diff --git a/plotting/layout.R b/plotting/layout.R
index a7ab458f0d985218d58ea3fd740d15be94ef43c1..b2b8d361fdb671f6d1c10878a871e09983f77b2d 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -14,7 +14,7 @@ library(RColorBrewer)
 source('plotting/panel.R', encoding='latin1')
 
 
-panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_opt='', filename_opt='', variable='', df_trend=NULL, p_threshold=0.1, unit2day=365.25, type='', period=NULL, missRect=FALSE, time_header=NULL, info_header=TRUE, header_ratio=2) {
+panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_opt='', filename_opt='', variable='', df_trend=NULL, p_threshold=0.1, unit2day=365.25, type='', period=NULL, missRect=FALSE, time_header=NULL, info_header=TRUE, time_ratio=2, var_ratio=3) {
     
     if (all(class(df_data) != 'list')) {
         df_data = list(df_data)
@@ -175,12 +175,20 @@ panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_op
         LMrow = nrow(layout_matrix_H)
         for (i in 1:(LMrow+nbh)) {
 
-            if (i <= nbh) {
+            if (info_header & i == 1) {
                 LM = rbind(LM, rep(i, times=LMcol))
+            } else if (!is.null(time_header) & i == 2) {
+                LM = rbind(LM,
+                           matrix(rep(rep(i, times=LMcol),
+                                      times=time_ratio),
+                                  ncol=LMcol, byrow=TRUE))
+            # if (i <= nbh) {
+                # LM = rbind(LM, rep(i, times=LMcol))
+
             } else {
                 LM = rbind(LM, 
                            matrix(rep(layout_matrix_H[i-nbh,],
-                                      times=header_ratio),
+                                      times=var_ratio),
                                   ncol=LMcol, byrow=TRUE))
             }}
 
diff --git a/plotting/panel.R b/plotting/panel.R
index 835d9a7769f6852a04961cc79c852309c6537f72..9a9ce89f0a07f9c31069a815c3d56a2b5a42e5b1 100644
--- a/plotting/panel.R
+++ b/plotting/panel.R
@@ -10,7 +10,7 @@ library(ggh4x)
 library(RColorBrewer)
 
 
-time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missRect=FALSE, unit2day=365.25, period=NULL, last=FALSE, color=NULL) {
+time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missRect=FALSE, unit2day=365.25, period=NULL, last=FALSE, color=NULL, norm=FALSE) {
 
 
     if (type == 'sqrt(Q)') {
@@ -18,42 +18,48 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
     }
     
     maxQ = max(df_data_code$Qm3s, na.rm=TRUE)
-    
-    power = get_power(maxQ)
-    
-    dbrk = 10^power
+    power = get_power(maxQ) 
+
+    if (norm) {
+        dbrk = 10^power 
+    } else {
+        dbrk = 1
+    }
 
     df_data_code$Qm3sN = df_data_code$Qm3s / dbrk
 
     if (!is.null(df_trend_code)) {
-        
         df_trend_code$trendN = df_trend_code$trend / dbrk
         df_trend_code$interceptN = df_trend_code$intercept / dbrk
     }
-
-    maxQN = max(df_data_code$Qm3sN, na.rm=TRUE)
     
-    if (maxQN >= 5) {
+    maxQN = max(df_data_code$Qm3sN, na.rm=TRUE)
+
+    maxQtmp = maxQ/10^power
+    if (maxQtmp >= 5) {
         dbrk = 1.0
         accuracy = 0.1
-    } else if (maxQN < 5 & maxQN >= 3) {
+    } else if (maxQtmp < 5 & maxQtmp >= 3) {
         dbrk = 0.5
         accuracy = 0.1
-    } else if (maxQN < 3 & maxQN >= 2) {
+    } else if (maxQtmp < 3 & maxQtmp >= 2) {
         dbrk = 0.4
         accuracy = 0.1
-    } else if (maxQN < 2 & maxQN >= 1) {
+    } else if (maxQtmp < 2 & maxQtmp >= 1) {
         dbrk = 0.2
         accuracy = 0.1
-    } else if (maxQN < 1) {
+    } else if (maxQtmp < 1) {
         dbrk = 0.1
         accuracy = 0.1
     }
     
