diff --git a/plotting/datasheet.R b/plotting/datasheet.R
index eca2270d031ab85fd687de122896abefc5c714d1..53d670d9753c848890db0e5ebe3ea19f3ef42007 100644
--- a/plotting/datasheet.R
+++ b/plotting/datasheet.R
@@ -35,7 +35,7 @@ source('plotting/shortcut.R', encoding='UTF-8')
 # Manages datasheets creations for all stations. Makes the call to
 # the different headers, trend analysis graphs and realises arranging
 # every plots.
-datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, colorForce, info_header, time_header, foot_note, layout_matrix, info_height, time_ratio, var_ratio, foot_height, resources_path, logo_dir, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
+datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, axis_xlim, colorForce, info_header, time_header, foot_note, layout_matrix, info_height, time_ratio, var_ratio, foot_height, resources_path, logo_dir, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
 
     # The percentage of augmentation and diminution of the min
     # and max limits for y axis
@@ -174,13 +174,19 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, co
         if (!is.null(time_header)) {
             # Extracts the data serie corresponding to the code
             time_header_code = time_header[time_header$code == code,]
-            # Gets the limits of the time serie
-            axis_xlim = c(min(time_header_code$Date),
-                          max(time_header_code$Date))
+
+            if (is.null(axis_xlim)) {
+                # Gets the limits of the time serie
+                axis_xlim_code = c(min(time_header_code$Date),
+                                   max(time_header_code$Date))
+            } else {
+                axis_xlim_code = axis_xlim
+            }
+            
             # Gets the time serie plot
             Htime = time_panel(time_header_code, df_trend_code=NULL,
                                trend_period=trend_period,
-                               axis_xlim=axis_xlim, missRect=TRUE,
+                               axis_xlim=axis_xlim_code, missRect=TRUE,
                                unit2day=365.25, var='Q', type='sévérité',
                                grid=TRUE, ymin_lim=0,
                                NspaceMax=NspaceMax[k],
@@ -272,8 +278,6 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, co
                     color = append(color, colortmp)
                     grid = FALSE
                 }
-            } else {
-                axis_xlim = NULL
             }
 
             if (var != 'sqrt(Q)' & var != 'Q') {
@@ -294,7 +298,8 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, mean_period, co
             p = time_panel(df_data_code, df_trend_code, var=var,
                            type=type, alpha=alpha, colorForce=colorForce,
                            missRect=missRect, trend_period=trend_period,
-                           mean_period=mean_period, axis_xlim=axis_xlim, 
+                           mean_period=mean_period,
+                           axis_xlim=axis_xlim_code, 
                            unit2day=unit2day, grid=grid,
                            ymin_lim=ymin_lim, color=color,
                            NspaceMax=NspaceMax[k], first=first,
@@ -467,12 +472,12 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, colorF
         i = i + 1
     }   
     maxQ_lim = maxQtmp    
-    
-    
+        
     # If x axis limits are specified
     if (!is.null(axis_xlim)) {
-        minor_minDatetmp_lim = as.Date(axis_xlim[1])
-        minor_maxDatetmp_lim = as.Date(axis_xlim[2])
+        axis_xlim = as.Date(axis_xlim)
+        minor_minDatetmp_lim = axis_xlim[1]
+        minor_maxDatetmp_lim = axis_xlim[2]
     # Otherwise
     } else {
         minor_minDatetmp_lim = as.Date(df_data_code$Date[1]) 
@@ -527,11 +532,11 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, colorF
         listDate[which.min(abs(listDate - minor_minDatetmp_lim))]
     minor_maxDate_lim =
         listDate[which.min(abs(listDate - minor_maxDatetmp_lim))]
-    minor_minDate_lim = as.Date(paste(minor_minDate_lim,
+    minor_minDate_lim = as.Date(paste(round(minor_minDate_lim),
                                       '-01-01', sep=''))
-    minor_maxDate_lim = as.Date(paste(minor_maxDate_lim,
+    minor_maxDate_lim = as.Date(paste(round(minor_maxDate_lim),
                                       '-01-01', sep=''))
-
+    
     # Open new plot
     p = ggplot() + theme_ash
 
