diff --git a/plotting/datasheet.R b/plotting/datasheet.R
index 53d670d9753c848890db0e5ebe3ea19f3ef42007..551f3e2da0edd0d4dfdf75a1a1a66984a7399226 100644
--- a/plotting/datasheet.R
+++ b/plotting/datasheet.R
@@ -174,7 +174,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, ax
         if (!is.null(time_header)) {
             # Extracts the data serie corresponding to the code
             time_header_code = time_header[time_header$code == code,]
-
+            
             if (is.null(axis_xlim)) {
                 # Gets the limits of the time serie
                 axis_xlim_code = c(min(time_header_code$Date),
@@ -182,7 +182,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, ax
             } else {
                 axis_xlim_code = axis_xlim
             }
-            
+
             # Gets the time serie plot
             Htime = time_panel(time_header_code, df_trend_code=NULL,
                                trend_period=trend_period,
@@ -193,6 +193,8 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, ax
                                first=TRUE, lim_pct=lim_pct)
             # Stores it
             P[[2]] = Htime
+        } else {
+            axis_xlim_code = axis_xlim
         }
 
         # Computes the number of column of plot asked on the datasheet
@@ -307,7 +309,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, ax
                            lim_pct=lim_pct)
             
             # Stores the plot
-            P[[i+nbh]] = p            
+            P[[i+nbh]] = p
         }
 
         if (!is.null(df_page)) {
@@ -1064,7 +1066,7 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, colorF
                               ymin=yminR, 
                               xmax=xmaxR, 
                               ymax=ymaxR),
-                          linetype=0, fill='white', alpha=0.5)
+                          linetype=0, fill='white', alpha=0.3)
 
             # Get the character variable for naming the trend
             colorLine = leg_trend_per$colorLine
diff --git a/plotting/layout.R b/plotting/layout.R
index b1da9cf972f30815f331e7a7f281e06c0b48919e..1c8dc15a02e7bfc23297ff443a0dbd94b8c6898c 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -126,7 +126,7 @@ contour = void +
 ## 3. LAYOUT _________________________________________________________
 # Generates a PDF that gather datasheets, map and summarize matrix about the trend analyses realised on selected stations
 layout_panel = function (df_data, df_meta, layout_matrix,
-                         toplot=c('datasheet', 'matrix', 'map'),
+                         what_plot=c('datasheet', 'matrix', 'map'),
                          figdir='', filedir_opt='', filename_opt='',
                          variable='', df_trend=NULL,
                          alpha=0.1, unit2day=365.25, var='',
@@ -246,7 +246,7 @@ layout_panel = function (df_data, df_meta, layout_matrix,
     df_page = tibble(section='Sommaire', subsection=NA, n=1)
     
     # If map needs to be plot
-    if ('map' %in% toplot) {
+    if ('map' %in% what_plot) {
         df_page = map_panel(list_df2plot, 
                             df_meta,
                             idPer_trend=length(trend_period),
@@ -266,7 +266,7 @@ layout_panel = function (df_data, df_meta, layout_matrix,
     }
 
     # If summarize matrix needs to be plot
-    if ('matrix' %in% toplot) {
+    if ('matrix' %in% what_plot) {
         df_page = matrix_panel(list_df2plot,
                                df_meta,
                                trend_period,
@@ -286,7 +286,7 @@ layout_panel = function (df_data, df_meta, layout_matrix,
     }
 
     # If datasheets needs to be plot
-    if ('datasheet' %in% toplot) {
+    if ('datasheet' %in% what_plot) {
         df_page = datasheet_panel(list_df2plot,
                                   df_meta,
                                   trend_period=trend_period,
diff --git a/plotting/map.R b/plotting/map.R
index 94d89b5f563086fa35e692d31433a89042fa3962..d6261e7696643364224e88ee53dfc4a8bce4adba 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -738,6 +738,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 xValue = c()
                 yValue = c()
                 color = c()
+                shape = c()
                 # Start X position of the distribution
                 start_hist = 1
 
