as.list(trend_period)
-        # Imin = 10^99
-        # for (per in trend_period) {
-        #     I = interval(per[1], per[2])
-        #     if (I < Imin) {
-        #         Imin = I
-        #         trend_period_min = as.Date(per)
-        #     }
-        # }
-        # p = p + 
-        #     geom_rect(aes(xmin=min(df_data_code$Date),
-        #                   ymin=0, 
-        #                   xmax=trend_period_min[1],
-        #                   ymax= maxQ*1.1),
-        #               linetype=0, fill='grey97') +
-            
-        #     geom_rect(aes(xmin=trend_period_min[2],
-        #                   ymin=0, 
-        #                   xmax=max(df_data_code$Date), 
-        #                   ymax= maxQ*1.1),
-        #               linetype=0, fill='grey97') 
 
         # Convert trend period to list if it is not
         trend_period = as.list(trend_period)
@@ -592,39 +572,35 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
         
         minPer = trend_period_min[1]
         maxPer = trend_period_min[2]
-
-        # If it is not a flow or sqrt of flow time serie
-        if (var != 'sqrt(Q)' & var != 'Q') {
-            # If there is an 'axis_lim'
-            if (!is.null(axis_xlim)) {
-                # If the temporary start of period is smaller 
-                # than the fix start of x axis limit
-                if (minPer < axis_xlim[1]) {
-                    # Set the start of the period to the start of
-                    # the x axis limit
-                    minPer = axis_xlim[1]
-                }
-            }
-        }
         
-        # If it is not a flow or sqrt of flow time serie
-        if (var != 'sqrt(Q)' & var != 'Q') {
-            # If there is an 'axis_lim'
-            if (!is.null(axis_xlim)) {
-                # If the temporary end of period plus one year 
-                # is smaller than the fix end of x axis limit
-                if (maxPer + years(1) < axis_xlim[2]) {
-                    # Add one year the the temporary end of period
-                    maxPer = maxPer + years(1)
-                } else {
-                    # Set the start of the period to the start of
-                    # the x axis limit
-                    maxPer = axis_xlim[2]
-                }
+        # If there is an 'axis_lim'
+        if (!is.null(axis_xlim)) {
+            # If the temporary start of period is smaller 
+            # than the fix start of x axis limit
+            if (minPer < axis_xlim[1]) {
+                # Set the start of the period to the start of
+                # the x axis limit
+                minPer = axis_xlim[1]
+            }
+
+            # If the temporary end of period plus one year 
+            # is smaller than the fix end of x axis limit
+            if (maxPer + years(1) < axis_xlim[2]) {
                 # Add one year the the temporary end of period
-                # if there is no 'axis_lim'
+                maxPer = maxPer + years(1)
             } else {
-                    maxPer = maxPer + years(1)
+                # Set the start of the period to the start of
+                # the x axis limit
+                maxPer = axis_xlim[2]
+            }
+            
+        # If there is no 'axis_lim'
+        } else {
+            if (minPer < min(df_data_code$Date)) {
+                minPer = min(df_data_code$Date)
+            }
+            if (maxPer > max(df_data_code$Date)) {
+                maxPer = max(df_data_code$Date)
             }
         }
 
@@ -990,9 +966,33 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
             trend = df_trend_code_per$trend
             # Gets the p value
             pVal = df_trend_code_per$p
-            # Converts it to character
-            pValC = as.character(format(round(pVal, 2),
-                                         nsmall=2))
+
+            # if (colorForce) {
+            #     if (pVal <= alpha) {
+            #         colorLine = color[i]
+            #         colorLabel = color[i]
+            #     } else {
+            #         colorLine = color[i]
+            #         colorLabel = 'grey85'
+            #     }
+            # } else {
+            #    if (pVal <= alpha) {
+            #         colorLine = color[i]
+            #         colorLabel = color[i]
+            #     } else {
+            #         colorLine = 'grey85'
+            #         colorLabel = 'grey85'
+            #     }
+            # }
+
+            if (pVal <= alpha) {
+                colorLine = color[i]
+                colorLabel = color[i]
+            } else {
+                colorLine = 'grey85'
+                colorLabel = 'grey85'
+            }
+
             # Computes the mean trend
             trendMean = trend/dataMean
             # Computes the magnitude of the trend
@@ -1034,11 +1034,12 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
             leg_trendtmp = tibble(x=x, xend=xend, 
                                   y=y, yend=yend, 
                                   xt=xt,
+                                  colorLine=colorLine,
+                                  colorLabel=colorLabel,
                                   trendC=trendC,
                                   powerC=powerC,
                                   spaceC=spaceC,
                                   trendMeanC=trendMeanC,
-                                  pValC=pValC,
                                   xminR=xminR, yminR=yminR,
                                   xmaxR=xmaxR, ymaxR=ymaxR,
                                   period=i)
@@ -1059,19 +1060,14 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
                               xmax=xmaxR, 
                               ymax=ymaxR),
                           linetype=0, fill='white', alpha=0.5)
-        }
-        
-        # For all periods
-        for (i in 1:nPeriod_trend) {
-            # Extract the trend of the current sub period
-            leg_trend_per = leg_trend[leg_trend$period == i,]
 
