diff --git a/plotting/layout.R b/plotting/layout.R
index e0c659253eb640c0340fc6ec3e253229620780ef..ec53ea93d97ba5f8ac6167fb4a6e59bc2c002885 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -143,7 +143,7 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                              missRect=FALSE, time_header=NULL,
                              info_header=TRUE, foot_note=FALSE,
                              info_ratio=1, time_ratio=2,
-                             var_ratio=3, foot_height=0.5,
+                             var_ratio=3, foot_height=1,
                              df_shapefile=NULL,
                              resources_path=NULL,
                              AEAGlogo_file=NULL,
@@ -532,7 +532,7 @@ summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGl
                 n_page = df_page$n[df_page$section == sec_name &
                                    df_page$subsection == subsec_name][1]
 
-                line = paste(idS, ".", idSS, ". ",
+                line = paste("<b>", idS, ".", idSS, ".</b> ",
                              subsec_name, "<br>", sep='')
                 page = paste("p.", n_page, "<br>", sep='')
                 
@@ -696,7 +696,7 @@ foot_panel = function (name, n_page, resources_path, AEAGlogo_file, INRAElogo_fi
                                gp=gpar(col="#00A3A8", fontsize=8))
 
     gtext_date = richtext_grob(text_date,
-                               x=1, y=0.4,
+                               x=1, y=0.55,
                                margin=unit(c(t=0, r=0, b=0, l=0), "mm"),
                                hjust=1, vjust=0.5,
                                gp=gpar(col="#00A3A8", fontsize=6))
@@ -707,13 +707,15 @@ foot_panel = function (name, n_page, resources_path, AEAGlogo_file, INRAElogo_fi
     
     AEAGlogo_img = readPNG(AEAGlogo_path)
     AEAGlogo_grob = rasterGrob(AEAGlogo_img,
+                               y=0.49,
+                               vjust=0.5,
                                width=unit(0.7*foot_height, "cm"))
     
     INRAElogo_img = readPNG(INRAElogo_path)
     INRAElogo_grob = rasterGrob(INRAElogo_img,
-                                y=0.57,
+                                y=0.565,
                                 vjust=0.5,
-                                width=unit(1.1*foot_height, "cm"))
+                                width=unit(1.08*foot_height, "cm"))
     
     FRlogo_img = readPNG(FRlogo_path)
     FRlogo_grob = rasterGrob(FRlogo_img,
@@ -722,7 +724,7 @@ foot_panel = function (name, n_page, resources_path, AEAGlogo_file, INRAElogo_fi
     
     P = list(void,
              FRlogo_grob, INRAElogo_grob, AEAGlogo_grob,
-             gtext_page, gtext_date) 
+             gtext_page, gtext_date)
 
     # Creates the matrix layout
     LM = matrix(c(1, 2, 3, 4, 5,
@@ -732,7 +734,7 @@ foot_panel = function (name, n_page, resources_path, AEAGlogo_file, INRAElogo_fi
 
     # And sets the relative width of each plot
     widths = rep(1, times=ncol(LM))
-    widths[2] = 0.18
+    widths[2] = 0.2
     widths[3] = 0.25
     widths[4] = 0.2
     
diff --git a/plotting/map.R b/plotting/map.R
index d86006ad4c3b09575f021b5fca9b9764aaa8e2a1..5f6ede5dfda8aa7536e6d8852a7cba87431aae36 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -200,10 +200,6 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
     minTrendValue = apply(TrendValue_code, c(1, 2), min, na.rm=TRUE)
     maxTrendValue = apply(TrendValue_code, c(1, 2), max, na.rm=TRUE)    
 
-
-
-
-
     # If there is a 'mean_period'
     if (!is.null(mean_period)) {
         # Blank vectors to store info about breaking analysis
@@ -362,8 +358,15 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
 
