diff --git a/plotting/datasheet.R b/plotting/datasheet.R
index d8ae947504f20c291ed74ff2dd188336b1e55160..1c34cf2aee01ec686e9b6676a46679158307711e 100644
--- a/plotting/datasheet.R
+++ b/plotting/datasheet.R
@@ -34,7 +34,7 @@ source('processing/analyse.R', encoding='UTF-8')
 # Manages datasheets creations for all stations. Makes the call to
 # the different headers, trend analysis graphs and realises arranging
 # every plots.
-datasheet_panel = function (list_df2plot, df_meta, trend_period, info_header, time_header, foot_note, layout_matrix, info_ratio, time_ratio, var_ratio, foot_height, resources_path, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp) {
+datasheet_panel = function (list_df2plot, df_meta, trend_period, info_header, time_header, foot_note, layout_matrix, info_ratio, time_ratio, var_ratio, foot_height, resources_path, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp, df_page=NULL) {
 
     # The percentage of augmentation and diminution of the min
     # and max limits for y axis
@@ -432,12 +432,28 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, info_header, ti
             P[[i+nbh]] = p 
         }
 
-        foot = foot_panel('fiche station', k, nCode, resources_path,
-                          AEAGlogo_file, INRAElogo_file,
-                          FRlogo_file, foot_height)
-
-        P[[nbg]] = foot
-
+        if (!is.null(df_page)) {
+            section = 'fiche station'
+            subsection = code
+            n_page = df_page$n[nrow(df_page)] + 1
+            df_page = bind_rows(
+                df_page,
+                tibble(section=section,
+                       subsection=subsection,
+                       n=n_page))
+        }
+        
+        if (foot_note) {
+            footName = 'fiche station'
+            if (is.null(df_page)) {
+                n_page = k
+            }
+            
+            foot = foot_panel(footName, n_page, resources_path,
+                              AEAGlogo_file, INRAElogo_file,
+                              FRlogo_file, foot_height)
+            P[[nbg]] = foot
+        }
         
         # Convert the 'layout_matrix' to a matrix if it is not already 
         layout_matrix = as.matrix(layout_matrix)
@@ -517,6 +533,7 @@ datasheet_panel = function (list_df2plot, df_meta, trend_period, info_header, ti
                width=width, height=height, units='cm', dpi=100)
         
     }
+    return (df_page)
 }
 
 
diff --git a/plotting/layout.R b/plotting/layout.R
index a31cdd89c9e8e25e70a5d7593cebf45585a5b734..4fb5889e2246cfe15e884dbcf2eda2b8bfc26e44 100644
--- a/plotting/layout.R
+++ b/plotting/layout.R
@@ -242,35 +242,74 @@ datasheet_layout = function (df_data, df_meta, layout_matrix,
         list_df2plot[[i]] = df2plot
     }
 
-    # If datasheets needs to be plot
-    if ('datasheet' %in% toplot) {
-        
-        datasheet_panel(list_df2plot, df_meta, trend_period, info_header=info_header, time_header=time_header, foot_note=foot_note, layout_matrix=layout_matrix, info_ratio=info_ratio, time_ratio=time_ratio, var_ratio=var_ratio, foot_height=foot_height, resources_path=resources_path, AEAGlogo_file=AEAGlogo_file, INRAElogo_file=INRAElogo_file, FRlogo_file=FRlogo_file, outdirTmp=outdirTmp)
-
+    df_page = tibble(section='sommaire', subsection=NA, n=1)
+    
+    # If map needs to be plot
+    if ('map' %in% toplot) {
+        df_page = map_panel(list_df2plot, 
+                            df_meta,
+                            idPer_trend=length(trend_period),
+                            mean_period=mean_period,
+                            df_shapefile=df_shapefile,
+                            foot_note=foot_note,
+                            foot_height=foot_height,
+                            resources_path=resources_path,
+                            AEAGlogo_file=AEAGlogo_file,
+                            INRAElogo_file=INRAElogo_file,
+                            FRlogo_file=FRlogo_file,
+                            outdirTmp=outdirTmp,
+                            df_page=df_page)
     }
 