@@ -775,6 +776,20 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                                          times=countsOk[ii]))
                     color = c(color, rep('grey85',
                                          times=countsNOk[ii]))
+
+                    if (j > 1) {
+                        shape = 21
+                    } else {
+                        if (midsOk[ii] > 0) {
+                            shapetmp = 25
+                        } else {
+                            shapetmp = 24
+                        }
+                        shape = c(shape, rep(shapetmp,
+                                             times=countsOk[ii]))
+                        shape = c(shape, rep(21,
+                                             times=countsNOk[ii]))
+                    }
                 }
                 
                 # Makes a tibble to plot the distribution
@@ -784,7 +799,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                     # Plots the point of the distribution
                     geom_point(data=plot_value,
                                aes(x=xValue, y=yValue),
-                               shape=21,
+                               shape=shape,
                                color=color,
                                fill=color, stroke=0.4,
                                alpha=1)
diff --git a/processing/analyse.R b/processing/analyse.R
index 42540eee35309f58ff4a47e32964aeeac1d98696..99f56da5eed68ad7f45005cdcaf09236514f65e0 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -97,11 +97,19 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
 ### 1.1. QA __________________________________________________________
 # Realise the trend analysis of the average annual flow (QA)
 # hydrological variable
-get_QAtrend = function (df_data, df_meta, period, alpha, yearLac_day, df_mod=tibble()) {
+get_QAtrend = function (df_data, df_meta, period, alpha, dayLac_lim, yearNA_lim, df_flag, df_mod=tibble()) {
 
+    # Local corrections if needed
+    res = flag_data(df_data, df_meta,
+                    df_flag=df_flag,
+                    df_mod=df_mod)
+    df_data = res$data
+    df_mod = res$mod
+    
     # Removes incomplete data from time series
     res = missing_data(df_data, df_meta,
-                       yearLac_day=yearLac_day,
+                       dayLac_lim=dayLac_lim,
+                       yearNA_lim=yearNA_lim,
                        df_mod=df_mod)
     df_data = res$data
     df_mod = res$mod
@@ -156,11 +164,19 @@ get_QAtrend = function (df_data, df_meta, period, alpha, yearLac_day, df_mod=tib
 ### 1.2. QMNA ________________________________________________________
 # Realise the trend analysis of the monthly minimum flow in the
 # year (QMNA) hydrological variable
-get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, df_mod=tibble()) {
+get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan, dayLac_lim, yearNA_lim, df_flag, df_mod=tibble()) {
 
+    # Local corrections if needed
+    res = flag_data(df_data, df_meta,
+                    df_flag=df_flag,
+                    df_mod=df_mod)
+    df_data = res$data
+    df_mod = res$mod
+    
     # Removes incomplete data from time series
     res = missing_data(df_data, df_meta,
-                       yearLac_day=yearLac_day,
+                       dayLac_lim=dayLac_lim,
+                       yearNA_lim=yearNA_lim,
                        df_mod=df_mod)
     df_data = res$data
     df_mod = res$mod
@@ -266,11 +282,18 @@ rollmean_code = function (df_data, Code, nroll=10, df_mod=NULL) {
 
 # Realises the trend analysis of the minimum 10 day average flow
 # over the year (VCN10) hydrological variable
-get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, df_mod=tibble()) {
+get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan, dayLac_lim, yearNA_lim, df_flag, df_mod=tibble()) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
 
+    # Local corrections if needed
+    res = flag_data(df_data, df_meta,
+                    df_flag=df_flag,
+                    df_mod=df_mod)
+    df_data = res$data
+    df_mod = res$mod
+    
     # Computes the rolling average by 10 days over the data
     res = rollmean_code(df_data, Code, 10, df_mod=df_mod)
     df_data_roll = res$data
@@ -278,7 +301,8 @@ get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_
 
     # Removes incomplete data from time series
     res = missing_data(df_data_roll, df_meta,
-                       yearLac_day=yearLac_day,
+                       dayLac_lim=dayLac_lim,
+                       yearNA_lim=yearNA_lim,
                        df_mod=df_mod)
     df_data_roll = res$data
     df_mod = res$mod
@@ -373,12 +397,19 @@ which_underfirst = function (L, UpLim, select_longest=TRUE) {
     return (id)
 }
 