             # Open a new plot with the personalise theme
             map = ggplot() + theme_void() +
-                # theme(plot.background=element_rect(fill=NA,
-                # color="#EC4899")) +
+                
+                # theme(
+                #     # Ticks marker
+                #     axis.ticks.x=element_line(color='grey75', size=0.3),
+                #     axis.ticks.y=element_line(color='grey75', size=0.3),
+                #     # Ticks label
+                #     axis.text.x=element_text(color='grey40'),
+                #     axis.text.y=element_text(color='grey40')) +
+    
                 # Fixed coordinate system (remove useless warning)
                 cf +
                 # Plot the background of France
@@ -393,6 +396,29 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                              aes(x=long, y=lat, group=group),
                              color="grey40", fill=NA, size=sizefr)
 
+            if (is.null(codeLight)) {
+                xBasin = c(410000, 520000, 630000,
+                           620000, 510000, 450000,
+                           390000)
+                yBasin = c(6280000, 6290000, 6320000,
+                           6385000, 6450000, 6530000,
+                           6360000)
+                nameBasin = c('Adour', 'Garonne', 'Tarn-Aveyron',
+                              'Lot', 'Dordogne', 'Charente',
+                              'Fleuves-\nCôtiers')
+                nBasin = length(xBasin)
+
+                plot_basin = tibble(x=xBasin, y=yBasin, label=nameBasin)
+                
+                map = map +
+                    geom_shadowtext(data=plot_basin,
+                                    aes(x=x, y=y, label=label),
+                                    fontface="bold",
+                                    color="grey85",
+                                    bg.colour="grey97",
+                                    hjust=0.5, vjust=0.5, size=5)
+            }
+
             # If the sea needs to be shown
             if (showSea) {
                 # Leaves space around the France
@@ -478,7 +504,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
             fill = c()
             shape = c()
             Value = c()
-            alpha_Ok = c()
+            OkVal = c()
             # For all code
             for (k in 1:nCode) {
                 # Gets the code
@@ -560,27 +586,35 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                                           ncolor=256,
                                           nbTick=nbTick)
 
-                # If it is significative
-                if (pvalue <= alpha){
+                if (j > 1) {
                     # The computed color is stored
                     filltmp = color_res
-                    # If the mean tend is positive
-                    if (value >= 0) {
-                        # Uses a triangle up for the shape
-                        # of the marker
-                        shapetmp = 24
-                        # If negative
+                    # The marker is a circle
+                    shapetmp = 21
+                    
+                } else {
+                    # If it is significative
+                    if (pvalue <= alpha){
+                        # The computed color is stored
+                        filltmp = color_res
+                        # If the mean tend is positive
+                        if (value >= 0) {
+                            # Uses a triangle up for the shape
+                            # of the marker
+                            shapetmp = 24
+                            # If negative
+                        } else {
+                            # Uses a triangle down for the shape
+                            # of the marker
+                            shapetmp = 25
+                        }
+                        # If it is not significative
                     } else {
-                        # Uses a triangle down for the shape
-                        # of the marker
-                        shapetmp = 25
+                        # The fill color is grey
+                        filltmp = 'grey97'
+                        # The marker is a circle
+                        shapetmp = 21 
                     }
-                    # If it is not significative
-                } else {
-                    # The fill color is grey
-                    filltmp = 'grey97'
-                    # The marker is a circle
-                    shapetmp = 21 
                 }
 
                 # Extracts the localisation of the current station
@@ -596,23 +630,39 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 shape = c(shape, shapetmp)
                 Value = c(Value, value)
                 # If the trend analysis is significative a TRUE is stored
-                alpha_Ok = c(alpha_Ok,
-                                   pvalue <= alpha)
+                OkVal = c(OkVal, pvalue <= alpha)
             }
             # Creates a tibble to stores all the data to plot
             plot_map = tibble(lon=lon, lat=lat, fill=fill,
-                              shape=shape, code=Code)
+                              shape=shape, code=Code, OkVal=OkVal)
 