@@ -1158,21 +1163,29 @@ time_panel = function (df_data_code, df_trend_code, var, type, alpha=0.1, colorF
         limits = axis_xlim
     }
 
+    if (breakDate < 1) {
+        breaks = waiver()
+        minor_breaks = waiver()
+        date_labels = waiver()
+    } else {
+        breaks = seq(minDate_lim, maxDate_lim,
+                     by=paste(breakDate, 'years'))
+        minor_breaks = seq(minor_minDate_lim,
+                           minor_maxDate_lim,
+                           by=paste(minor_breakDate,
+                                    'years'))
+        date_labels = "%Y"
+    }
+
     # Parameters of the x axis contain the limit of the date data
     p = p +
-        scale_x_date(breaks=seq(minDate_lim, maxDate_lim,
-                                by=paste(breakDate, 'years')),
-                     minor_breaks=seq(minor_minDate_lim,
-                                      minor_maxDate_lim,
-                                      by=paste(minor_breakDate,
-                                               'years')),
+        scale_x_date(breaks=breaks,
+                     minor_breaks=minor_breaks,
                      guide='axis_minor',
-                     date_labels="%Y",
+                     date_labels=date_labels,
                      limits=limits,
                      position=position, 
-                     expand=c(0, 0))
-
-    
+                     expand=c(0, 0))    
     
     # If it is a date variable 
     if (type == 'saisonnalité') {
diff --git a/plotting/layout.R b/plotting/layout.R
index 4242719dab5c8a7d8d0e2b00a1606412632e01bb..b1da9cf972f30815f331e7a7f281e06c0b48919e 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -125,24 +125,24 @@ contour = void +
 
 ## 3. LAYOUT _________________________________________________________
 # Generates a PDF that gather datasheets, map and summarize matrix about the trend analyses realised on selected stations
-datasheet_layout = function (df_data, df_meta, layout_matrix,
-                             toplot=c('datasheet', 'matrix', 'map'),
-                             figdir='', filedir_opt='', filename_opt='',
-                             variable='', df_trend=NULL,
-                             alpha=0.1, unit2day=365.25, var='',
-                             type='', glose=NULL, trend_period=NULL,
-                             mean_period=NULL, colorForce=FALSE,
-                             axis_xlim=NULL,
-                             missRect=TRUE, time_header=NULL,
-                             info_header=NULL, foot_note=TRUE,
-                             info_height=2.8, time_ratio=2,
-                             var_ratio=3, foot_height=1.25,
-                             df_shapefile=NULL,
-                             resources_path=NULL,
-                             logo_dir=NULL,
-                             AEAGlogo_file=NULL,
-                             INRAElogo_file=NULL,
-                             FRlogo_file=NULL) {
+layout_panel = function (df_data, df_meta, layout_matrix,
+                         toplot=c('datasheet', 'matrix', 'map'),
+                         figdir='', filedir_opt='', filename_opt='',
+                         variable='', df_trend=NULL,
+                         alpha=0.1, unit2day=365.25, var='',
+                         type='', glose=NULL, trend_period=NULL,
+                         mean_period=NULL, colorForce=FALSE,
+                         axis_xlim=NULL,
+                         missRect=TRUE, time_header=NULL,
+                         info_header=NULL, foot_note=TRUE,
+                         info_height=2.8, time_ratio=2,
+                         var_ratio=3, foot_height=1.25,
+                         df_shapefile=NULL,
+                         resources_path=NULL,
+                         logo_dir=NULL,
+                         AEAGlogo_file=NULL,
+                         INRAElogo_file=NULL,
+                         FRlogo_file=NULL) {
 