             # Get the character variable for naming the trend
+            colorLine = leg_trend_per$colorLine
+            colorLabel = leg_trend_per$colorLabel
             trendC = leg_trend_per$trendC
             powerC = leg_trend_per$powerC
             spaceC = leg_trend_per$spaceC
             trendMeanC = leg_trend_per$trendMeanC
-            pValC = leg_trend_per$pValC
 
             # If it is a flow variable
             if (type == 'sévérité') {
@@ -1089,7 +1085,7 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
                 annotate("segment",
                          x=leg_trend_per$x, xend=leg_trend_per$xend,
                          y=leg_trend_per$y, yend=leg_trend_per$yend,
-                         color=color[i],
+                         color=colorLine,
                          linetype='solid',
                          lwd=0.8) +
 
@@ -1097,7 +1093,7 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, missRe
                          label=label, size=2.8,
                          x=leg_trend_per$xt, y=leg_trend_per$y, 
                          hjust=0, vjust=0.5,
-                         color=color[i])
+                         color=colorLabel)
         }
 
         # For all periods
diff --git a/plotting/layout.R b/plotting/layout.R
index 0bbd98c0441fe5b516c3ba94ae8962b45357d7fa..4242719dab5c8a7d8d0e2b00a1606412632e01bb 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -131,7 +131,8 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                              variable='', df_trend=NULL,
                              alpha=0.1, unit2day=365.25, var='',
                              type='', glose=NULL, trend_period=NULL,
-                             mean_period=NULL, axis_xlim=NULL,
+                             mean_period=NULL, colorForce=FALSE,
+                             axis_xlim=NULL,
                              missRect=TRUE, time_header=NULL,
                              info_header=NULL, foot_note=TRUE,
                              info_height=2.8, time_ratio=2,
@@ -251,6 +252,7 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                             idPer_trend=length(trend_period),
                             trend_period=trend_period,
                             mean_period=mean_period,
+                            colorForce=colorForce,
                             df_shapefile=df_shapefile,
                             foot_note=foot_note,
                             foot_height=foot_height,
@@ -269,6 +271,7 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                                df_meta,
                                trend_period,
                                mean_period,
+                               colorForce=colorForce,
                                slice=19,
                                outdirTmp=outdirTmp,
                                A3=TRUE,
@@ -288,6 +291,7 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                                   df_meta,
                                   trend_period=trend_period,
                                   mean_period=mean_period,
+                                  colorForce=colorForce,
                                   info_header=info_header,
                                   time_header=time_header,
                                   foot_note=foot_note,
diff --git a/plotting/map.R b/plotting/map.R
index 644092b63455548e35db8f3e9557a87c94f55cf2..931218190410bfbb99f0cebd59e9a7106a20d8c1 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -29,8 +29,8 @@
 ## 1. MAP PANEL ______________________________________________________
 # Generates a map plot of the tendancy of a hydrological variable
 map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
-                      trend_period,
-                      mean_period, outdirTmp='', codeLight=NULL,
+                      trend_period, mean_period, colorForce=FALSE,
+                      outdirTmp='', codeLight=NULL,
                       margin=NULL, showSea=TRUE,
                       foot_note=FALSE,
                       foot_height=0, resources_path=NULL,
@@ -59,7 +59,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
         nPeriod_trend = length(trend_period)
         