             # If there is no specified station code to highlight
             # (mini map)
             if (is.null(codeLight)) {
-                map = map +
-                    # Plots the trend point
-                    geom_point(data=plot_map,
-                               aes(x=lon, y=lat),
-                               shape=shape, size=5, stroke=1,
-                               color='grey50', fill=fill)
-                # If there is a specified station code
+
+                plot_map_NOk = plot_map[!plot_map$OkVal,]
+                plot_map_Ok = plot_map[plot_map$OkVal,]
+
+                if (nrow(plot_map_NOk) > 0) {
+                    map = map +
+                        # Plots the point that are not
+                        # significant first
+                        geom_point(data=plot_map_NOk,
+                                   aes(x=lon, y=lat),
+                                   shape=shape[!OkVal],
+                                   size=5, stroke=1,
+                                   color='grey50', fill=fill[!OkVal])
+                }
+                if (nrow(plot_map_Ok) > 0) {
+                    map = map +
+                        # Plots the point that are significant last
+                        geom_point(data=plot_map_Ok,
+                                   aes(x=lon, y=lat),
+                                   shape=shape[OkVal], size=5, stroke=1,
+                                   color='grey50', fill=fill[OkVal])
+                }
+                
+            # If there is a specified station code
             } else {
                 # Extract data of all stations not to highlight
                 plot_map_codeNo = plot_map[plot_map$code != codeLight,]
@@ -629,7 +679,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                     # For the station to highlight
                     geom_point(data=plot_map_code,
                                aes(x=lon, y=lat),
-                               shape=21, size=1.5, stroke=0.25,
+                               shape=21, size=2, stroke=0.5,
                                color='grey97', fill='#00A3A8')
             }
             
@@ -736,34 +786,27 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                              size=3, color='grey40')
             }
 
-            yUp = -20
-            yNone = -29
-
-            if (j > 1) {
-                upLabel = bquote(bold("Hausse"))
-                noneLabel = NULL
-                downLabel = bquote(bold("Baisse"))
-                yDown = -29
-            } else {
+            if (j == 1) {
                 upLabel = bquote(bold("Hausse significative à 10%"))
                 noneLabel = bquote(bold("Non significatif à 10%"))
                 downLabel = bquote(bold("Baisse significative à 10%"))
+
+                yUp = -20
+                yNone = -29
                 yDown = -40
-            }
             
-            pal = pal +
-                # Up triangle in the marker legend
-                geom_point(aes(x=0, y=yUp),
-                           shape=24, size=4, stroke=1,
-                           color='grey50', fill='grey97') +
-                # Up triangle text legend
-                annotate('text',
-                         x=0.3, y=yUp,
-                         label=upLabel,
-                         hjust=0, vjust=0.5,
-                         size=3, color='grey40')
+                pal = pal +
+                    # Up triangle in the marker legend
+                    geom_point(aes(x=0, y=yUp),
+                               shape=24, size=4, stroke=1,
+                               color='grey50', fill='grey97') +
+                    # Up triangle text legend
+                    annotate('text',
+                             x=0.3, y=yUp,
+                             label=upLabel,
+                             hjust=0, vjust=0.5,
+                             size=3, color='grey40')
 
-            if (!is.null(noneLabel)) {
                 pal = pal +
                     # Circle in the marker legend
                     geom_point(aes(x=0, y=yNone),
@@ -775,20 +818,21 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                              label=noneLabel,
                              hjust=0, vjust=0.7,
                              size=3, color='grey40')
+                
+                pal = pal +
+                    # Down triangle in the marker legend
+                    geom_point(aes(x=0, y=yDown),
+                               shape=25, size=4, stroke=1,
+                               color='grey50', fill='grey97') +
+                    # Down triangle text legend
+                    annotate('text',
+                             x=0.3, y=yDown,
+                             label=downLabel,
+                             hjust=0, vjust=0.5,
+                             size=3, color='grey40')
+
             }
             
-            pal = pal +
-                # Down triangle in the marker legend
-                geom_point(aes(x=0, y=yDown),
-                           shape=25, size=4, stroke=1,
-                           color='grey50', fill='grey97') +
-                # Down triangle text legend
-                annotate('text',
-                         x=0.3, y=yDown,
-                         label=downLabel,
-                         hjust=0, vjust=0.5,
-                         size=3, color='grey40')
-            
             # Normalises all the trend values for each station
             # according to the colorbar
             if (j > 1) {
@@ -798,7 +842,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
             }
             
             # Takes only the significative ones
-            yValue = yValue[alpha_Ok]
+            yValue = yValue[OkVal]
 
             # Histogram distribution
             # Computes the histogram of values
diff --git a/processing/analyse.R b/processing/analyse.R
index 6ee5525f3be62205b29a3c63b268581f0fb8eba6..267b891d953ac72eb36d511ca33d7028a95623ca 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -292,7 +292,7 @@ get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_
     return (res_VCN10trend)
 }
 