     # Name of the document
     outfile = "Panels"
@@ -291,6 +291,7 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
                                   df_meta,
                                   trend_period=trend_period,
                                   mean_period=mean_period,
+                                  axis_xlim=axis_xlim,
                                   colorForce=colorForce,
                                   info_header=info_header,
                                   time_header=time_header,
diff --git a/processing/analyse.R b/processing/analyse.R
index 87b1d3d96a86654b31824f57408014dca28501df..42540eee35309f58ff4a47e32964aeeac1d98696 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -700,7 +700,7 @@ get_hydrograph = function (df_data, period=NULL, df_meta=NULL) {
         for (j in 1:length(xref[,1])) {
             distance[j] = sum((QM_code / mean(QM_code) - xref[j,])^2)
         }
-        regime = 1 + length(xref[,1]) - which.min(distance)
+        regime = which.min(distance)
         distancemin = distance[which.min(distance)]
         
         if (regime < 7) {
diff --git a/processing/format.R b/processing/format.R
index 11ca6fe6a1cfecd436fa954ce4d49350c8567194..88e390b6081094257c0a7d998f5c69f3cf8372f8 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -95,6 +95,15 @@ missing_data = function (df_data, df_meta, yearLac_day=3, yearStart='01-01', Cod
     for (code in Code) {        
         # Extracts the data corresponding to the code
         df_data_code = df_data[df_data$code == code,]
+
+
+        
+        Date_NA = df_data_code$Date[is.na(df_data_code$Value)]
+        # print(Date_NA)
+        # Start_NA 
+        
+        
+        
         DateMD = substr(df_data_code$Date, 6, 10)
         
         idyearStart = which(DateMD == yearStart)
@@ -316,19 +325,22 @@ prepare_date = function(df_XEx, df_Xlist, per.start="01-01") {
     origin = as.Date(paste(format(df_dateStart$Date, "%Y"),
                            '-', per.start, sep=''))
 
-    originHydro = as.Date(paste(format(df_dateStart$Date, "%Y"),
-                                '-01-01', sep=''))
+    # originHydro = as.Date(paste(format(df_dateStart$Date, "%Y"),
+                                # '-01-01', sep=''))
 
     for (i in 1:nrow(df_dateStart)) {
         dateJultmp = julian(date[i], origin=origin[i])
         df_dateStart$Date_julian[i] = dateJultmp
-        dateJulHydrotmp = julian(date[i], origin=originHydro[i])
-        df_dateStart$DateHydro_julian[i] = dateJulHydrotmp
+
+        # print(date[i])
+        # dateJulHydrotmp = julian(date[i], origin=originHydro[i])
+        # df_dateStart$DateHydro_julian[i] = dateJulHydrotmp
     }
 
     df_dateStart$Year = format(df_dateStart$Date, "%Y")
     
     for (group in df_dateStart$group) {
+        
         Ok_dateStart = df_dateStart$group == group
         Shift = df_dateStart$Date_julian[Ok_dateStart]
         year = df_dateStart$Year[Ok_dateStart]
@@ -336,11 +348,11 @@ prepare_date = function(df_XEx, df_Xlist, per.start="01-01") {
         df_XEx$values[OkXEx_code_year] =
             df_XEx$values[OkXEx_code_year] + Shift
 
-        OkXEx_code = df_XEx$group1 == group
-
-        ShiftHydro = df_dateStart$DateHydro_julian[Ok_dateStart]
-        df_XEx$values[OkXEx_code] = df_XEx$values[OkXEx_code] + ShiftHydro
+        # OkXEx_code = df_XEx$group1 == group
 
+        # ShiftHydro = df_dateStart$DateHydro_julian[Ok_dateStart]
+        # df_XEx$values[OkXEx_code] = df_XEx$values[OkXEx_code] + ShiftHydro
+        
         ## Add 365 when the point is too remote
         # XEx_code = df_XEx$values[OkXEx_code]
         # meanXEx_code = mean(XEx_code, na.rm=TRUE)
diff --git a/script.R b/script.R
index 8ce0cc05483a5dd404e9fec5ad5db9689aca861d..18d5b49edacd6083148266b23c62ad842a68c082 100644
--- a/script.R
+++ b/script.R
@@ -55,22 +55,22 @@ filedir =
 # Name of the file that will be analysed from the BH directory
 # (if 'all', all the file of the directory will be chosen)
 filename =
-    ""
+    # ""
     # "all"
-    # c(
+    c(
         # "S2235610_HYDRO_QJM.txt",
-        # "P1712910_HYDRO_QJM.txt",
-        # "P0885010_HYDRO_QJM.txt",
-        # "O5055010_HYDRO_QJM.txt",
+        # "P0885010_HYDRO_QJM.txt"
+        # "O3006710_HYDRO_QJM.txt",
+        # "O4704030_HYDRO_QJM.txt"
         # "O0384010_HYDRO_QJM.txt",
-        # "S4214010_HYDRO_QJM.txt",
-        # "Q7002910_HYDRO_QJM.txt",
+        "O0362510_HYDRO_QJM.txt"
+        # "Q7002910_HYDRO_QJM.txt"
         # "Q0214010_HYDRO_QJM.txt",
         # "O3035210_HYDRO_QJM.txt",
         # "O0554010_HYDRO_QJM.txt",
         # "Q6332510_HYDRO_QJM.txt"
         # "O0362510_HYDRO_QJM.txt"
-    # )
+    )
 