-get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, thresold_type='VCN10', select_longest=TRUE, df_mod=tibble()) {
+get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, dayLac_lim, yearNA_lim, df_flag, thresold_type='VCN10', select_longest=TRUE, df_mod=tibble()) {
 
     # Get all different stations code
     Code = levels(factor(df_meta$code))
     # Gets the number of station
     nCode = length(Code)
+
+    # Local corrections if needed
+    res = flag_data(df_data, df_meta,
+                    df_flag=df_flag,
+                    df_mod=df_mod)
+    df_data = res$data
+    df_mod = res$mod
     
     # Computes the rolling average by 10 days over the data
     res = rollmean_code(df_data, Code, 10, df_mod=df_mod)
@@ -388,7 +419,8 @@ get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_d
     # Removes incomplete data from time series
     df_data = missing_data(df_data,
                            df_meta=df_meta,
-                           yearLac_day=yearLac_day)
+                           dayLac_lim=dayLac_lim,
+                           yearNA_lim=yearNA_lim)
     
     # Samples the data
     df_data = sampling_data(df_data,
@@ -398,7 +430,8 @@ get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_d
     # Removes incomplete data from the averaged time series
     res = missing_data(df_data_roll,
                        df_meta=df_meta,
-                       yearLac_day=yearLac_day,
+                       dayLac_lim=dayLac_lim,
+                       yearNA_lim=yearNA_lim,
                        df_mod=df_mod)
     df_data_roll = res$data
     df_mod = res$mod
@@ -527,21 +560,29 @@ get_tDEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_d
 ### 1.5. tCEN date ___________________________________________________
 # Realises the trend analysis of the date of the minimum 10 day
 # average flow over the year (VCN10) hydrological variable
-get_tCENtrend = function (df_data, df_meta, period, alpha, sampleSpan, yearLac_day, df_mod=tibble()) {
+get_tCENtrend = function (df_data, df_meta, period, alpha, sampleSpan, dayLac_lim, yearNA_lim, df_flag, df_mod=tibble()) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
     # Blank tibble to store the data averaged
     df_data_roll = tibble() 
 
+    # Local corrections if needed
+    res = flag_data(df_data, df_meta,
+                    df_flag=df_flag,
+                    df_mod=df_mod)
+    df_data = res$data
+    df_mod = res$mod
+    
     # Computes the rolling average by 10 days over the data
     res = rollmean_code(df_data, Code, 10, df_mod=df_mod)
     df_data_roll = res$data
     df_mod = res$mod
-
+        
     # Removes incomplete data from time series
     res = missing_data(df_data_roll, df_meta,
-                       yearLac_day=yearLac_day,
+                       dayLac_lim=dayLac_lim,
+                       yearNA_lim=yearNA_lim,
                        df_mod=df_mod)
     df_data_roll = res$data
     df_mod = res$mod
diff --git a/processing/extract.R b/processing/extract.R
index d52307a35fe9488f63e7a4ad8bf99ca99124da57..4f51828d01620661016fb1fd105151e3c7b8960c 100644
--- a/processing/extract.R
+++ b/processing/extract.R
@@ -510,7 +510,7 @@ extract_data = function (computer_data_path, filedir, filename,
 ## 4. SHAPEFILE MANAGEMENT ___________________________________________
 # Generates a list of shapefiles to draw a hydrological map of
 # the France
-ini_shapefile = function (resources_path, fr_shpdir, fr_shpname, bs_shpdir, bs_shpname, sbs_shpdir, sbs_shpname, rv_shpdir, rv_shpname, is_river=TRUE) {
+ini_shapefile = function (resources_path, fr_shpdir, fr_shpname, bs_shpdir, bs_shpname, sbs_shpdir, sbs_shpname, rv_shpdir, rv_shpname, show_river=TRUE) {
 
     # Path for shapefile
     fr_shppath = file.path(resources_path, fr_shpdir, fr_shpname)
@@ -534,7 +534,7 @@ ini_shapefile = function (resources_path, fr_shpdir, fr_shpname, bs_shpdir, bs_s
     df_subbassin = tibble(fortify(subbassin))
 