     # If summarize matrix needs to be plot
     if ('matrix' %in% toplot) {
-        matrix_panel(list_df2plot, df_meta, trend_period, mean_period,
-                     slice=19, outdirTmp=outdirTmp, A3=TRUE,
-                     foot_note=foot_note, foot_height=foot_height, resources_path=resources_path, AEAGlogo_file=AEAGlogo_file, INRAElogo_file=INRAElogo_file, FRlogo_file=FRlogo_file,)
+        df_page = matrix_panel(list_df2plot,
+                               df_meta,
+                               trend_period,
+                               mean_period,
+                               slice=19,
+                               outdirTmp=outdirTmp,
+                               A3=TRUE,
+                               foot_note=foot_note,
+                               foot_height=foot_height,
+                               resources_path=resources_path,
+                               AEAGlogo_file=AEAGlogo_file,
+                               INRAElogo_file=INRAElogo_file,
+                               FRlogo_file=FRlogo_file,
+                               df_page=df_page)
     }
 
-    # If map needs to be plot
-    if ('map' %in% toplot) {
-        map_panel(list_df2plot, 
-                  df_meta,
-                  idPer_trend=length(trend_period),
-                  mean_period=mean_period,
-                  df_shapefile=df_shapefile,
-                  foot_note=foot_note,
-                  foot_height=foot_height,
-                  resources_path=resources_path,
-                  AEAGlogo_file=AEAGlogo_file,
-                  INRAElogo_file=INRAElogo_file,
-                  FRlogo_file=FRlogo_file,
-                  outdirTmp=outdirTmp)
+    # If datasheets needs to be plot
+    if ('datasheet' %in% toplot) {
+        df_page = datasheet_panel(list_df2plot,
+                                  df_meta,
+                                  trend_period,
+                                  info_header=info_header,
+                                  time_header=time_header,
+                                  foot_note=foot_note,
+                                  layout_matrix=layout_matrix,
+                                  info_ratio=info_ratio,
+                                  time_ratio=time_ratio,
+                                  var_ratio=var_ratio,
+                                  foot_height=foot_height,
+                                  resources_path=resources_path,
+                                  AEAGlogo_file=AEAGlogo_file,
+                                  INRAElogo_file=INRAElogo_file,
+                                  FRlogo_file=FRlogo_file,
+                                  outdirTmp=outdirTmp,
+                                  df_page=df_page)
     }
+    
+    print(df_page)
+
+    summary_panel(df_page,
+                  foot_note,
+                  foot_height,
+                  resources_path,
+                  AEAGlogo_file,
+                  INRAElogo_file,
+                  FRlogo_file,
+                  outdirTmp)
 
     # Combine independant pages into one PDF
     details = file.info(list.files(outdirTmp, full.names=TRUE))
@@ -444,11 +483,128 @@ palette_tester = function (n=256) {
 }
 