         # Extracts the min and the max of the mean trend for all the station
-        res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode)
+        res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode, colorForce)
         minTrendValue = res$min
         maxTrendValue = res$max
     }
@@ -298,13 +298,13 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                     value = breakValue_code[j, i, k]
                     minValue = minBreakValue[j, i]
                     maxValue = maxBreakValue[j, i]
-                    pvalue = 0
+                    pVal = 0
 
                 } else if (is.null(trend_period)) {
                     value = NA
                     minValue = NULL
                     maxValue = NULL
-                    pvalue = 0
+                    pVal = 0
                     
                 } else {
 
@@ -358,7 +358,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
 
                     minValue = minTrendValue[idPer_trend, i]
                     maxValue = maxTrendValue[idPer_trend, i]
-                    pvalue = df_trend_code_per$p
+                    pVal = df_trend_code_per$p
 
                 }
 
@@ -385,7 +385,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                     
                 } else {
                     # If it is significative
-                    if (pvalue <= alpha){
+                    if (pVal <= alpha){
                         # The computed color is stored
                         filltmp = color_res
                         # If the mean tend is positive
@@ -399,7 +399,12 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                             # of the marker
                             shapetmp = 25
                         }
-                        # If it is not significative
+                    } else if (pVal > alpha & colorForce) {
+                        # The computed color is stored
+                        filltmp = color_res
+                        # The marker is a circle
+                        shapetmp = 21 
+                    # If it is not significative
                     } else {
                         # The fill color is grey
                         filltmp = 'grey97'
@@ -421,7 +426,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 shape = c(shape, shapetmp)
                 Value = c(Value, value)
                 # If the trend analysis is significative a TRUE is stored
-                OkVal = c(OkVal, pvalue <= alpha)
+                OkVal = c(OkVal, pVal <= alpha)
             }
             # Creates a tibble to stores all the data to plot
             plot_map = tibble(lon=lon, lat=lat, fill=fill,
@@ -709,7 +714,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 }
 
                 # Takes only the significative ones
-                yValue = yValue[OkVal]
+                yValueOk = yValue[OkVal]
 
                 # Histogram distribution
                 # Computes the histogram of values
diff --git a/plotting/matrix.R b/plotting/matrix.R
index 663c553dd7f132cbd134c0ea8025d410ecdc02a5..1874fd19a5986d10707fe7c49a667d0726e0b298 100644
--- a/plotting/matrix.R
+++ b/plotting/matrix.R
@@ -28,7 +28,9 @@
 
 ## 1. MATRIX PANEL ___________________________________________________
 # Generates a summarizing matrix of the trend analyses of all station for different hydrological variables and periods. Also shows difference of means between specific periods.
-matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice=NULL, outdirTmp='', outnameTmp='matrix', title=NULL, A3=FALSE,
+matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period,
+                         colorForce=FALSE, slice=NULL, outdirTmp='',
+                         outnameTmp='matrix', title=NULL, A3=FALSE,
                          foot_note=FALSE,
                          foot_height=0, resources_path=NULL,
                          logo_dir=NULL,
@@ -48,7 +50,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     nPeriod_trend = length(trend_period)
     
     # Extracts the min and the max of the mean trend for all the station
-    res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode)
+    res = short_trendExtremes(list_df2plot, Code, nPeriod_trend, nbp, nCode, colorForce)
     minTrendValue = res$min
     maxTrendValue = res$max
 
@@ -124,24 +126,34 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     trendValue = df_trend_code_per$trend
                 }
 
+                # Gets the color associated to the averaged trend
+                color_res = get_color(trendValue, 
+                                      minTrendValue[j, i],
+                                      maxTrendValue[j, i],
+                                      palette_name='perso',
+                                      reverse=TRUE)
+
+                pVal = df_trend_code_per$p
+                
                 # If the p value is under the threshold
-                if (df_trend_code_per$p <= alpha){
-                    # Gets the color associated to the averaged trend
-                    color_res = get_color(trendValue, 
-                                          minTrendValue[j, i],
-                                          maxTrendValue[j, i],
-                                          palette_name='perso',
-                                          reverse=TRUE)
+                if (pVal <= alpha){
                     # Specifies the color fill and contour of
                     # table cells
                     fill = color_res
-                    color = 'white'
-                    Alpha = TRUE
+                    color = color_res
+                    Alpha = 'TRUE'
+                    
+                } else if (pVal > alpha & colorForce) {
+                    # Specifies the color fill and contour of
+                    # table cells
+                    fill = 'white'
+                    color = color_res
+                    Alpha = 'FORCE'
                 # Otherwise it is not significative
                 } else { 
                     fill = 'white'
                     color = 'grey85'  
-                    Alpha = FALSE
+                    Alpha = 'FALSE'
                 }
 