+    if (!norm) {
+        dbrk = dbrk * 10^power
+        accuracy = NULL
+    }
+    
     dDate = as.numeric(df_data_code$Date[length(df_data_code$Date)] -
                        df_data_code$Date[1]) / unit2day
-
-    # datebreak = round(as.numeric(dDate) / unit2day / 11 , 0)
     
     if (dDate >= 100) {
         datebreak = 25
@@ -72,12 +78,18 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
 
     theme(panel.background=element_rect(fill='white'),
           text=element_text(family='sans'),
-          panel.border=element_blank(),
 
-          panel.grid.major.y=element_line(color='grey85', size=0.3),
+          # panel.border=element_blank(),
+          panel.border = element_rect(color="grey85",
+                                    fill=NA,
+                                    size=0.7),
+
+          # panel.grid.major.y=element_line(color='grey85', size=0.3),
+          panel.grid.major.y=element_line(color='grey85', size=0.15),
           panel.grid.major.x=element_blank(),
           
-          axis.ticks.y=element_blank(),
+          # axis.ticks.y=element_blank(),
+          axis.ticks.y=element_line(color='grey75', size=0.3),
           axis.ticks.x=element_line(color='grey75', size=0.3),
           
           axis.text.x=element_text(color='grey40'),
@@ -86,7 +98,7 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
           ggh4x.axis.ticks.length.minor=rel(0.5),
           axis.ticks.length=unit(1.5, 'mm'),
 
-          plot.title=element_text(size=9, vjust=-3, 
+          plot.title=element_text(size=9, vjust=-2, 
                                   hjust=-1E-3, color='grey20'), 
           axis.title.x=element_blank(),
           axis.title.y=element_blank(),
@@ -111,8 +123,6 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
                       size=0.3)
     } else {
         p = p +
-            # geom_line(aes(x=df_data_code$Date, y=df_data_code$Qm3sN),
-                      # color='grey70') +
             geom_point(aes(x=df_data_code$Date, y=df_data_code$Qm3sN),
                        shape=1, color='grey20', size=1)
     }
@@ -169,27 +179,42 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
                               color='cornflowerblue')
             }
             
-            p = p +
-                ggtitle(bquote(.(type)~~'['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}~~~'tendance :'~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~m^{3}*'.'*s^{-1}*'.'*an^{-1}))
+            if (norm) {
+                p = p +
+                    ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
+            } else {
+                p = p +
+                    ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']'~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
+            }
             
         } else {
-            p = p +
-                ggtitle(bquote(.(type)~' ['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}))
+            if (norm) {
+                p = p +
+                    ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
+            } else {
+                p = p +
+                    ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']'~~~bold('tendance')~.(format(df_trend_code$trend, scientific=TRUE, digits=3))~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']'))
+            }
         }
     } else { 
-        p = p +
-            ggtitle(bquote(.(type)~' ['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}))
+        if (norm) {
+            p = p +
+                ggtitle(bquote(bold(.(type))~' ['*m^{3}*'.'*s^{-1}*'] x'~10^{.(as.character(power))}))
+        } else {
+            p = p +
+                    ggtitle(bquote(bold(.(type))~' ['*m^{3}*'.'*s^{-1}*']'))
+        }
     }
     
 
-    # if (norm) {
-    #     p = p +
-    #         ylab(bquote('débit ['*m^{3}*'.'*s^{-1}*']  x'~10^{.(as.character(power))}))
-    # } else {
-    #     p = p +
-    #         ylab(expression(paste('débit [', m^{3}, '.', 
-    #                               s^{-1}, ']', sep='')))
-    # }
+    if (norm) {
+        p = p +
+            ylab(bquote('débit ['*m^{3}*'.'*s^{-1}*']  x'~10^{.(as.character(power))}))
+    } else {
+        p = p +
+            ylab(expression(paste('débit [', m^{3}, '.', 
+                                  s^{-1}, ']', sep='')))
+    }
 
     p = p + 
         # xlab('date') + 
@@ -201,8 +226,9 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
                      date_labels="%Y",
                      limits=c(min(df_data_code$Date), 
                               max(df_data_code$Date)),
-                     expand=c(0, 0)) +
-        
+                     expand=c(0, 0))
+
+    p = p +
         scale_y_continuous(breaks=seq(0, maxQN*10, dbrk),
                            limits=c(0, maxQN*1.1),
                            expand=c(0, 0),
@@ -215,26 +241,82 @@ time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missR
 text_panel = function(code, df_meta) {
     df_meta_code = df_meta[df_meta$code == code,]
 