-### 1.4. DEB date
+### 1.4. tDEB date
 which_underfirst = function (L, UpLim, select_longest=TRUE) {
     
     ID = which(L <= UpLim)
@@ -328,7 +328,7 @@ which_underfirst = function (L, UpLim, select_longest=TRUE) {
     return (id)
 }
 
-get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, thresold_type='VCN10', select_longest=TRUE) {
+get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, thresold_type='VCN10', select_longest=TRUE) {
 
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -375,7 +375,7 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
     # Set the max interval period as the minimal possible
     Imax = 0
     # Blank tibble for data to return
-    df_DEBtrendB = tibble()
+    df_tDEBtrendB = tibble()
 
     # For all periods
     for (per in period) {
@@ -408,8 +408,8 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
         
         # print(df_QT)
         
-        df_DEBEx = tibble()
-        df_DEBlist = list(data=tibble(), info=tibble())
+        df_tDEBEx = tibble()
+        df_tDEBlist = list(data=tibble(), info=tibble())
         
         # For all the code
         for (k in 1:nCode) {
@@ -422,13 +422,13 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
             df_data_roll_code = df_data_roll[df_data_roll$code == code,]
             
             # Prepare the data to fit the entry of extract.Var
-            df_DEBlist_code = prepare(df_data_roll_code,
+            df_tDEBlist_code = prepare(df_data_roll_code,
                                       colnamegroup=c('code'))
 
             QT_code = df_QT$Thresold[df_QT$code == code]
             
             # Compute the yearly min over the averaged data
-            df_DEBEx_code = extract.Var(data.station=df_DEBlist_code,
+            df_tDEBEx_code = extract.Var(data.station=df_tDEBlist_code,
                                         funct=which_underfirst,
                                         period=per,
                                         timestep='year',
@@ -436,26 +436,26 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
                                         UpLim=QT_code,
                                         select_longest=select_longest)
 
-            df_DEBEx_code$group1 = k
-            df_DEBlist_code$data$group = k
-            df_DEBlist_code$info$group = k
+            df_tDEBEx_code$group1 = k
+            df_tDEBlist_code$data$group = k
+            df_tDEBlist_code$info$group = k
             
-            # Converts index of the DEB to the julian date associated
-            df_DEBEx_code = prepare_date(df_DEBEx_code,
-                                          df_DEBlist_code)
+            # Converts index of the tDEB to the julian date associated
+            df_tDEBEx_code = prepare_date(df_tDEBEx_code,
+                                          df_tDEBlist_code)
 
             # Store the results
-            df_DEBEx = bind_rows(df_DEBEx, df_DEBEx_code)
+            df_tDEBEx = bind_rows(df_tDEBEx, df_tDEBEx_code)
             
-            df_DEBlist$data = bind_rows(df_DEBlist$data,
-                                         df_DEBlist_code$data)
+            df_tDEBlist$data = bind_rows(df_tDEBlist$data,
+                                         df_tDEBlist_code$data)
             
-            df_DEBlist$info = bind_rows(df_DEBlist$info,
-                                         df_DEBlist_code$info)
+            df_tDEBlist$info = bind_rows(df_tDEBlist$info,
+                                         df_tDEBlist_code$info)
         }
         
         # Compute the trend analysis
-        df_DEBtrend = Estimate.stats(data.extract=df_DEBEx,
+        df_tDEBtrend = Estimate.stats(data.extract=df_tDEBEx,
                                       level=alpha)
 
         # Get the associated time interval
@@ -464,25 +464,25 @@ get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
         if (I > Imax) {
             # Store it and the associated data and info           
             Imax = I
-            df_DEBlistB = df_DEBlist
-            df_DEBExB = df_DEBEx
+            df_tDEBlistB = df_tDEBlist
+            df_tDEBExB = df_tDEBEx
         }
         