                 # Stores info needed to plot
@@ -449,6 +461,9 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         plot.margin=margin(t=0, r=0, b=0, l=0, unit="mm")
                     )
 
+                colorBack = 'grey94'
+                radius = 0.43
+
                 # Extracts the name of the currently hydrological
                 # region plotted
                 title = df_meta[df_meta$code == subCode[1],]$region_hydro
@@ -518,42 +533,51 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     # Position of a line to delimite periods
                     x = Xc - 0.4
                     xend = X[length(X)] + 0.4
-                    y = height + 1.1
-                    yend = height + 1.1
+                    y = height + 1.13
                     # Drawing of the line
                     mat = mat +
                         annotate("segment",
                                  x=x, xend=xend,
-                                 y=y, yend=yend, 
+                                 y=y, yend=y, 
                                  color="grey40", size=0.35)
 
                     # Position of the name of the current period
                     yt = y + 0.15
                     Start = trend_period[[j]][1]
                     End = trend_period[[j]][2]
+                    
                     # Name of the period
-                    periodName =
-                        bquote(bold('Période')~bold(.(as.character(j))))
+                    # periodName =
+                        # bquote(bold('Période')~bold(.(as.character(j))))
+                    if (j == 1) {
+                        periodName = bquote(bold("Analyse de tendance sur la série entière"))
+                    } else if (j == 2) {
+                        periodName = bquote(bold("Analyse de tendance sur la période commune"))
+                    }
+                    
                     # Naming the period
                     mat = mat +
                         annotate("text", x=x, y=yt,
                                  label=periodName,
                                  hjust=0, vjust=0.5, 
-                                 size=3, color='grey40')
-
+                                 size=3.5, color='grey40')
+                    
                     # For all the variable
                     for (i in 1:length(X)) {
                         mat = mat +
                             # Plots circles for averaged trends
-                            gg_circle(r=0.45, xc=X[i], yc=Y[i],
+                            gg_circle(r=radius, xc=X[i], yc=Y[i],
                                       fill=Fill_trend_per[i],
-                                      color=Color_trend_per[i]) +
+                                      color=Color_trend_per[i],
+                                      size=0.75) +
                             # Plots circles for averaged of variables
-                            gg_circle(r=0.45, xc=Xm[i], yc=Y[i],
-                                      fill='white', color='grey40') +
+                            gg_circle(r=radius, xc=Xm[i], yc=Y[i],
+                                      fill=colorBack, color=colorBack,
+                                      size=0.75) +
                             # Plots circles for the column of period dates
-                            gg_circle(r=0.45, xc=Xc, yc=Y[i],
-                                      fill='white', color='grey40') 
+                            gg_circle(r=radius, xc=Xc, yc=Y[i],
+                                      fill=colorBack, color=colorBack,
+                                      size=0.75) 
                     }
 
                     # For all averaged trends on this periods
@@ -578,11 +602,14 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         }
                         
                         # If it is significative
-                        if (Alpha_trend_per[i]) {
+                        if (Alpha_trend_per[i] == 'TRUE') {
                             # The text color is white
                             Tcolor = 'white'
-                            # Otherwise
-                        } else {
+                            
+                        } else if (Alpha_trend_per[i] == 'FORCE') {
+                            Tcolor = Color_trend_per[i]
+                        # Otherwise
+                        } else if (Alpha_trend_per[i] == 'FALSE') {
                             # The text is grey
                             Tcolor = 'grey85'
                         }
@@ -732,69 +759,128 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     Y_mean = as.integer(factor(Code_mean_per))
                     # Reverses vertical order of stations
                     Y_mean = rev(Y_mean)
+
+
+
                     