 
+### Summary panel
+summary_panel = function (df_page, foot_note, foot_height, resources_path, AEAGlogo_file, INRAElogo_file, FRlogo_file, outdirTmp) {
+
+    text_title = paste(
+        "<b> Analyse de stationnarité </b>",
+        sep='')
+
+    Sec_name = rle(df_page$section)$values
+    nSec = length(Sec_name)
+
+    text_sum = ''
+    for (idS in 1:nSec) {
+        sec_name = Sec_name[idS]
+        subSec_name = rle(df_page$subsection[df_page$section == sec_name])$values
+        n_page = df_page$n[df_page$section == sec_name][1]
+        
+        text_sum = paste(text_sum, 
+                         idS, ". ", "<b>", sec_name, "</b>",
+                         ' ', 'p.', n_page, "<br>",
+                         sep='')
+        
+        nSSec = length(subSec_name)
+        for (idSS in 1:nSSec) {
+            subsec_name = subSec_name[idSS]
+            if (!is.na(subsec_name)) {
+                n_page = df_page$n[df_page$section == sec_name &
+                                   df_page$subsection == subsec_name][1]
+                
+                text_sum = paste(text_sum,
+                                 idS, ".", idSS, ". ", subsec_name,
+                                 ' ', 'p.', n_page, "<br>",
+                                 sep='')
+            }
+        }
+    }
+
+    text_sum = gsub('<ol>', '', text_sum)
+
+    text_sum = "1. <b>sommaire</b><br>2. <b>carte des tendances observées</b><br>2.1. QA p.2<br>2.2. QMNA p.3<br>2.3. VCN10 p.4<br>2.4. DEB p.5<br>2.5. CEN p.6<br>3. <b>carte des écarts observés</b><br>3.1. QA p.7<br>3.2. QMNA p.8<br>3.3. VCN10 p.9<br>3.4. DEB p.10<br>3.5. CEN p.11<br>4. <b>tableau récapitulatif de saisonnalité</b><br>4.1. Adour p.12<br>5. <b>tableau récapitulatif de sévérité</b><br>5.1. Adour p.13<br>6. <b>fiche station</b><br>6.1. Q7002910 p.14<br>"
+    
+    print(text_title)
+    print(text_sum)
+
+    # text_sum = 'test<br>test<br><b>test</b>'
+    
+    # Converts all texts to graphical object in the right position
+    gtitle = richtext_grob(text_title,
+                           x=0, y=1,
+                           margin=unit(c(t=0, r=0, b=0, l=0), "mm"),
+                           hjust=0, vjust=1,
+                           gp=gpar(col="#00A3A8", fontsize=20))
+
+    gsum = richtext_grob(text_sum,
+                         x=0, y=1,
+                         margin=unit(c(t=0, r=0, b=0, l=0), "mm"),
+                         hjust=0, vjust=1,
+                         gp=gpar(col="#00A3A8", fontsize=10))
+    
+    # If there is a foot note
+    if (foot_note) {
+        footName = 'sommaire'
+        foot = foot_panel(footName,
+                          1, resources_path,
+                          AEAGlogo_file, INRAElogo_file,
+                          FRlogo_file, foot_height)
+
+        P = list(gtitle, gsum, foot)
+        LM = matrix(c(1,
+                      2,
+                      3),
+                    nrow=3, byrow=TRUE)
+    } else {
+        foot_height = 0
+        P = list(gtitle, gsum)
+        LM = matrix(c(1,
+                      2),
+                    nrow=2, byrow=TRUE)
+    }
+    id_foot = 2
+    
+    LMcol = ncol(LM)
+    LMrow = nrow(LM)
+    
+    LM = rbind(rep(99, times=LMcol), LM, rep(99, times=LMcol))
+    LMrow = nrow(LM)
+    LM = cbind(rep(99, times=LMrow), LM, rep(99, times=LMrow))
+    LMcol = ncol(LM)
+    
+    margin_height = 0.5
+    height = 29.7
+    width = 21
+
+    row_height = (height - 2*margin_height - foot_height) / (LMrow - 3)
+
+    Hcut = LM[, 2]
+    heightLM = rep(row_height, times=LMrow)
+    heightLM[Hcut == id_foot] = foot_height
+    heightLM[Hcut == 99] = margin_height
+
+    col_width = (width - 2*margin_height) / (LMcol - 2)
+    
+    Wcut = LM[(nrow(LM)-1),]
+    widthLM = rep(col_width, times=LMcol)
+    widthLM[Wcut == 99] = margin_height
+
+    # Arranges the graphical object
+    plot = grid.arrange(grobs=P, layout_matrix=LM,
+                        heights=heightLM, widths=widthLM)
+    
+    # Saves the plot
+    ggsave(plot=plot,
+           path=outdirTmp,
+           filename=paste('sommaire', '.pdf', sep=''),
+           width=width, height=height, units='cm', dpi=100)
+}
+
+
 ### Foot note panel
-foot_panel = function (name, n_page, N_page, resources_path, AEAGlogo_file, INRAElogo_file, FRlogo_file, foot_height) {
+foot_panel = function (name, n_page, resources_path, AEAGlogo_file, INRAElogo_file, FRlogo_file, foot_height) {
     
     text_page = paste(
-        name, " <b>p. ", n_page, "/", N_page, "</b>",
+        name, "  <b>p. ", n_page, "</b>",
         sep='')
     
     text_date = paste (
diff --git a/plotting/map.R b/plotting/map.R
index 5c4dcf9b556b4fd5dfa2a88b08f767f6c35e279f..5403fc0ae98ba8b75b9090865b2991143bee9dfe 100644
--- a/plotting/map.R
+++ b/plotting/map.R
@@ -34,7 +34,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                       foot_note=FALSE,
                       foot_height=0, resources_path=NULL,
                       AEAGlogo_file=NULL, INRAElogo_file=NULL,
-                      FRlogo_file=NULL,
+                      FRlogo_file=NULL, df_page=NULL,
                       verbose=TRUE) {
 
     # Extract shapefiles
@@ -325,13 +325,20 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 outname = paste('map_', var, sep='')
             }
             
