diff --git a/plotting/layout.R b/plotting/layout.R
index 03def19190ad08b4855b4c60079b2ff5955547df..d22be3c8f8d3807efd2704c8541ff3f9706ca1b8 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -1,3 +1,31 @@
+# \\\
+# Copyright 2021-2022 Louis Héraut*1
+#
+# *1   INRAE, France
+#      louis.heraut@inrae.fr
+#
+# This file is part of ash R toolbox.
+#
+# ash R toolbox is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or (at
+# your option) any later version.
+#
+# ash R toolbox is distributed in the hope that it will be useful, but 
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
+# ///
+#
+#
+# plotting/layout.R
+#
+#
+
+
 # Usefull library
 library(ggplot2)
 library(scales)
@@ -9,7 +37,6 @@ library(grid)
 library(ggh4x)
 library(RColorBrewer)
 
-
 # Sourcing R file
 source('plotting/panel.R', encoding='latin1')
 
diff --git a/plotting/panel.R b/plotting/panel.R
index 8555629563abcba9c8f7ee33cba82083654d02b7..5f50ab808598d40cdaeddf89887cc81ba070e350 100644
--- a/plotting/panel.R
+++ b/plotting/panel.R
@@ -1,3 +1,31 @@
+# \\\
+# Copyright 2021-2022 Louis Héraut*1
+#
+# *1   INRAE, France
+#      louis.heraut@inrae.fr
+#
+# This file is part of ash R toolbox.
+#
+# ash R toolbox is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or (at
+# your option) any later version.
+#
+# ash R toolbox is distributed in the hope that it will be useful, but 
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
+# ///
+#
+#
+# plotting/panel.R
+#
+#
+
+
 # Usefull library
 library(ggplot2)
 library(scales)
diff --git a/processing/analyse.R b/processing/analyse.R
index 2d5e0f603237236276c182730e2d959805daf224..51a782973d866ff3734ab9f35b84e8cdd53f5343 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -1,3 +1,34 @@
+# \\\
+# Copyright 2021-2022 Louis Héraut*1
+#
+# *1   INRAE, France
+#      louis.heraut@inrae.fr
+#
+# This file is part of ash R toolbox.
+#
+# ash R toolbox is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or (at
+# your option) any later version.
+#
+# ash R toolbox is distributed in the hope that it will be useful, but 
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
+# ///
+#
+#
+# processing/analyse.R
+#
+# File that realise all the possible analysis of data.
+# This file regroup mainly the functions use to compute the trend
+# analysis of hydrologic variables thanks to the Mann-Kendall Test.
+# Functions needed for break or gap analysis are also present.
+
+
 # Usefull library
 library(dplyr)
 library(zoo)
@@ -5,7 +36,6 @@ library(StatsAnalysisTrend)
 library(lubridate)
 library(trend)
 
-
 # Sourcing R file
 source('processing/format.R', encoding='latin1')
 
@@ -16,9 +46,9 @@ get_lacune = function (df_data, df_meta) {
     # Get all different stations code
     Code = levels(factor(df_meta$code))
     
-    # Create new vector to stock results for cumulative time gap by station
+    # Create new vector to stock results for cumulative and mean
+    # time gap by station
     tLac = c()
-    # Create new vector to stock results for mean time gap by station
     meanLac = c()
 
     # Get rows where there is no NA
@@ -27,8 +57,7 @@ get_lacune = function (df_data, df_meta) {
     df_data_NoNA = df_data[NoNA,]
 
     # For every station
-    for (code in Code) {
-        
+    for (code in Code) {   
         # Get only the data rows for the selected station
         df_data_code = df_data[df_data$code==code,]
         # Get date for the selected station
@@ -52,62 +81,65 @@ get_lacune = function (df_data, df_meta) {
         # Compute the mean gap
         lac_mean = mean(lac[lac != 0])
         # Store the mean gap
-        meanLac = c(meanLac, lac_mean)
-        
+        meanLac = c(meanLac, lac_mean) 
     }
     
     # Compute the cumulative gap rate in pourcent
     tLac100 = tLac * 100
-
     # Create tibble for lacune
     df_lac = tibble(code=Code, tLac100=tLac100, meanLac=meanLac)
-    
     # Join a tibble
     df_meta = full_join(df_meta, df_lac)
-    
     return (df_meta)
 }
 