         # Specify the period of analyse
-        df_DEBtrend = get_period(per, df_DEBtrend, df_DEBEx,
-                                   df_DEBlist)
+        df_tDEBtrend = get_period(per, df_tDEBtrend, df_tDEBEx,
+                                   df_tDEBlist)
         # Store the trend
-        df_DEBtrendB = bind_rows(df_DEBtrendB, df_DEBtrend)
+        df_tDEBtrendB = bind_rows(df_tDEBtrendB, df_tDEBtrend)
     }
     # Clean results of trend analyse
-    res_DEBtrend = clean(df_DEBtrendB, df_DEBExB, df_DEBlistB)    
-    return (res_DEBtrend)
+    res_tDEBtrend = clean(df_tDEBtrendB, df_tDEBExB, df_tDEBlistB)    
+    return (res_tDEBtrend)
 }
 
-### 1.5. CEN date
+### 1.5. tCEN date
 # Realises the trend analysis of the date of the minimum 10 day
 # average flow over the year (VCN10) hydrological variable
-get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day) {
+get_tCENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -516,24 +516,24 @@ get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
     # Set the max interval period as the minimal possible
     Imax = 0
     # Blank tibble for data to return
-    df_CENtrendB = tibble()
+    df_tCENtrendB = tibble()
 
     # For all periods
     for (per in period) {
         # Prepare the data to fit the entry of extract.Var
-        df_CENlist = prepare(df_data_roll, colnamegroup=c('code'))
+        df_tCENlist = prepare(df_data_roll, colnamegroup=c('code'))
         # Compute the yearly min over the averaged data
-        df_CENEx = extract.Var(data.station=df_CENlist,
+        df_tCENEx = extract.Var(data.station=df_tCENlist,
                                funct=which.min,
                                period=per,
                                timestep='year',
                                pos.datetime=1)
 
-        # Converts index of the CEN to the julian date associated
-        df_CENEx = prepare_date(df_CENEx, df_CENlist)
+        # Converts index of the tCEN to the julian date associated
+        df_tCENEx = prepare_date(df_tCENEx, df_tCENlist)
         
         # Compute the trend analysis
-        df_CENtrend = Estimate.stats(data.extract=df_CENEx,
+        df_tCENtrend = Estimate.stats(data.extract=df_tCENEx,
                                       level=alpha)
 
         # Get the associated time interval
@@ -542,19 +542,19 @@ get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_da
         if (I > Imax) {
             # Store it and the associated data and info           
             Imax = I
-            df_CENlistB = df_CENlist
-            df_CENExB = df_CENEx
+            df_tCENlistB = df_tCENlist
+            df_tCENExB = df_tCENEx
         }
 
         # Specify the period of analyse
-        df_CENtrend = get_period(per, df_CENtrend, df_CENEx,
-                                   df_CENlist)
+        df_tCENtrend = get_period(per, df_tCENtrend, df_tCENEx,
+                                   df_tCENlist)
         # Store the trend
-        df_CENtrendB = bind_rows(df_CENtrendB, df_CENtrend)
+        df_tCENtrendB = bind_rows(df_tCENtrendB, df_tCENtrend)
     }
     # Clean results of trend analyse
-    res_CENtrend = clean(df_CENtrendB, df_CENExB, df_CENlistB)
-    return (res_CENtrend)
+    res_tCENtrend = clean(df_tCENtrendB, df_tCENExB, df_tCENlistB)
+    return (res_tCENtrend)
 }
 
 
diff --git a/processing/extract.R b/processing/extract.R
index fc4f61ffedaacbf9df1ac8b5235a765b15ce75a0..aac50b48f9d6d5deaf167919361989a6781e5b15 100644
--- a/processing/extract.R
+++ b/processing/extract.R
@@ -477,7 +477,7 @@ extract_data = function (computer_data_path, filedir, filename,
 ## 4. SHAPEFILE MANAGEMENT
 # Generates a list of shapefiles to draw a hydrological map of
 # the France
-ini_shapefile = function (computer_data_path, fr_shpdir, fr_shpname, bs_shpdir, bs_shpname, sbs_shpdir, sbs_shpname, rv_shpdir, rv_shpname, riv=TRUE) {
+ini_shapefile = function (computer_data_path, fr_shpdir, fr_shpname, bs_shpdir, bs_shpname, sbs_shpdir, sbs_shpname, rv_shpdir, rv_shpname, is_river=TRUE) {
 