-            n_page = i + nbp*(j-1)
-            N_page = nbp*nPeriod_mean
+            n_loop = i + nbp*(j-1)
+            N_loop = nbp*nPeriod_mean
             # If there is the verbose option
             if (verbose) {
+                if (j > 1) {
+                    mapName = 'difference'
+                } else {
+                    mapName = 'tendence'
+                }
                 # Prints the name of the map
-                print(paste('Map for variable : ', var,
-                            "   (", round(n_page/N_page*100, 0), " %)", 
+                print(paste('Map of ', mapName, ' for : ', var,
+                            "   (",
+                            round(n_loop/N_loop*100, 0),
+                            " %)", 
                             sep=''))
             } 
 
@@ -641,11 +648,11 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
             # If it is a flow variable
             if (type == 'sévérité') {
                 # Formatting of label in pourcent
-                labTick = as.character(round(labTick*100, 2))
+                labTick = as.character(signif(labTick*100, 2))
                 # If it is a date variable
             } else if (type == 'saisonnalité') {
                 # Formatting of label
-                labTick = as.character(round(labTick, 2))
+                labTick = as.character(signif(labTick, 2))
             }
             
             # X position of ticks all similar
@@ -686,7 +693,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                            color='white', fill=colTick)
 
             if (j > 1) {
-                ValueName = "Écarts observées"
+                ValueName = "Écarts observés"
                 # If it is a flow variable
                 if (type == 'sévérité') {
                     unit = bquote(bold("(%)"))
@@ -794,7 +801,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
             yValue = yValue[alpha_Ok]
 
             # Histogram distribution
-            # Computes the histogram of the trend
+            # Computes the histogram of values
             res_hist = hist(yValue, breaks=ytick, plot=FALSE)
             # Extracts the number of counts per cells
             counts = res_hist$counts
@@ -808,15 +815,27 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
             xValue = c()
             yValue = c()
             # Start X position of the distribution
-            start_hist = 1.25
+            start_hist = 1
+
             # X separation bewteen point
             hist_sep = 0.15
+
+            # Gets the maximun number of point of the distribution
+            maxCount = max(counts, na.rm=TRUE)
+            # Limit of the histogram
+            lim_hist = 2
+            # If the number of point will exceed the limit
+            if (maxCount * hist_sep > lim_hist) {
+                # Computes the right amount of space between points
+                hist_sep = lim_hist / maxCount
+            }
+            
             # For all cells of the histogram
             for (ii in 1:length(mids)) {
                 # If the count in the current cell is not zero
                 if (counts[ii] != 0) {
-                    # Stores the X positions of points of the distribution
-                    # for the current cell
+                    # Stores the X positions of points of the 
+                    # distribution for the current cell
                     xValue = c(xValue,
                                seq(start_hist,
                                    start_hist+(counts[ii]-1)*hist_sep,
@@ -827,16 +846,16 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 yValue = c(yValue, rep(mids[ii], times=counts[ii]))
             }
             
-            # Makes a tibble to plot the trend distribution
+            # Makes a tibble to plot the distribution
             plot_value = tibble(xValue=xValue, yValue=yValue)
             
             pal = pal +
-                # Plots the point of the trend distribution
+                # Plots the point of the distribution
                 geom_point(data=plot_value,
                            aes(x=xValue, y=yValue),
-                           # shape=21, size=1,
-                           # color="grey20", fill="grey20")
-                           alpha=0.4)
+                           shape=21, color='white',
+                           fill='grey50', stroke=0.4,
+                           alpha=1)
 
             if (type == 'sévérité') {
                 labelArrow = 'Plus sévère'
@@ -844,6 +863,7 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 labelArrow = 'Plus tôt'
             }
 
+            # Position of the arrow
             xArrow = 3.2
             
             pal = pal +
@@ -870,16 +890,35 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                 # Margin of the colorbar
                 theme(plot.margin=margin(t=0, r=0, b=0, l=0, unit="mm"))
 
-            if (j > 1) {
-                footName = 'carte des écarts observés'
-            } else {
-                footName = 'carte des tendances observées'                
+            if (!is.null(df_page)) {
+                if (j > 1) {
+                    section = 'carte des écarts observés'
+                } else {
+                    section = 'carte des tendances observées'
+                }
+                subsection = var
+                n_page = df_page$n[nrow(df_page)] + 1
+                df_page = bind_rows(
+                    df_page,
+                    tibble(section=section,
+                           subsection=subsection,
+                           n=n_page))
             }
             