-    text = paste(
-        "<span style='font-size:18pt'> station <b>", code, "</b></span><br>",
-        "nom : ", df_meta_code$nom, "<br>", 
-        "région hydrographique : ", df_meta_code$region_hydro, "<br>",
-        "position : (", df_meta_code$L93X, "; ", df_meta_code$L93Y, ")", "<br>",
-        "surface : ", df_meta_code$surface_km2, " km<sup>2</sup>",
+    text1 = paste(
+        "<b>", code, '</b>  -  ', df_meta_code$nom, "<br>", 
+        sep='')
+
+    text2 = paste(
+        "<b>",
+        "Région hydro : ", df_meta_code$region_hydro, "<br>", 
+        "</b>",
+        sep='')
+
+    text3 = paste(
+        "<b>",
+        "Superficie : ", df_meta_code$surface_km2, "  [km<sup>2</sup>] <br>",
+        "X = ", df_meta_code$L93X, "  [m ; Lambert 93]", 
+        "</b>",
+        sep='')
+        
+    text4 = paste(
+        "<b>",
+        "Altitude : ", df_meta_code$altitude_m, "  [m]<br>",
+        "Y = ", df_meta_code$L93Y, "  [m ; Lambert 93]",
+        "</b>",
+        sep='')
+
+    text5 = paste(
+        "<b>",
+        "(Banque Hydro)<br>",
+        "(Banque Hydro)",
+        "</b>",
         sep='')
 
-    gtext = richtext_grob(text,
-                          x=0, y=1,
-                          margin=unit(c(5, 5, 5, 5), "mm"),
-                          hjust=0, vjust=1,
-                          gp=gpar(col="grey20", fontsize=12))
-    return(gtext)
+    gtext1 = richtext_grob(text1,
+                           x=0, y=1,
+                           margin=unit(c(t=5, r=5, b=0, l=5), "mm"),
+                           hjust=0, vjust=1,
+                           gp=gpar(col="#00A3A8", fontsize=14))
+
+    gtext2 = richtext_grob(text2,
+                           x=0, y=0.6,
+                           margin=unit(c(t=0, r=5, b=0, l=5), "mm"),
+                           hjust=0, vjust=1,
+                           gp=gpar(col="grey20", fontsize=9))
+    
+    gtext3 = richtext_grob(text3,
+                           x=0, y=1,
+                           margin=unit(c(t=0, r=5, b=5, l=5), "mm"),
+                           hjust=0, vjust=1,
+                           gp=gpar(col="grey20", fontsize=9))
+    
+    gtext4 = richtext_grob(text4,
+                           x=0, y=1,
+                           margin=unit(c(t=0, r=5, b=5, l=5), "mm"),
+                           hjust=0, vjust=1,
+                           gp=gpar(col="grey20", fontsize=9))
+
+    gtext5 = richtext_grob(text5,
+                           x=0, y=1,
+                           margin=unit(c(t=0, r=5, b=5, l=5), "mm"),
+                           hjust=0, vjust=1,
+                           gp=gpar(col="grey20", fontsize=9))
+    
+    gtext_merge = grid.arrange(grobs=list(gtext1, gtext2, gtext3, 
+                                          gtext4, gtext5), 
+                               layout_matrix=matrix(c(1, 1, 1,
+                                                      2, 2, 2,
+                                                      3, 4, 5), 
+                                                    nrow=3, 
+                                                    byrow=TRUE))
+
+    return(gtext_merge)
 }
 
 
 
 matrice_panel = function (list_df2plot, df_meta) {
-
+    
     nbp = length(list_df2plot)
 
     minTrend = c()
@@ -304,6 +386,8 @@ matrice_panel = function (list_df2plot, df_meta) {
 