+                    # # Position of a line to delimite periods
+                    # x = Xc_mean - 0.4
+                    # xend = Xm_mean[length(Xm_mean)] + 0.25
+                    # y = height + 1.1
+                    # yend = height + 1.1
+                    # # Drawing of the line
+                    # mat = mat +
+                    #     annotate("segment",
+                    #              x=x, xend=xend,
+                    #              y=y, yend=yend, 
+                    #              color="grey40", size=0.35)
+
+                    # # Position of the name of the current period
+                    # yt = y + 0.15
+                    # Start = mean_period[[j]][1]
+                    # End = mean_period[[j]][2]
+                    # # Name of the period
+                    # periodName = bquote(bold('Période')~bold(.(as.character(j+nPeriod_trend))))
+                    # # Naming the period
+                    # mat = mat +
+                    #     annotate("text", x=x, y=yt,
+                    #              label=periodName,
+                    #              hjust=0, vjust=0.5, 
+                    #              size=3, color='grey40')
+
+                    # # If this is not the first period
+                    # if (j > 1) {
+                    #     # Position of a line to delimite results of
+                    #     # difference of mean bewteen periods
+                    #     x = Xr_mean[1] - 0.4
+                    #     xend = Xr_mean[length(Xr_mean)] + 0.25
+                    #     # Drawing of the line
+                    #     mat = mat +
+                    #         annotate("segment",
+                    #                  x=x, xend=xend,
+                    #                  y=y, yend=yend, 
+                    #                  color="grey40", size=0.35)
+                    #     # Naming the breaking columns
+                    #     breakName =  bquote(bold('Écart')~bold(.(as.character(j-1+nPeriod_trend)))*bold('-')*bold(.(as.character(j+nPeriod_trend))))
+                    #     # Writes the name
+                    #     mat = mat +
+                    #         annotate("text", x=x, y=yt,
+                    #                  label=breakName,
+                    #                  hjust=0, vjust=0.5, 
+                    #                  size=3, color='grey40')
+                    # }
+
                     # Position of a line to delimite periods
-                    x = Xc_mean - 0.4
-                    xend = Xm_mean[length(Xm_mean)] + 0.25
-                    y = height + 1.1
-                    yend = height + 1.1
+                    if (j == 1) {
+                        x = Xc_mean - 0.4
+                    } else {
+                        x = Xc_mean - 0.5
+                    }
+                    xend = Xm_mean[length(Xm_mean)] + 0.5
+                    y = height + 1.13
                     # Drawing of the line
                     mat = mat +
                         annotate("segment",
                                  x=x, xend=xend,
-                                 y=y, yend=yend, 
+                                 y=y, yend=y, 
                                  color="grey40", size=0.35)
-
-                    # Position of the name of the current period
-                    yt = y + 0.15
-                    Start = mean_period[[j]][1]
-                    End = mean_period[[j]][2]
-                    # Name of the period
-                    periodName = bquote(bold('Période')~bold(.(as.character(j+nPeriod_trend))))
-                    # Naming the period
-                    mat = mat +
-                        annotate("text", x=x, y=yt,
-                                 label=periodName,
-                                 hjust=0, vjust=0.5, 
-                                 size=3, color='grey40')
+  
+                    if (j == 1) {
+                        # Position of the name of the current period
+                        yt = y + 0.15
+                        Start = mean_period[[j]][1]
+                        End = mean_period[[j]][2]
+                        # Name of the period
+                        periodName = bquote(bold('Différence entre les moyennes sur périodes de 20 ans '))
+                        # Naming the period
+                        mat = mat +
+                            annotate("text", x=x, y=yt,
+                                     label=periodName,
+                                     hjust=0, vjust=0.5, 
+                                     size=3.5, color='grey40')
+                    }
 
                     # If this is not the first period
                     if (j > 1) {
                         # Position of a line to delimite results of
                         # difference of mean bewteen periods
-                        x = Xr_mean[1] - 0.4
-                        xend = Xr_mean[length(Xr_mean)] + 0.25
+                        x = Xr_mean[1] - 0.5
+                        if (j == nPeriod_mean) {
+                            xend = Xr_mean[length(Xr_mean)] + 0.25
+                        } else {
+                            xend = Xr_mean[length(Xr_mean)] + 0.5
+                        }
                         # Drawing of the line
                         mat = mat +
                             annotate("segment",
                                      x=x, xend=xend,
-                                     y=y, yend=yend, 
+                                     y=y, yend=y, 
                                      color="grey40", size=0.35)
-                        # Naming the breaking columns
-                        breakName =  bquote(bold('Écart')~bold(.(as.character(j-1+nPeriod_trend)))*bold('-')*bold(.(as.character(j+nPeriod_trend))))
-                        # Writes the name
-                        mat = mat +
-                            annotate("text", x=x, y=yt,
-                                     label=breakName,
-                                     hjust=0, vjust=0.5, 
-                                     size=3, color='grey40')
                     }
 