 
-
+# Compute intercept values of linear trends with first order values
+# of trends and the data on which analysis is performed.
 get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
-    
+
+    # Create a column in trend full of NA
     df_Xtrend$intercept = NA
 
+    # For all different group
     for (g in df_Xlist$info$group) {
+        # Get the data and trend value linked to this group
         df_data_code = df_Xlist$data[df_Xlist$data$group == g,]
- 
         df_Xtrend_code = df_Xtrend[df_Xtrend$group == g,]
 
+        # Get the time start and end of the different periods
         Start = df_Xtrend_code$period_start
-        UStart = levels(factor(Start))
         End = df_Xtrend_code$period_end
+        # Extract only the unrepeated dates
+        UStart = levels(factor(Start))
         UEnd = levels(factor(End))
-        
+        # Get the number of different periods of trend analysis
         nPeriod = max(length(UStart), length(UEnd))
 
+        # For each of these perdiods
         for (i in 1:nPeriod) {
-
+            # Get data and trend associated to the period
             df_data_code_per = 
                 df_data_code[df_data_code$Date >= Start[i] 
                              & df_data_code$Date <= End[i],]
-
             df_Xtrend_code_per = 
                 df_Xtrend_code[df_Xtrend_code$period_start == Start[i] 
                               & df_Xtrend_code$period_end == End[i],]
-            
+
+            # Get the group associated to this period
             id = which(df_Xtrend$group == g 
                        & df_Xtrend$period_start == Start[i] 
                        & df_Xtrend$period_end == End[i])
 
+            # Compute mean of flow and time period
             mu_X = mean(df_data_code_per$Qm3s, na.rm=TRUE)
-
             mu_t = as.numeric(mean(c(Start[i],
                                      End[i]),
                                    na.rm=TRUE)) / unit2day
-                        
+
+            # Get the intercept of the trend
             b = mu_X - mu_t * df_Xtrend_code_per$trend
-            
+            # And store it
             df_Xtrend$intercept[id] = b
         } 
     }
@@ -115,26 +147,35 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
 }
 
 
+# Compute the start and the end of the period for a trend analysis
+# according to the accessible data 
 get_period = function (per, df_Xtrend, df_XEx, df_Xlist) {
 
+    # Convert results of trend to tibble
     df_Xtrend = tibble(df_Xtrend)
+    # Fix the period start and end of the accessible period to a
+    # default date
     df_Xtrend$period_start = as.Date("1970-01-01")
     df_Xtrend$period_end = as.Date("1970-01-01")
 
+    # Change the format of the date variable to date
     df_Xlisttmp = reprepare(df_XEx, df_Xlist, colnamegroup=c('code'))
     df_XExtmp = df_Xlisttmp$data
 
+    # For all the different group
     for (g in df_Xlisttmp$info$group) {
-
+        # Get the analyse data associated to the group
         df_XExtmp_code = df_XExtmp[df_XExtmp$group == g,]
-        
+        # Get the id in the trend result associated to the group
+        id = which(df_Xtrend$group1 == g)
+
+        # Compute index of the nearest accessible start and end date
         iStart = which.min(abs(df_XExtmp_code$Date
                                - as.Date(per[1])))
         iEnd = which.min(abs(df_XExtmp_code$Date 
                              - as.Date(per[2])))
 
-        id = which(df_Xtrend$group1 == g)
-        
+        # Store the start and end of the trend analysis
         df_Xtrend$period_start[id] =
             as.Date(df_XExtmp_code$Date[iStart])
         df_Xtrend$period_end[id] =
@@ -144,90 +185,105 @@ get_period = function (per, df_Xtrend, df_XEx, df_Xlist) {
 }
 
 
-
+# Compute the break date of the flow data by station 
 get_break = function (df_data, df_meta, p_thresold=0.05) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
+    # Number of stations
     nCode = length(Code)
 
+    # Blank date break list and associated station code vector
     date_break = list()
     Code_break = c()
+
+    # For all accessible code
     for (code in Code) {
-        
+        # Get the associated data
         df_data_code = df_data[df_data$code == code,] 
+        # Remove NA data
         df_data_codeNoNA = df_data_code[!is.na(df_data_code$Qm3s),]
 
+        # Perform the break analysis thanks to the Pettitt test
         res_break = pettitt.test(df_data_codeNoNA$Qm3s)
 