     X = as.integer(factor(as.character(Type_mat)))
     Y = as.integer(factor(Code_mat))
+
+    options(repr.plot.width=X, repr.plot.height=Y)
     
     mat = ggplot() +
         
@@ -335,11 +419,6 @@ matrice_panel = function (list_df2plot, df_meta) {
               
               plot.margin=margin(5, 5, 5, 5, unit="mm"),
               )
-    
-
-    # geom_point(aes(x=X, y=Y),
-    #            shape=21, fill=Fill_mat, color=Color_mat,
-    #            size=15, stroke=1) +
 
     for (i in 1:length(X)) {
         mat = mat +
@@ -350,20 +429,14 @@ matrice_panel = function (list_df2plot, df_meta) {
     mat = mat +
 
     coord_fixed() +
-        
-    scale_x_continuous(limits=c(min(c(X, Y)) - rel(1.5), 
-                                max(c(X, Y)) + rel(0.5)),
+
+    scale_x_continuous(limits=c(min(X) - rel(1.5), 
+                                max(X) + rel(0.5)),
                        expand=c(0, 0)) + 
         
-    scale_y_continuous(limits=c(min(c(X, Y)) - rel(0.5), 
-                                max(c(X, Y)) + rel(1)),
+    scale_y_continuous(limits=c(min(Y) - rel(0.5), 
+                                max(Y) + rel(1)),
                        expand=c(0, 0))
-
-    # scale_x_continuous(limits=c(min(X)-0.4, max(X)+0.2),
-    #                    expand=c(0, 0)) + 
-        
-    # scale_y_continuous(limits=c(min(Y)-0.2, max(Y)+0.4),
-    #                    expand=c(0, 0))
     
     for (i in 1:length(Code)) {
         mat = mat +
@@ -382,7 +455,6 @@ matrice_panel = function (list_df2plot, df_meta) {
                      size=3.5, color='grey40')       
     }
     
-
     for (i in 1:length(Trend_mat)) {
         trend = Trend_mat[i]
         if (!is.na(trend)) {
diff --git a/processing/analyse.R b/processing/analyse.R
index e83f5bdb5e1336dbd7148d768d143ba0c8fac946..83d7c1aec14eab7f63b0df660d5f579fdaecbf43 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -87,71 +87,89 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
 
 get_QAtrend = function (df_data, period) {
     # AVERAGE ANNUAL FLOW : QA #
-    ### /!\ verify order conservation ###
-    df_QAlist = prepare(df_data, colnamegroup=c('code'))
-
-    df_QAEx = extract.Var(data.station=df_QAlist,
-                          funct=mean,
-                          timestep='year',
-                          period=period,
-                          pos.datetime=1,
-                          na.rm=TRUE)
+    
+    period = as.list(period)
+    
+    Imax = 0
+    df_QAtrendB = tibble()
+
+    for (per in period){
+               
+        df_QAlist = prepare(df_data, colnamegroup=c('code'))
+
+        df_QAEx = extract.Var(data.station=df_QAlist,
+                              funct=mean,
+                              timestep='year',
+                              period=per,
+                              pos.datetime=1,
+                              na.rm=TRUE)
+
+        df_QAtrend = Estimate.stats(data.extract=df_QAEx)
+
+        I = interval(per[1], per[2])
+        if (I > Imax) {
+            Imax = I
+            df_QAlistB = df_QAlist
+            df_QAExB = df_QAEx
+        }
+
+        df_QAtrend = bind_cols(df_QAtrend,
+                               tibble(period_start=as.Date(per[1])),
+                               tibble(period_end=as.Date(per[2])))
+        df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend)
 