     # If the river shapefile needs to be load
-    if (is_river) {
+    if (show_river) {
         # Hydrographic network
         river = readOGR(dsn=rv_shppath, verbose=FALSE) ### trop long ###
         river = river[which(river$Classe == 1),]
diff --git a/processing/format.R b/processing/format.R
index 88e390b6081094257c0a7d998f5c69f3cf8372f8..7805a11ba1b6a0b29b371ac7b6595140990f2e65 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -81,8 +81,54 @@ join_selection = function (df_data_AEAG, df_data_INRAE, df_meta_AEAG, df_meta_IN
     return (list(data=df_data, meta=df_meta))
 }
 
-### 1.2. Manages missing data ________________________________________
-missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Code=NULL, df_mod=NULL) {
+### 1.2. Local correction of data ____________________________________
+flag_data = function (df_data, df_meta, df_flag, Code=NULL, df_mod=NULL) {
+
+    if (is.null(Code)) {
+        # Get all different stations code
+        Code = levels(factor(df_meta$code))
+        nCode = length(Code)
+    } else {
+        nCode = length(Code)
+    }
+ 
+    for (code in Code) {
+        if (code %in% df_flag$code) {
+
+            df_flag_code = df_flag[df_flag$code == code,]
+            nbFlag = nrow(df_flag_code)
+
+            for (i in 1:nbFlag) {
+                newValue = df_flag_code$newValue[i]
+                date = df_flag_code$Date[i]
+                OKcor = df_data$code == code & df_data$Date == date
+                oldValue = df_data$Value[OKcor]
+                df_data$Value[OKcor] = newValue
+
+                if (!is.null(df_mod)) {
+                    df_mod =
+                        add_mod(df_mod, code,
+                                type='Value correction',
+                                fun_name='Manual new value assignment',
+                                comment=paste('At ', date,
+                                              ' the value ', oldValue,
+                                              ' becomes ', newValue,
+                                              sep=''))
+                }
+            }  
+        }
+    }
+    
+    if (!is.null(df_mod)) {
+        res = list(data=df_data, mod=df_mod)
+        return (res)
+    } else {
+        return (df_data)
+    }
+}
+
+### 1.3. Manages missing data ________________________________________
+missing_data = function (df_data, df_meta, dayLac_lim=3, yearNA_lim=10, yearStart='01-01', Code=NULL, df_mod=NULL) {
 
     if (is.null(Code)) {
         # Get all different stations code
@@ -95,17 +141,45 @@ missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Cod
     for (code in Code) {        
         # Extracts the data corresponding to the code
         df_data_code = df_data[df_data$code == code,]
+        
+        DateNA = df_data_code$Date[is.na(df_data_code$Value)]
 
+        dDateNA = diff(DateNA)
+        if (any(dDateNA != 1)) {
+            
+            dDateNA = c(10, dDateNA)
+            idJump = which(dDateNA != 1)
+            NJump = length(idJump)
 
-        
-        Date_NA = df_data_code$Date[is.na(df_data_code$Value)]
-        # print(Date_NA)
-        # Start_NA 
-        
-        
-        
+            for (i in 1:NJump) {
+                idStart = idJump[i]
+                
+                if (i < NJump) {
+                    idEnd = idJump[i+1] - 1
+                } else {
+                    idEnd = length(DateNA)
+                }
+
+                Start = DateNA[idStart]
+                End = DateNA[idEnd]
+
+                duration = (End - Start)/365.25
+                if (duration >= yearNA_lim) {
+                    df_data_code$Value[df_data_code$Date <= End] = NA
+                    
+                    if (!is.null(df_mod)) {
+                        df_mod =
+                            add_mod(df_mod, code,
+                                    type='Missing data management',
+                                    fun_name='NA assignment',
+                                    comment=paste('From the start of measurements',
+                                                  ' to ', End, sep=''))
+                    }
+                }
+            }
+        }
+                
         DateMD = substr(df_data_code$Date, 6, 10)
-        
         idyearStart = which(DateMD == yearStart)
         if (DateMD[1] != yearStart) {
             idyearStart = c(1, idyearStart)
@@ -139,7 +213,7 @@ missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Cod
 
             yearLacMiss_pct = nbNA/nbDate * 100
             
-            if (nbNA > yearLac_day) {
+            if (nbNA > dayLac_lim) {
                 df_data_code_year$Value = NA
                 df_data_code[OkYear,] = df_data_code_year
 