+        # Extract p value
         p_value = res_break$p
+        # The length of the data analysed
         nbreak = res_break$nobs
+        # Index of the break date
         ibreak = res_break$estimate
 
-        if (length(ibreak) > 1) {
-            ibreak = ibreak[1]
-        }
-        # step1 = mean(df_data_codeNoNA$Qm3s[1:ibreak])
-        # step2 = mean(df_data_codeNoNA$Qm3s[(ibreak+1):nbreak])
+        # If the p value results is under the thresold
         if (p_value <= p_thresold) {
+            # Get the mean of the index break if there is several
+            ibreak = round(mean(ibreak), 0)
+            # Store the date break with its associated code
             date_break = append(date_break, 
                                 df_data_codeNoNA$Date[ibreak])
             Code_break = append(Code_break, code)
         }
+        # step1 = mean(df_data_codeNoNA$Qm3s[1:ibreak])
+        # step2 = mean(df_data_codeNoNA$Qm3s[(ibreak+1):nbreak])
     }
+    # Create a tibble with the break analysis results
     df_break = tibble(code=Code_break, Date=as.Date(date_break))
-
     return (df_break)
 }
 
 
-
+# Realise the trend analysis of the average annual flow (QA)
+# hydrological variable
 get_QAtrend = function (df_data, period, p_thresold) {
-    # AVERAGE ANNUAL FLOW : QA #
-    
+
+    # Make sure to convert the period to a list
     period = as.list(period)
-    
+
+    # Set the max interval period as the minimal possible
     Imax = 0
+    # Blank tibble for data to return
     df_QAtrendB = tibble()
 
+    # For all periods
     for (per in period) {
-               
+        # Prepare the data to fit the entry of extract.Var
         df_QAlist = prepare(df_data, colnamegroup=c('code'))
 
+        # Compute the QA over the data
         df_QAEx = extract.Var(data.station=df_QAlist,
                               funct=mean,
                               timestep='year',
                               period=per,
                               pos.datetime=1,
                               na.rm=TRUE)
-
+        # Compute the trend analysis
         df_QAtrend = Estimate.stats(data.extract=df_QAEx,
                                       level=p_thresold)
 
+        # Get the associated time interval
         I = interval(per[1], per[2])
+        # If it is the largest interval
         if (I > Imax) {
+            # Store it and the associated data and info
             Imax = I
             df_QAlistB = df_QAlist
             df_QAExB = df_QAEx
         }
 
+        # Specify the period of analyse
         df_QAtrend = get_period(per, df_QAtrend, df_QAEx, df_QAlist)
-        
-
-
-        df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend)
-            
+        # Store the trend
+        df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend)   
     } 
-    
+    # Clean results of trend analyse
     res_QAtrend = clean(df_QAtrendB, df_QAExB, df_QAlistB)
-
     return (res_QAtrend)
 }
 
 
-
+# Realise the trend analysis of the monthly minimum flow in the
+# year (QMNA) hydrological variable
 get_QMNAtrend = function (df_data, period, p_thresold) {
-    # MONTHLY MINIMUM FLOW IN THE YEAR : QMNA #
 
     period = as.list(period)
     
@@ -237,13 +293,6 @@ get_QMNAtrend = function (df_data, period, p_thresold) {
     for (per in period) {
 
         df_QMNAlist = prepare(df_data, colnamegroup=c('code'))
-        
-        # df_QMNAEx = extract.Var(data.station=df_QMNAlist,
-        #                         funct=mean,
-        #                         period=per,
-        #                         timestep='month',
-        #                         pos.datetime=1,
-        #                         na.rm=TRUE)
 
         df_QMNAEx = extract.Var(data.station=df_QMNAlist,
                                 funct=mean,
@@ -253,7 +302,9 @@ get_QMNAtrend = function (df_data, period, p_thresold) {
                                 pos.datetime=1,
                                 na.rm=TRUE)
         
-        df_QMNAlist = reprepare(df_QMNAEx, df_QMNAlist, colnamegroup=c('code'))
+        df_QMNAlist = reprepare(df_QMNAEx,
+                                df_QMNAlist,
+                                colnamegroup=c('code'))
         
         df_QMNAEx = extract.Var(data.station=df_QMNAlist,
                                 funct=min,
@@ -272,7 +323,8 @@ get_QMNAtrend = function (df_data, period, p_thresold) {
             df_QMNAExB = df_QMNAEx
         }
 