-    df_QAtrend = Estimate.stats(data.extract=df_QAEx)
+    }
     
-    res_QAtrend = clean(df_QAtrend, df_QAEx, df_QAlist)
+    res_QAtrend = clean(df_QAtrendB, df_QAExB, df_QAlistB)
 
     return (res_QAtrend)
 }
 
 get_QMNAtrend = function (df_data, period) {
     # MONTHLY MINIMUM FLOW IN THE YEAR : QMNA #
-    df_QMNAlist = prepare(df_data, colnamegroup=c('code'))
-
-    ### /!\ PLUS RAPIDE ###
-    # fMNA = function (X) {
-    #                                     # prendre un paquet de 1 ans et faire la moyenne par mois et retourner le minimum des debit 
-    #     dpm = length(X)/12
-    #                                     # print(dpm)
-    #                                     # print(length(X))
-    #     monthmean = c()
-    #     for (i in 1:12) {
-    #         id = round(dpm*(i-1)+1, 0)
-    #         iu = round(i*dpm, 0)
-    #         monthmean = append(monthmean, mean(X[id:iu], na.rm=TRUE))
-    #                                     # print(paste('start', id))
-    #                                     # print(paste('end', iu))
-    #                                     # print('')
-    #     }
-    #                                     # print(monthmean)
-    #     return (min(monthmean, na.rm=TRUE))
-    # }
-    # df_QMNAEx = extract.Var(data.station=df_QMNAlist,
-    #                         funct=fMNA,
-    #                         period=period,
-    #                         pos.datetime=1)#,
-    # na.rm=TRUE) ### /!\ PAS COMPRIS ###
-
-    df_QMNAEx = extract.Var(data.station=df_QMNAlist,
-                            funct=mean,
-                            period=period,
-                            timestep='month',
-                            pos.datetime=1,
-                            na.rm=TRUE)
-
-    ### /!\ NOM DE COLONNE PAS CONSERVER ###
-    df_QMNAlist = reprepare(df_QMNAEx, df_QMNAlist, colnamegroup=c('code'))
-
-    df_QMNAEx = extract.Var(data.station=df_QMNAlist,
-                            funct=min,
-                            period=period,
-                            timestep='year',
-                            pos.datetime=1,
-                            na.rm=TRUE)
-
-    df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx)
-
-    res_QMNAtrend = clean(df_QMNAtrend, df_QMNAEx, df_QMNAlist)
+
+    period = as.list(period)
+    
+    Imax = 0
+    df_QMNAtrendB = tibble()
+
+    for (per in period) {
+
+        df_QMNAlist = prepare(df_data, colnamegroup=c('code'))
+        
+        df_QMNAEx = extract.Var(data.station=df_QMNAlist,
+                                funct=mean,
+                                period=per,
+                                timestep='month',
+                                pos.datetime=1,
+                                na.rm=TRUE)
+        
+        df_QMNAlist = reprepare(df_QMNAEx, df_QMNAlist, colnamegroup=c('code'))
+        
+        df_QMNAEx = extract.Var(data.station=df_QMNAlist,
+                                funct=min,
+                                period=per,
+                                timestep='year',
+                                pos.datetime=1,
+                                na.rm=TRUE)
+        
+        df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx)
+        
+        I = interval(per[1], per[2])
+        if (I > Imax) {
+            Imax = I
+            df_QMNAlistB = df_QMNAlist
+            df_QMNAExB = df_QMNAEx
+        }
+
+        df_QMNAtrend = bind_cols(df_QMNAtrend,
+                               tibble(period_start=as.Date(per[1])),
+                               tibble(period_end=as.Date(per[2])))
+        df_QMNAtrendB = bind_rows(df_QMNAtrendB, df_QMNAtrend)
+    }
+    
+    
+    res_QMNAtrend = clean(df_QMNAtrendB, df_QMNAExB, df_QMNAlistB)
 
     return (res_QMNAtrend)
 }
@@ -162,7 +180,7 @@ get_VCN10trend = function (df_data, df_meta, period) {
 