+
+
+
+                    
+
                     # For all the variable
                     for (i in 1:length(Xm_mean)) {
                         mat = mat +
                             # Plots circles for averaged variables
-                            gg_circle(r=0.45, xc=Xm_mean[i], yc=Y[i],
-                                      fill='white', color='grey40') +
+                            gg_circle(r=radius, xc=Xm_mean[i], yc=Y[i],
+                                      fill=colorBack, color=colorBack,
+                                      size=0.75) +
                             # Plots circles for the column of period dates
-                            gg_circle(r=0.45, xc=Xc_mean, yc=Y[i],
-                                      fill='white', color='grey40')
+                            gg_circle(r=radius, xc=Xc_mean, yc=Y[i],
+                                      fill=colorBack, color=colorBack,
+                                      size=0.75)
                         
                         # If this is not the first period
                         if (j > 1) {
                             mat = mat +
                                 # Plots circles for breaking results
-                                gg_circle(r=0.45, xc=Xr_mean[i], yc=Y[i],
+                                gg_circle(r=radius, xc=Xr_mean[i],
+                                          yc=Y[i],
                                           fill=Fill_mean_per[i],
                                           color=Color_mean_per[i])
                         }
diff --git a/plotting/shortcut.R b/plotting/shortcut.R
index 76bebdfaaf684f5fb29035294ca7eda3b4a5cf8f..ca61529f75aea6bdd14bf4cf5c9a54c7be5544e7 100644
--- a/plotting/shortcut.R
+++ b/plotting/shortcut.R
@@ -25,7 +25,7 @@
 
 ## 1. EXTREMES OF VALUE FOR ALL STATION ______________________________
 ### 1.1. Trend _______________________________________________________
-short_trendExtremes = function (list_df2plot, Code, nPeriod_trend, nbp, nCode) {
+short_trendExtremes = function (list_df2plot, Code, nPeriod_trend, nbp, nCode, colorForce=FALSE) {
     
     # Blank array to store mean of the trend for each
     # station, perdiod and variable
@@ -48,7 +48,6 @@ short_trendExtremes = function (list_df2plot, Code, nPeriod_trend, nbp, nCode) {
                 df_trend = list_df2plot[[i]]$trend
                 # Extracts the type of the variable
                 type = list_df2plot[[i]]$type
-                alpha = list_df2plot[[i]]$alpha
                 # Extracts the data corresponding to the code
                 df_data_code = df_data[df_data$code == code,] 
                 df_trend_code = df_trend[df_trend$code == code,]
@@ -87,7 +86,7 @@ short_trendExtremes = function (list_df2plot, Code, nPeriod_trend, nbp, nCode) {
                 }
                 
                 # If the p value is under the threshold
-                if (df_trend_code_per$p <= alpha) {
+                if (df_trend_code_per$p <= alpha | colorForce) {
                     # Stores the mean trend
                     TrendValue_code[j, i, k] = trendValue
                     # Otherwise
diff --git a/plotting/tools.R b/plotting/tools.R
index 94624efcbeada58bde26fed61fa7aab3361603e6..ffa30109571349b5f36e7870361f610d638a0fe6 100644
--- a/plotting/tools.R
+++ b/plotting/tools.R
@@ -30,6 +30,7 @@
 # between the min and the max of the variable
 get_color = function (value, min, max, ncolor=256, palette_name='perso', reverse=FALSE) {
 
+    
     # If the value is a NA return NA color
     if (is.na(value)) {
         return (NA)
@@ -65,16 +66,25 @@ get_color = function (value, min, max, ncolor=256, palette_name='perso', reverse
 