@@ -151,7 +225,7 @@ missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Cod
                                                    ' to ', End, sep=''))
                 }
                 
-            } else if (nbNA <= yearLac_day & nbNA > 1) {
+            } else if (nbNA <= dayLac_lim & nbNA > 1) {
                 DateJ = as.numeric(df_data_code_year$Date)
                 Value = df_data_code_year$Value
                
@@ -182,7 +256,7 @@ missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Cod
     }
 }
 
-### 1.3. Sampling of the data ________________________________________
+### 1.4. Sampling of the data ________________________________________
 sampling_data = function (df_data, df_meta, sampleSpan=c('05-01', '11-30'), Code=NULL, df_mod=NULL) {
 
     if (is.null(Code)) {
diff --git a/script.R b/script.R
index 18d5b49edacd6083148266b23c62ad842a68c082..7934621a712344c0b1189fa5a69da915b032b775 100644
--- a/script.R
+++ b/script.R
@@ -58,13 +58,13 @@ filename =
     # ""
     # "all"
     c(
-        # "S2235610_HYDRO_QJM.txt",
-        # "P0885010_HYDRO_QJM.txt"
-        # "O3006710_HYDRO_QJM.txt",
-        # "O4704030_HYDRO_QJM.txt"
-        # "O0384010_HYDRO_QJM.txt",
-        "O0362510_HYDRO_QJM.txt"
-        # "Q7002910_HYDRO_QJM.txt"
+        "S2235610_HYDRO_QJM.txt",
+        "P0885010_HYDRO_QJM.txt",
+        "P0364010_HYDRO_QJM.txt",
+        "O7635010_HYDRO_QJM.txt",
+        "O3141010_HYDRO_QJM.txt",
+        "Q6332510_HYDRO_QJM.txt",
+        "Q7002910_HYDRO_QJM.txt"
         # "Q0214010_HYDRO_QJM.txt",
         # "O3035210_HYDRO_QJM.txt",
         # "O0554010_HYDRO_QJM.txt",
@@ -104,7 +104,7 @@ which_layout =
 # Selection
 axis_xlim =
     NULL
-    # c("2002-01-01", "2003-01-01")
+    # c("1982-01-01", "1983-01-01")
 
 ## ANALYSIS
 # Time period to analyse
@@ -121,15 +121,41 @@ mean_period = list(period1, period2)
 alpha = 0.1
 
 # Number of missing days per year before remove the year 
-yearLac_day = 3
+dayLac_lim = 3
+
+# Maximum continuously missing years before removing everything
+# before it
+yearNA_lim = 10
+
+# Local corrections of the data
+df_flag = tibble(
+    code=c('O3141010',
+           'O7635010',
+           'O7635010',
+           'O7635010',
+           'O7635010'
+           ),
+    Date=c('1974-07-04',
+           '1948-09-06',
+           '1949-02-08',
+           '1950-07-20',
+           '1953-07-22'
+           ),
+    newValue=c(9.5,
+               4,
+               3,
+               1,
+               3) # /!\ Unit
+)
 
 # Sampling span of the data
 sampleSpan = c('05-01', '11-30')
 
-
-## MAP
 # Is the hydrological network needs to be plot
-is_river = FALSE
+show_river = FALSE
+
+# If results and data used in the analysis needs to be written
+saving = FALSE
 