     # Get all different stations code
     Code = levels(factor(df_meta$code))
-    
+
     df_data_roll = tibble()
 
     for (c in Code) {
@@ -177,21 +195,40 @@ get_VCN10trend = function (df_data, df_meta, period) {
                               code=c)
 
         df_data_roll = bind_rows(df_data_roll, df_data_code)
-        
     }
 
-    df_VCN10list = prepare(df_data_roll, colnamegroup=c('code'))
-
-    df_VCN10Ex = extract.Var(data.station=df_VCN10list,
-                             funct=min,
-                             period=period,
-                             timestep='year',
-                             pos.datetime=1,
-                             na.rm=TRUE)
-
-    df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex)
+    period = as.list(period)
+    
+    Imax = 0
+    df_VCN10trendB = tibble()
+    
+    for (per in period) {
+        
+        df_VCN10list = prepare(df_data_roll, colnamegroup=c('code'))
+
+        df_VCN10Ex = extract.Var(data.station=df_VCN10list,
+                                 funct=min,
+                                 period=per,
+                                 timestep='year',
+                                 pos.datetime=1,
+                                 na.rm=TRUE)
+
+        df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex)
+
+        I = interval(per[1], per[2])
+        if (I > Imax) {
+            Imax = I
+            df_VCN10listB = df_VCN10list
+            df_VCN10ExB = df_VCN10Ex
+        }
+
+        df_VCN10trend = bind_cols(df_VCN10trend,
+                                  tibble(period_start=as.Date(per[1])),
+                                  tibble(period_end=as.Date(per[2])))
+        df_VCN10trendB = bind_rows(df_VCN10trendB, df_VCN10trend)
+    }
     
-    res_VCN10trend = clean(df_VCN10trend, df_VCN10Ex, df_VCN10list)
+    res_VCN10trend = clean(df_VCN10trendB, df_VCN10ExB, df_VCN10listB)
 
     return (res_VCN10trend)
 }
diff --git a/processing/format.R b/processing/format.R
index b5b79b02511ba1af06652c0768782b86d1bcc448..7ac9101f8a02e2a06568e414e20a3252d0bc2f04 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -83,10 +83,10 @@ reprepare = function(df_XEx, df_Xlist, colnamegroup=NULL) {
 
 clean = function (df_Xtrend, df_XEx, df_Xlist) {
 
-    # print(str(df_XEx))
-
     df_Xlist = reprepare(df_XEx, df_Xlist, colnamegroup=c('code'))
 
+    # print(df_Xlist)
+
     df_Xlist$data$code = NA
     for (g in df_Xlist$info$group) {
         df_Xlist$data$code[which(df_Xlist$data$group == g)] = df_Xlist$info$code[df_Xlist$info$group == g]
diff --git a/script.R b/script.R
index 56575dc1ccedfb7c5953ea64dee6dc4b402b1dc1..c34e2d92ddfcc3828ace843cc8d4984b68d14672 100644
--- a/script.R
+++ b/script.R
@@ -22,13 +22,13 @@ BHfiledir =
 ## Manual selection ##
 # Name of the file that will be analysed from the BH directory
 BHfilename =
-    ""
-    # c("S2235610_HYDRO_QJM.txt", 
-      # "P1712910_HYDRO_QJM.txt", 
-      # "P0885010_HYDRO_QJM.txt",
-      # "A1000030_HYDRO_QJM.txt",
-      # "A2250310_HYDRO_QJM.txt"
-      # )
+    # ""
+    c("S2235610_HYDRO_QJM.txt", 
+      "P1712910_HYDRO_QJM.txt", 
+      "P0885010_HYDRO_QJM.txt",
+      "A1000030_HYDRO_QJM.txt",
+      "A2250310_HYDRO_QJM.txt"
+      )
 
 ## Or list selection ##
 # Path to the list file of BH data that will be analysed
@@ -36,20 +36,20 @@ BHlistdir =
     ""
 
 BHlistname = 
-    # ""
-    "Liste-station_RRSE.docx" 
+    ""
+    # "Liste-station_RRSE.docx" 
     
 
 ### NIVALE ###
 # Path to the directory where NV data is stored
 NVfiledir = 
-    # ""
-    "France207"
+    ""
+    # "France207"
 
 # Name of the file that will be analysed from the NV directory
 NVfilename = 
-    # ""
-    "all"
+    ""
+    # "all"
 
 
 # Path to the list file of metadata about station that will be analysed
@@ -57,14 +57,14 @@ NVlistdir =
     ""
 
 NVlistname = 
-    # ""
-    "liste_bv_principaux_global.txt"
+    ""
+    # "liste_bv_principaux_global.txt"
 