     # Path for shapefile
     fr_shppath = file.path(computer_data_path, fr_shpdir, fr_shpname)
@@ -501,7 +501,7 @@ ini_shapefile = function (computer_data_path, fr_shpdir, fr_shpname, bs_shpdir,
     df_subbassin = tibble(fortify(subbassin))
 
     # If the river shapefile needs to be load
-    if (riv) {
+    if (is_river) {
         # Hydrographic network
         river = readOGR(dsn=rv_shppath, verbose=FALSE) ### trop long ###
         river = river[which(river$Classe == 1),]
diff --git a/script.R b/script.R
index a8ce827b0026981f29f7c456b3aff311f3d4b7de..b049e48badc65443583ac29ef1fb7b91c57f939b 100644
--- a/script.R
+++ b/script.R
@@ -114,6 +114,9 @@ sampleSpan = c('05-01', '11-30')
 
 
 ## MAP
+# Is the hydrological network needs to be plot
+is_river = TRUE
+
 # Path to the shapefile for france contour from 'computer_data_path' 
 fr_shpdir = 'map/france'
 fr_shpname = 'gadm36_FRA_0.shp'
@@ -261,17 +264,17 @@ res_VCN10trend = get_VCN10trend(df_data, df_meta,
                                 yearLac_day=yearLac_day)
 
 # Start date for low water trend
-res_DEBtrend = get_DEBtrend(df_data, df_meta, 
+res_tDEBtrend = get_tDEBtrend(df_data, df_meta, 
                             period=trend_period,
                             alpha=alpha,
                             sampleSpan=sampleSpan,
                             thresold_type='VCN10',
                             select_longest=TRUE,
                             yearLac_day=yearLac_day)
-# res_DEBtrend = read_listofdf(resdir, 'res_DEBtrend')
+# res_tDEBtrend = read_listofdf(resdir, 'res_tDEBtrend')
 
 # Center date for low water trend
-res_CENtrend = get_CENtrend(df_data, df_meta, 
+res_tCENtrend = get_tCENtrend(df_data, df_meta, 
                             period=trend_period,
                             alpha=alpha,
                             sampleSpan=sampleSpan,
@@ -295,7 +298,7 @@ df_shapefile = ini_shapefile(computer_data_path,
                              fr_shpdir, fr_shpname,
                              bs_shpdir, bs_shpname,
                              sbs_shpdir, sbs_shpname,
-                             rv_shpdir, rv_shpname, riv=TRUE)
+                             rv_shpdir, rv_shpname, is_river=is_river)
 
 ### 4.1. Simple time panel to criticize station data
 # Plot time panel of debit by stations
@@ -322,29 +325,33 @@ datasheet_layout(toplot=c(
                      res_QAtrend$data,
                      res_QMNAtrend$data,
                      res_VCN10trend$data,
-                     res_DEBtrend$data,
-                     res_CENtrend$data),
+                     res_tDEBtrend$data,
+                     res_tCENtrend$data
+                 ),
                  
                  df_trend=list(
                      res_QAtrend$trend,
                      res_QMNAtrend$trend,
                      res_VCN10trend$trend,
-                     res_DEBtrend$trend,
-                     res_CENtrend$trend),
+                     res_tDEBtrend$trend,
+                     res_tCENtrend$trend
+                 ),
                  
                  var=list(
                      'QA',
                      'QMNA',
                      'VCN10',
-                     'DEB',
-                     'CEN'),
+                     'tDEB',
+                     'tCEN'
+                 ),
                  
                  type=list(
                      'sévérité',
                      'sévérité',
                      'sévérité',
                      'saisonnalité',
-                     'saisonnalité'),
+                     'saisonnalité'
+                 ),
                  
                  layout_matrix=matrix(c(1, 2, 3, 4, 5), ncol=1),
                  
@@ -357,7 +364,7 @@ datasheet_layout(toplot=c(
                  info_ratio=2, 
                  time_ratio=2, 
                  var_ratio=3,
-                 foot_height=1,
+                 foot_height=1.25,
                  df_shapefile=df_shapefile,
                  figdir=figdir,
                  filename_opt='',