-        df_QMNAtrend = get_period(per, df_QMNAtrend, df_QMNAEx,
+        df_QMNAtrend = get_period(per, df_QMNAtrend,
+                                  df_QMNAEx,
                                   df_QMNAlist)
 
         df_QMNAtrendB = bind_rows(df_QMNAtrendB, df_QMNAtrend)
@@ -284,8 +336,8 @@ get_QMNAtrend = function (df_data, period, p_thresold) {
 }
 
 
+# Realise the trend analysis of the minimum 10 day average flow over the year (VCN10) hydrological variable
 get_VCN10trend = function (df_data, df_meta, period, p_thresold) {
-    # MINIMUM 10 DAY AVERAGE FLOW OVER THE YEAR : VCN10 #
 
     # Get all different stations code
     Code = levels(factor(df_meta$code))
diff --git a/processing/extract.R b/processing/extract.R
index 3a004d7a76da5d21ebc6ec409a8d70b2c83bd616..408398012569b37fa58400abfb82c88e9cf33545 100644
--- a/processing/extract.R
+++ b/processing/extract.R
@@ -1,3 +1,31 @@
+# \\\
+# Copyright 2021-2022 Louis Héraut*1
+#
+# *1   INRAE, France
+#      louis.heraut@inrae.fr
+#
+# This file is part of ash R toolbox.
+#
+# ash R toolbox is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or (at
+# your option) any later version.
+#
+# ash R toolbox is distributed in the hope that it will be useful, but 
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
+# ///
+#
+#
+# processing/extract.R
+#
+# 
+
+
 # Usefull library
 library(tools)
 library(dplyr)
@@ -175,7 +203,7 @@ get_selection_AG = function (computer_data_path, listdir, listname,
             # 'longueur_serie'))
 
 
-get_selection_NV = function (computer_data_path, listdir, listname) {
+get_selection_IN = function (computer_data_path, listdir, listname) {
     
     # Get the file path to the data
     list_path = file.path(computer_data_path, listdir, listname)
@@ -193,7 +221,7 @@ get_selection_NV = function (computer_data_path, listdir, listname) {
     return (df_selec)
 }
 # Example
-# df_selec_NV = get_selection_NV(
+# df_selec_IN = get_selection_IN(
     # "/home/louis/Documents/bouleau/INRAE/CDD_stationnarite/data",
     # "",
     # "nival_selection.txt")
diff --git a/processing/format.R b/processing/format.R
index 21d6c928c6480bf9d607995025d1d5b17e2f7329..4c4cbeacf94c711dda18088506a01485aadd0500 100644
--- a/processing/format.R
+++ b/processing/format.R
@@ -1,3 +1,31 @@
+# \\\
+# Copyright 2021-2022 Louis Héraut*1
+#
+# *1   INRAE, France
+#      louis.heraut@inrae.fr
+#
+# This file is part of ash R toolbox.
+#
+# ash R toolbox is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or (at
+# your option) any later version.
+#
+# ash R toolbox is distributed in the hope that it will be useful, but 
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
+# ///
+#
+#
+# processing/format.R
+#
+# 
+
+
 # Usefull library
 library(dplyr)
 
@@ -43,6 +71,7 @@ join = function (df_data_AG, df_data_NV, df_meta_AG, df_meta_NV) {
 }
 
 
+# Prepare the data in order to have a list of a data tibble with date, group and flow column and a info tibble with the station code and group column to fit the entry of the 'StatsAnalysisTrend' package
 prepare = function(df_data, colnamegroup=NULL) {
             
     colnamegroup = c(colnamegroup)
diff --git a/script.R b/script.R
index 1e75cde9f82610fe9fbadf4301f4582c4ef96c9f..fa56fd167f1d441f5547c7b514c28fe6d78535a0 100644
--- a/script.R
+++ b/script.R
@@ -1,6 +1,37 @@
-############ A MODIFIER ############
-
-
+# \\\
+# Copyright 2021-2022 Louis Héraut*1
+#
+# *1   INRAE, France
+#      louis.heraut@inrae.fr
+#
+# This file is part of ash R toolbox.
+#
+# ash R toolbox is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or (at
+# your option) any later version.
+#
+# ash R toolbox is distributed in the hope that it will be useful, but 
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
+# ///
+#
+#
+# script.R
+#
+# Script file to manage the trend analysis of the Adour-Garonne basin.
+# Performs the necessary calls to processing and plotting functions in
+# order to realise the hydrologic trend analysis of stations according
+# to the input parameters. The nearest area belove is where you need to
+# write your prefer parameters for the analysis. See the 'README.txt'
+# file for more information.
+
+
+############## START OF REGION TO MODIFY (without risk) ##############
 # Path to the data
 computer_data_path = 
     "/home/louis/Documents/bouleau/INRAE/CDD_stationnarite/data"
@@ -12,15 +43,17 @@ computer_work_path =
     # "C:\\Users\\louis.heraut\\Documents\\CDD_stationnarite\\ASH"
 