 
 ## AGENCE EAU ADOUR GARONNE SELECTION
@@ -80,8 +80,8 @@ AEAGlistdir =
     ""
 
 AEAGlistname = 
-    # ""
-    "Liste-station_RRSE.docx" 
+    ""
+    # "Liste-station_RRSE.docx" 
 
 
 ## NIVALE SELECTION
@@ -96,7 +96,17 @@ INRAElistname =
     # "INRAE_selection.txt"
 
 
-## TREND ANALYSIS
+which_layout =
+    # ('serie')
+    ('analyse')
+    # ('serie', 'analyse')
+
+# Selection
+axis_xlim =
+    NULL
+    # c("2002-01-01", "2003-01-01")
+
+## ANALYSIS
 # Time period to analyse
 periodAll = c("1800-01-01", "2020-12-31")
 periodSub = c("1968-01-01", "2020-12-31")
@@ -119,7 +129,7 @@ sampleSpan = c('05-01', '11-30')
 
 ## MAP
 # Is the hydrological network needs to be plot
-is_river = TRUE
+is_river = FALSE
 
 ############### END OF REGION TO MODIFY (without risk) ###############
 
@@ -274,56 +284,58 @@ df_meta = get_hydrograph(df_data, df_meta, period=mean_period[[1]])$meta
 df_sqrt = compute_sqrt(df_data)
 
 ### 3.2. Trend analysis ______________________________________________
-# # QA trend
-# res = get_QAtrend(df_data, df_meta,
-#                   period=trend_period,
-#                   alpha=alpha,
-#                   yearLac_day=yearLac_day)
-# df_QAdata = res$data
-# df_QAmod = res$mod
-# res_QAtrend = res$analyse
-
-# # QMNA tend
-# res = get_QMNAtrend(df_data, df_meta,
-#                     period=trend_period,
-#                     alpha=alpha,
-#                     sampleSpan=sampleSpan,
-#                     yearLac_day=yearLac_day)
-# df_QMNAdata = res$data
-# df_QMNAmod = res$mod
-# res_QMNAtrend = res$analyse
-
-# # VCN10 trend
-# res = get_VCN10trend(df_data, df_meta,
-#                      period=trend_period,
-#                      alpha=alpha,
-#                      sampleSpan=sampleSpan,
-#                      yearLac_day=yearLac_day)
-# df_VCN10data = res$data
-# df_VCN10mod = res$mod
-# res_VCN10trend = res$analyse
-
-# # Start date for low water trend
-# res = get_tDEBtrend(df_data, df_meta, 
-#                     period=trend_period,
-#                     alpha=alpha,
-#                     sampleSpan=sampleSpan,
-#                     thresold_type='VCN10',
-#                     select_longest=TRUE,
-#                     yearLac_day=yearLac_day)
-# df_tDEBdata = res$data
-# df_tDEBmod = res$mod
-# res_tDEBtrend = res$analyse
-
-# # Center date for low water trend
-# res = get_tCENtrend(df_data, df_meta, 
-#                     period=trend_period,
-#                     alpha=alpha,
-#                     sampleSpan=sampleSpan,
-#                     yearLac_day=yearLac_day)
-# df_tCENdata = res$data
-# df_tCENmod = res$mod
-# res_tCENtrend = res$analyse
+if ('analyse' %in% which_layout) {
+    # QA trend
+    res = get_QAtrend(df_data, df_meta,
+                      period=trend_period,
+                      alpha=alpha,
+                      yearLac_day=yearLac_day)
+    df_QAdata = res$data
+    df_QAmod = res$mod
+    res_QAtrend = res$analyse
+
+    # QMNA tend
+    res = get_QMNAtrend(df_data, df_meta,
+                        period=trend_period,
+                        alpha=alpha,
+                        sampleSpan=sampleSpan,
+                        yearLac_day=yearLac_day)
+    df_QMNAdata = res$data
+    df_QMNAmod = res$mod
+    res_QMNAtrend = res$analyse
+
+    # VCN10 trend
+    res = get_VCN10trend(df_data, df_meta,
+                         period=trend_period,
+                         alpha=alpha,
+                         sampleSpan=sampleSpan,
+                         yearLac_day=yearLac_day)
+    df_VCN10data = res$data
+    df_VCN10mod = res$mod
+    res_VCN10trend = res$analyse
+
+    # Start date for low water trend
+    res = get_tDEBtrend(df_data, df_meta, 
+                        period=trend_period,
+                        alpha=alpha,
+                        sampleSpan=sampleSpan,
+                        thresold_type='VCN10',
+                        select_longest=TRUE,
+                        yearLac_day=yearLac_day)
+    df_tDEBdata = res$data
+    df_tDEBmod = res$mod
+    res_tDEBtrend = res$analyse
+
+    # Center date for low water trend
+    res = get_tCENtrend(df_data, df_meta, 
+                        period=trend_period,
+                        alpha=alpha,
+                        sampleSpan=sampleSpan,
+                        yearLac_day=yearLac_day)
+    df_tCENdata = res$data
+    df_tCENmod = res$mod
+    res_tCENtrend = res$analyse
+}
 