 
 ### TREND ANALYSIS ###
 # Time period to analyse
-period = c("1980-01-01","2019-12-31")
-
+period_all = c("1700-01-01", "2020-12-31")
+period2 = c("1968-01-01", "2020-12-31")
 
 
 ########################
@@ -120,11 +120,6 @@ if (BHlistname != ""){
 }
 
 
-######
-BHfilename = BHfilename[1:10]
-######
-
-
 # Extract metadata about selected stations
 df_meta_BH = extractBH_meta(computer_data_path, BHfiledir, BHfilename)
 
@@ -153,13 +148,13 @@ df_meta = df_join$meta
 
 
 # QA TREND #
-res_QAtrend = get_QAtrend(df_data, period)
+# res_QAtrend = get_QAtrend(df_data, period=list(period_all, period2))
 
 # QMNA TREND #
-res_QMNAtrend = get_QMNAtrend(df_data, period)
+res_QMNAtrend = get_QMNAtrend(df_data, period=list(period_all, period2))
 
 # VCN10 TREND #
-res_VCN10trend = get_VCN10trend(df_data, df_meta, period)
+# res_VCN10trend = get_VCN10trend(df_data, period=list(period_all, period2))
 
 
 # TIME PANEL #
@@ -171,41 +166,43 @@ res_VCN10trend = get_VCN10trend(df_data, df_meta, period)
 #               type=list('Q', 'sqrt(Q)'), 
 #               info_header=TRUE,
 #               time_header=NULL,
-#               header_ratio=3,
+#               var_ratio=3,
 #               figdir=figdir,
 #               filename_opt='time')
 
-panels_layout(list(res_QAtrend$data, res_QMNAtrend$data,
-                   res_VCN10trend$data), 
-              layout_matrix=c(1, 2, 3),
-              df_meta=df_meta, 
-              df_trend=list(res_QAtrend$trend, res_QMNAtrend$trend,
-                    res_VCN10trend$trend), 
-              type=list(bquote(Q[A]), bquote(Q[MNA]), bquote(V[CN10])),
-              missRect=list(TRUE, TRUE, TRUE),
-              period=period,
-              info_header=TRUE,
-              time_header=df_data,
-              header_ratio=2,
-              figdir=figdir,
-              filename_opt='')
-
-
-# panels_layout(list(res_QAtrend$data, res_VCN10trend$data), 
-#               layout_matrix=c(1, 2),
+# panels_layout(list(res_QAtrend$data, res_QMNAtrend$data,
+#                    res_VCN10trend$data), 
+#               layout_matrix=c(1, 2, 3),
 #               df_meta=df_meta, 
-#               df_trend=list(res_QAtrend$trend,
+#               df_trend=list(res_QAtrend$trend, res_QMNAtrend$trend,
 #                     res_VCN10trend$trend), 
-#               type=list(bquote(Q[A]), bquote(V[CN10])),
-#               missRect=list(TRUE, TRUE),
-#               period=period,
+#               type=list(bquote(Q[A]), bquote(Q[MNA]), bquote(V[CN10])),
+#               missRect=list(TRUE, TRUE, TRUE),
+#               period=period_all,
 #               info_header=TRUE,
 #               time_header=df_data,
-#               header_ratio=2,
+#               time_ratio=2, 
+#               var_ratio=3,
 #               figdir=figdir,
 #               filename_opt='')
 
 
+panels_layout(list(res_QAtrend$data, res_VCN10trend$data), 
+              layout_matrix=c(1, 2),
+              df_meta=df_meta, 
+              df_trend=list(res_QAtrend$trend,
+                    res_VCN10trend$trend), 
+              type=list(bquote(Q[A]), bquote(V[CN10])),
+              missRect=list(TRUE, TRUE),
+              period=period_all,
+              info_header=TRUE,
+              time_header=df_data,
+              time_ratio=2, 
+              var_ratio=5,
+              figdir=figdir,
+              filename_opt='')
+
+
 ### /!\ Removed 185 row(s) containing missing values (geom_path) -> remove NA ###