 
-### BANQUE HYDRO ###
-# Path to the directory where BH data is stored from the work path
+## BANQUE HYDRO
+# Path to the directory where Banque Hydro (BH) data is stored
+# from the work path
 filedir = 
     # ""
     "BanqueHydro_Export2021"
 
 
-### MANUAL SELECTION ###
-# Name of the file that will be analysed from the AG directory
+## MANUAL SELECTION
+# Name of the file that will be analysed from the BH directory
+# (if 'all', all the file of the directory will be chosen)
 filename =
     # ""
 
@@ -38,8 +71,9 @@ filename =
 
 
 
-### AGENCE EAU ADOUR GARONNE SELECTION ###
-# Path to the list file of AG data that will be analysed
+## AGENCE EAU ADOUR GARONNE SELECTION
+# Path to the 'docx' list file of station from the Agence de l'eau
+# Adour-Garonne that will be analysed
 AGlistdir = 
     ""
 
@@ -48,17 +82,17 @@ AGlistname =
     # "Liste-station_RRSE.docx" 
 
 
-### NIVALE SELECTION ###
-# Path to the list file of metadata about station that will be analysed
-NVlistdir =
+## NIVALE SELECTION
+# Path to the 'txt' list file of station from INRAE that will be analysed
+INlistdir =
     ""
 
-NVlistname = 
+INlistname = 
     ""
     # "nival_selection.txt"
 
 
-### TREND ANALYSIS ###
+## TREND ANALYSIS
 # Time period to analyse
 periodAll = c("1800-01-01", "2019-12-31")
 periodSub = c("1968-01-01", "2019-12-31")
@@ -69,25 +103,26 @@ period1 = c("1968-01-01", "1994-12-31")
 period2 = c("1995-01-01", "2019-12-31")
 mean_period = list(period1, period2)
 
-# p value
+# p value thresold
 p_thresold = 0.1 #c(0.01, 0.05, 0.1)
 
 
-### MAP ###
+## MAP
+# Path to the shapefile for france contour from 'computer_data_path' 
 fr_shpdir = 'map/france'
 fr_shpname = 'gadm36_FRA_0.shp'
 
+# Path to the shapefile for basin shape from 'computer_data_path' 
 bs_shpdir = 'map/bassin'
 bs_shpname = 'BassinHydrographique.shp'
 
+# Path to the shapefile for river shape from 'computer_data_path' 
 rv_shpdir = 'map/river'
 rv_shpname = 'CoursEau_FXX.shp'
+############### END OF REGION TO MODIFY (without risk) ###############
 
 
-####################################
-
-
-# FILE STRUCTURE #
+## 1. FILE STRUCTURE
 # Set working directory
 setwd(computer_work_path)
 
@@ -98,7 +133,6 @@ source('processing/analyse.R', encoding='latin1')
 source('plotting/panel.R', encoding='latin1')
 source('plotting/layout.R', encoding='latin1')
 
-
 # Result directory
 resdir = file.path(computer_work_path, 'results')
 if (!(file.exists(resdir))) {
@@ -114,14 +148,14 @@ if (!(file.exists(figdir))) {
 print(paste('figdir :', figdir))
 
 
+## 2. SELECTION OF STATION
 # Initialization of null data frame if there is no data selected
 df_data_AG = NULL
-df_data_NV = NULL
+df_data_IN = NULL
 df_meta_AG = NULL
-df_meta_NV = NULL
+df_meta_IN = NULL
 
-
-# AGENCE EAU ADOUR GARONNE SELECTION #
+### 2.1. Selection of the Agence de l'eau Adour-Garonne 
 if (AGlistname != ""){
     