 ### 3.3. Break analysis ______________________________________________
 # df_break = get_break(res_QAtrend$data, df_meta)
@@ -362,28 +374,31 @@ df_shapefile = ini_shapefile(resources_path,
 
 ### 5.1. Simple time panel to criticize station data _________________
 # Plot time panel of debit by stations
-# datasheet_layout(toplot=c('datasheet'),
-#                  df_meta=df_meta,
-#                  df_data=list(df_data,
-#                               df_sqrt),
-#                  var=list('Q', 'sqrt(Q)'),
-#                  type=list('data', 'data'),
-#                  layout_matrix=matrix(c(1, 2), ncol=1),
-#                  info_header=df_data,
-#                  df_shapefile=df_shapefile,
-#                  figdir=figdir,
-#                  resources_path=resources_path,
-#                  logo_dir=logo_dir,
-#                  AEAGlogo_file=AEAGlogo_file,
-#                  INRAElogo_file=INRAElogo_file,
-#                  FRlogo_file=FRlogo_file)
-
+if ('serie' %in% which_layout) {
+    layout_panel(toplot=c('datasheet'),
+                 df_meta=df_meta,
+                 df_data=list(df_data,
+                              df_sqrt),
+                 var=list('Q', 'sqrt(Q)'),
+                 type=list('data', 'data'),
+                 axis_xlim=axis_xlim,
+                 layout_matrix=matrix(c(1, 2), ncol=1),
+                 info_header=df_data,
+                 df_shapefile=df_shapefile,
+                 figdir=figdir,
+                 resources_path=resources_path,
+                 logo_dir=logo_dir,
+                 AEAGlogo_file=AEAGlogo_file,
+                 INRAElogo_file=INRAElogo_file,
+                 FRlogo_file=FRlogo_file)
+}
 
 ### 5.2. Analysis layout _____________________________________________
-datasheet_layout(toplot=c(
-                     'datasheet',
-                     'matrix',
-                     'map'
+if ('analyse' %in% which_layout) {
+    layout_panel(toplot=c(
+                     'datasheet'
+                     # 'matrix',
+                     # 'map'
                  ),
                  df_meta=df_meta,
                  
@@ -428,3 +443,4 @@ datasheet_layout(toplot=c(
                  AEAGlogo_file=AEAGlogo_file,
                  INRAElogo_file=INRAElogo_file,
                  FRlogo_file=FRlogo_file)
+}