     # If the value is negative
     if (value < 0) {
-        # Gets the relative position of the value in respect
-        # to its span
-        idNorm = (value + maxAbs) / maxAbs
+        if (maxAbs == 0) {
+            idNorm = 0
+        } else {
+            # Gets the relative position of the value in respect
+            # to its span
+            idNorm = (value + maxAbs) / maxAbs
+        }
         # The index corresponding
-        id = round(idNorm*(ncolor - 1) + 1, 0)
+        id = round(idNorm*(ncolor - 1) + 1, 0)        
         # The associated color
         color = palette_cold[id]
+        
     # Same if it is a positive value
     } else {
-        idNorm = value / maxAbs
+        if (maxAbs == 0) {
+            idNorm = 0
+        } else {
+            idNorm = value / maxAbs
+        }
         id = round(idNorm*(ncolor - 1) + 1, 0)
         color = palette_hot[id]
     }
diff --git a/processing/analyse.R b/processing/analyse.R
index 7718eb5fe9e87bcdb74b2f39a92da2c97c590aa0..87b1d3d96a86654b31824f57408014dca28501df 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -128,7 +128,8 @@ get_QAtrend = function (df_data, df_meta, period, alpha, yearLac_day, df_mod=tib
                               na.rm=TRUE)
         # Compute the trend analysis
         df_QAtrend = Estimate.stats(data.extract=df_QAEx,
-                                      level=alpha)
+                                    level=alpha,
+                                    dep.option='AR1')
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -204,7 +205,8 @@ get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_d
                                 na.rm=TRUE)
         # Compute the trend analysis        
         df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx,
-                                      level=alpha)
+                                      level=alpha,
+                                      dep.option='AR1')
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -308,7 +310,8 @@ get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_
                                  na.rm=TRUE)
         # Compute the trend analysis
         df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex,
-                                      level=alpha)
+                                       level=alpha,
+                                       dep.option='AR1')
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -494,7 +497,8 @@ get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_d
         
         # Compute the trend analysis
         df_tDEBtrend = Estimate.stats(data.extract=df_tDEBEx,
-                                      level=alpha)
+                                      level=alpha,
+                                      dep.option='AR1')
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -572,7 +576,8 @@ get_tCENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_d
         
         # Compute the trend analysis
         df_tCENtrend = Estimate.stats(data.extract=df_tCENEx,
-                                      level=alpha)
+                                      level=alpha,
+                                      dep.option='AR1')
 
         # Get the associated time interval
         I = interval(per[1], per[2])
diff --git a/script.R b/script.R
index 75c35ab4d5de3ccadf0fd90a4f4d7e9e837357e0..d5b18e8af32dd5c3abe4f3df79b10593ae17fb71 100644
--- a/script.R
+++ b/script.R
@@ -55,21 +55,22 @@ filedir =
 # Name of the file that will be analysed from the BH directory
 # (if 'all', all the file of the directory will be chosen)
 filename =
-    # ""
+    ""
     # "all"
-    c(
+    # c(
         # "S2235610_HYDRO_QJM.txt",
         # "P1712910_HYDRO_QJM.txt",
         # "P0885010_HYDRO_QJM.txt",
         # "O5055010_HYDRO_QJM.txt",
         # "O0384010_HYDRO_QJM.txt",
         # "S4214010_HYDRO_QJM.txt",
-        "Q7002910_HYDRO_QJM.txt"
-        # "Q0214010_HYDRO_QJM.txt"
+        # "Q7002910_HYDRO_QJM.txt",
+        # "Q0214010_HYDRO_QJM.txt",
         # "O3035210_HYDRO_QJM.txt",
         # "O0554010_HYDRO_QJM.txt",
-        # "O1584610_HYDRO_QJM.txt"
-    )
+        # "Q6332510_HYDRO_QJM.txt"
+        # "O8255010_HYDRO_QJM.txt"
+    # )
 
 
 ## AGENCE EAU ADOUR GARONNE SELECTION
@@ -79,8 +80,8 @@ AEAGlistdir =
     ""
 
 AEAGlistname = 
-    ""
-    # "Liste-station_RRSE.docx" 
+    # ""
+    "Liste-station_RRSE.docx" 
 