     # Get only the selected station from a list station file
@@ -147,81 +181,80 @@ if (AGlistname != ""){
 
     # Extract metadata about selected stations
     df_meta_AG = extract_meta(computer_data_path, filedir, filename)
-
     # Extract data about selected stations
     df_data_AG = extract_data(computer_data_path, filedir, filename)
 }
 
-# NIVALE SELECTION #
-if (NVlistname != ""){
+### 2.2. INRAE selection 
+if (INlistname != ""){
     
     # Get only the selected station from a list station file
-    df_selec_NV = get_selection_NV(computer_data_path, 
-                                   NVlistdir,
-                                   NVlistname)
+    df_selec_IN = get_selection_IN(computer_data_path, 
+                                   INlistdir,
+                                   INlistname)
 
     # Get filenames of the selection
-    filename = df_selec_NV[df_selec_NV$ok,]$filename
+    filename = df_selec_IN[df_selec_IN$ok,]$filename
 
     #####
     # filename = filename[(1+20):(16+20)]
     #####
 
     # Extract metadata about selected stations
-    df_meta_NV = extract_meta(computer_data_path, filedir, filename)
-
+    df_meta_IN = extract_meta(computer_data_path, filedir, filename)
     # Extract data about selected stations
-    df_data_NV = extract_data(computer_data_path, filedir, filename)
+    df_data_IN = extract_data(computer_data_path, filedir, filename)
 } 
 
-# MANUAL SELECTION #
-if (AGlistname == "" & NVlistname == "") {
-    
+### 2.3. Manual selection 
+if (AGlistname == "" & INlistname == "") {
     # Extract metadata about selected stations
     df_meta_AG = extract_meta(computer_data_path, filedir, filename)
-
     # Extract data about selected stations
     df_data_AG = extract_data(computer_data_path, filedir, filename)
 }
 
-
-# JOIN #
-# Make the join 
-df_join = join(df_data_AG, df_data_NV, df_meta_AG, df_meta_NV)
+### 2.4. Data join
+df_join = join(df_data_AG, df_data_IN, df_meta_AG, df_meta_IN)
 df_data = df_join$data
 df_meta = df_join$meta
 
 
-# ANALYSE #
-# Compute gap parameters for stations
+## 3. ANALYSE
+### 3.1. Compute gap parameters for stations
 df_meta = get_lacune(df_data, df_meta)
 
-
-# QA TREND #
+### 3.2. Trend analysis
+# QA trend
 res_QAtrend = get_QAtrend(df_data, period=trend_period,
                           p_thresold=p_thresold)
 
-# QMNA TREND #
+# QMNA tend
 res_QMNAtrend = get_QMNAtrend(df_data, period=trend_period,
                               p_thresold=p_thresold)
 
-# VCN10 TREND #
+# VCN10 trend
 res_VCN10trend = get_VCN10trend(df_data, df_meta, 
                                 period=trend_period,
                                 p_thresold=p_thresold)
 
-
+### 3.3. Break analysis
 # df_break = get_break(res_QAtrend$data, df_meta)
 # df_break = get_break(res_QMNAtrend$data, df_meta)
 # df_break = get_break(res_VCN10trend$data, df_meta)
 
 # histogram(df_break$Date, df_meta,
-          # figdir=figdir)
+#           figdir=figdir)
 
 # cumulative(df_break$Date, df_meta, dyear=8,
-          # figdir=figdir)
+#           figdir=figdir)
+
+
+## 4. PLOTTING
+# Shapefile importation in order to it only once time
+df_shapefile = ini_shapefile(computer_data_path, fr_shpdir, fr_shpname, bs_shpdir, bs_shpname, rv_shpdir, rv_shpname, riv=FALSE)
 
-# TIME PANEL #
+### 4.1. Simple time panel to criticize station data
 # Plot time panel of debit by stations
 # panels_layout(list(df_data, df_data),
 #               layout_matrix=c(1, 2),
@@ -234,10 +267,7 @@ res_VCN10trend = get_VCN10trend(df_data, df_meta,
 #               figdir=figdir,
 #               filename_opt='time')
 
-
-df_shapefile = ini_shapefile(computer_data_path, fr_shpdir, fr_shpname, bs_shpdir, bs_shpname, rv_shpdir, rv_shpname, riv=FALSE)
-
-
+### 4.2. Analysis layout 
 panels_layout(isplot=c(
                   'datasheet',
                   'matrix',