 ############### END OF REGION TO MODIFY (without risk) ###############
 
@@ -289,7 +315,9 @@ if ('analyse' %in% which_layout) {
     res = get_QAtrend(df_data, df_meta,
                       period=trend_period,
                       alpha=alpha,
-                      yearLac_day=yearLac_day)
+                      dayLac_lim=dayLac_lim,
+                      yearNA_lim=yearNA_lim,
+                      df_flag=df_flag)
     df_QAdata = res$data
     df_QAmod = res$mod
     res_QAtrend = res$analyse
@@ -299,7 +327,9 @@ if ('analyse' %in% which_layout) {
                         period=trend_period,
                         alpha=alpha,
                         sampleSpan=sampleSpan,
-                        yearLac_day=yearLac_day)
+                        dayLac_lim=dayLac_lim,
+                        yearNA_lim=yearNA_lim,
+                        df_flag=df_flag)
     df_QMNAdata = res$data
     df_QMNAmod = res$mod
     res_QMNAtrend = res$analyse
@@ -309,7 +339,9 @@ if ('analyse' %in% which_layout) {
                          period=trend_period,
                          alpha=alpha,
                          sampleSpan=sampleSpan,
-                         yearLac_day=yearLac_day)
+                         dayLac_lim=dayLac_lim,
+                         yearNA_lim=yearNA_lim,
+                         df_flag=df_flag)
     df_VCN10data = res$data
     df_VCN10mod = res$mod
     res_VCN10trend = res$analyse
@@ -321,7 +353,9 @@ if ('analyse' %in% which_layout) {
                         sampleSpan=sampleSpan,
                         thresold_type='VCN10',
                         select_longest=TRUE,
-                        yearLac_day=yearLac_day)
+                        dayLac_lim=dayLac_lim,
+                        yearNA_lim=yearNA_lim,
+                        df_flag=df_flag)
     df_tDEBdata = res$data
     df_tDEBmod = res$mod
     res_tDEBtrend = res$analyse
@@ -331,7 +365,9 @@ if ('analyse' %in% which_layout) {
                         period=trend_period,
                         alpha=alpha,
                         sampleSpan=sampleSpan,
-                        yearLac_day=yearLac_day)
+                        dayLac_lim=dayLac_lim,
+                        yearNA_lim=yearNA_lim,
+                        df_flag=df_flag)
     df_tCENdata = res$data
     df_tCENmod = res$mod
     res_tCENtrend = res$analyse
@@ -350,17 +386,19 @@ if ('analyse' %in% which_layout) {
 
 
 ## 4. SAVING _________________________________________________________
-# for (v in var) {
-#     df_datatmp = get(paste('df_', v, 'data', sep=''))
-#     df_modtmp = get(paste('df_', v, 'mod', sep=''))
-#     res_trendtmp = get(paste('res_', v, 'trend', sep=''))
-#     # Modified data saving
-#     write_data(df_datatmp, df_modtmp, resdir, optdir='modified_data',
-#                  filedir=v)
-#     # Trend analysis saving
-#     write_analyse(res_trendtmp, resdir, optdir='trend_analyse',
-#                    filedir=v)
-# }
+if (saving) {
+    for (v in var) {
+        df_datatmp = get(paste('df_', v, 'data', sep=''))
+        df_modtmp = get(paste('df_', v, 'mod', sep=''))
+        res_trendtmp = get(paste('res_', v, 'trend', sep=''))
+        # Modified data saving
+        write_data(df_datatmp, df_modtmp, resdir, optdir='modified_data',
+                   filedir=v)
+        # Trend analysis saving
+        write_analyse(res_trendtmp, resdir, optdir='trend_analyse',
+                      filedir=v)
+    }
+}
 # res_tDEBtrend = read_listofdf(resdir, 'res_tDEBtrend')
 
 
@@ -370,12 +408,12 @@ df_shapefile = ini_shapefile(resources_path,
                              fr_shpdir, fr_shpname,
                              bs_shpdir, bs_shpname,
                              sbs_shpdir, sbs_shpname,
-                             rv_shpdir, rv_shpname, is_river=is_river)
+                             rv_shpdir, rv_shpname, show_river=show_river)
 
 ### 5.1. Simple time panel to criticize station data _________________
 # Plot time panel of debit by stations
 if ('serie' %in% which_layout) {
-    layout_panel(toplot=c('datasheet'),
+    layout_panel(what_plot=c('datasheet'),
                  df_meta=df_meta,
                  df_data=list(df_data,
                               df_sqrt),
@@ -395,10 +433,10 @@ if ('serie' %in% which_layout) {
 
 ### 5.2. Analysis layout _____________________________________________
 if ('analyse' %in% which_layout) {
-    layout_panel(toplot=c(
-                     'datasheet'
+    layout_panel(what_plot=c(
+                     # 'datasheet'
                      # 'matrix',
-                     # 'map'
+                     'map'
                  ),
                  df_meta=df_meta,