 
 ## NIVALE SELECTION
@@ -118,7 +119,7 @@ sampleSpan = c('05-01', '11-30')
 
 ## MAP
 # Is the hydrological network needs to be plot
-is_river = FALSE
+is_river = TRUE
 
 ############### END OF REGION TO MODIFY (without risk) ###############
 
@@ -361,68 +362,69 @@ df_shapefile = ini_shapefile(resources_path,
 
 ### 5.1. Simple time panel to criticize station data _________________
 # Plot time panel of debit by stations
-datasheet_layout(toplot=c('datasheet'),
-                 df_meta=df_meta,
-                 df_data=list(df_data,
-                              df_sqrt),
-                 var=list('Q', 'sqrt(Q)'),
-                 type=list('data', 'data'),
-                 layout_matrix=matrix(c(1, 2), ncol=1),
-                 info_header=df_data,
-                 df_shapefile=df_shapefile,
-                 figdir=figdir,
-                 resources_path=resources_path,
-                 logo_dir=logo_dir,
-                 AEAGlogo_file=AEAGlogo_file,
-                 INRAElogo_file=INRAElogo_file,
-                 FRlogo_file=FRlogo_file)
-
-
-### 5.2. Analysis layout _____________________________________________
-# datasheet_layout(toplot=c(
-#                      'datasheet'
-#                      # 'matrix',
-#                      # 'map'
-#                  ),
+# datasheet_layout(toplot=c('datasheet'),
 #                  df_meta=df_meta,
-                 
-#                  df_data=list(
-#                      res_QAtrend$data,
-#                      res_QMNAtrend$data,
-#                      res_VCN10trend$data,
-#                      res_tDEBtrend$data,
-#                      res_tCENtrend$data
-#                  ),
-                 
-#                  df_trend=list(
-#                      res_QAtrend$trend,
-#                      res_QMNAtrend$trend,
-#                      res_VCN10trend$trend,
-#                      res_tDEBtrend$trend,
-#                      res_tCENtrend$trend
-#                  ),
-                 
-#                  var=var,
-#                  type=type,
-#                  glose=glose,
-                 
-#                  layout_matrix=matrix(c(1, 2, 3, 4, 5), ncol=1),
-                 
-#                  missRect=TRUE,
-#                  trend_period=trend_period,
-#                  mean_period=mean_period,
+#                  df_data=list(df_data,
+#                               df_sqrt),
+#                  var=list('Q', 'sqrt(Q)'),
+#                  type=list('data', 'data'),
+#                  layout_matrix=matrix(c(1, 2), ncol=1),
 #                  info_header=df_data,
-#                  time_header=df_data,
-#                  foot_note=TRUE,
-#                  info_height=2.8,
-#                  time_ratio=2, 
-#                  var_ratio=3,
-#                  foot_height=1.25,
 #                  df_shapefile=df_shapefile,
 #                  figdir=figdir,
-#                  filename_opt='',
 #                  resources_path=resources_path,
 #                  logo_dir=logo_dir,
 #                  AEAGlogo_file=AEAGlogo_file,
 #                  INRAElogo_file=INRAElogo_file,
 #                  FRlogo_file=FRlogo_file)
+
+
+### 5.2. Analysis layout _____________________________________________
+datasheet_layout(toplot=c(
+                     'datasheet',
+                     'matrix',
+                     'map'
+                 ),
+                 df_meta=df_meta,
+                 
+                 df_data=list(
+                     res_QAtrend$data,
+                     res_QMNAtrend$data,
+                     res_VCN10trend$data,
+                     res_tDEBtrend$data,
+                     res_tCENtrend$data
+                 ),
+                 
+                 df_trend=list(
+                     res_QAtrend$trend,
+                     res_QMNAtrend$trend,
+                     res_VCN10trend$trend,
+                     res_tDEBtrend$trend,
+                     res_tCENtrend$trend
+                 ),
+                 
+                 var=var,
+                 type=type,
+                 glose=glose,
+                 
+                 layout_matrix=matrix(c(1, 2, 3, 4, 5), ncol=1),
+                 
+                 missRect=TRUE,
+                 trend_period=trend_period,
+                 mean_period=mean_period,
+                 colorForce=TRUE,
+                 info_header=df_data,
+                 time_header=df_data,
+                 foot_note=TRUE,
+                 info_height=2.8,
+                 time_ratio=2, 
+                 var_ratio=3,
+                 foot_height=1.25,
+                 df_shapefile=df_shapefile,
+                 figdir=figdir,
+                 filename_opt='',
+                 resources_path=resources_path,
+                 logo_dir=logo_dir,
+                 AEAGlogo_file=AEAGlogo_file,
+                 INRAElogo_file=INRAElogo_file,
+                 FRlogo_file=FRlogo_file)