             # If there is a foot note
             if (foot_note) {
+                if (j > 1) {
+                    footName = 'carte des écarts observés'
+                } else {
+                    footName = 'carte des tendances observées'
+                }
+                
+                if (is.null(df_page)) {
+                    n_page = n_loop
+                }
+                
                 foot = foot_panel(footName,
-                                  n_page, N_page, resources_path,
+                                  n_page, resources_path,
                                   AEAGlogo_file, INRAElogo_file,
                                   FRlogo_file, foot_height)
 
@@ -929,7 +968,8 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
                                 heights=heightLM, widths=widthLM)
 
 
-            # If there is no specified station code to highlight (mini map)
+            # If there is no specified station code to highlight
+            # (mini map)
             if (is.null(codeLight)) {
                 # Saving matrix plot
                 ggsave(plot=plot,
@@ -939,7 +979,13 @@ map_panel = function (list_df2plot, df_meta, df_shapefile, idPer_trend=1,
             }
         }
     }
+    # If there is no specified station code to highlight
+    # (mini map)
+    if (is.null(codeLight)) {
+        return (df_page)
     # Returns the map object
-    return (map)
+    } else {
+        return (map)
+    }
 }
  
diff --git a/plotting/matrix.R b/plotting/matrix.R
index 679482fd716badb97e441763ba6a5b43f6302403..65ce7c9e43f34c1f71e6198a6455b8044ca464c7 100644
--- a/plotting/matrix.R
+++ b/plotting/matrix.R
@@ -32,7 +32,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                          foot_note=FALSE,
                          foot_height=0, resources_path=NULL,
                          AEAGlogo_file=NULL, INRAElogo_file=NULL,
-                         FRlogo_file=NULL) {
+                         FRlogo_file=NULL, df_page=NULL) {
 
     # Number of variable/plot
     nbp = length(list_df2plot)
@@ -207,7 +207,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     Var_trend = c()
     Type_trend = c()
     Code_trend = c()
-    Pthresold_trend = c()
+    Alpha_trend = c()
     TrendValue_trend = c()
     DataMean_trend = c()
     Fill_trend = c()
@@ -282,12 +282,12 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     # table cells
                     fill = color_res
                     color = 'white'
-                    Pthresold = p_thresold
+                    Alpha = TRUE
                 # Otherwise it is not significative
                 } else { 
                     fill = 'white'
                     color = 'grey85'  
-                    Pthresold = NA
+                    Alpha = FALSE
                 }
 
                 # Stores info needed to plot
@@ -296,7 +296,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 Var_trend = append(Var_trend, var)
                 Type_trend = append(Type_trend, type)
                 Code_trend = append(Code_trend, code)
-                Pthresold_trend = append(Pthresold_trend, Pthresold)
+                Alpha_trend = append(Alpha_trend, Alpha)
                 TrendValue_trend = append(TrendValue_trend, trendValue)
                 DataMean_trend = append(DataMean_trend, dataMean)
                 Fill_trend = append(Fill_trend, fill)
@@ -463,6 +463,33 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
     # Gets all the different type of plots
     Type = levels(factor(allType))
     nbType = length(Type)
+
+    # Number of pages
+    N_loop = 0
+    # For all the type of plots
+    for (itype in 1:nbType) {
+        # Gets the type
+        type = Type[itype]
+        # Extracts each possibilities of first letter of station code
+        firstLetter = levels(factor(substr(Code, 1, 1)))
+        # Number of different first letters
+        nfL = length(firstLetter)
+        # For all the available first letter
+        for (ifL in 1:nfL) {
+            # Gets the first letter
+            fL = firstLetter[ifL]
+
+            # Get only station code with the same first letter 
+            subCodefL = Code[substr(Code, 1, 1) == fL]
+            # Counts the number of station in it
+            nsubCodefL = length(subCodefL)
+            # Computes the number of pages needed to plot all stations
+            nMat = as.integer(nsubCodefL/slice) + 1
+            # Counts the number of pages
+            N_loop = N_loop + nMat
+        }
+    }
+    
     # For all the type of plots
     for (itype in 1:nbType) {
         # Gets the type
@@ -485,15 +512,15 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
             nMat = as.integer(nsubCodefL/slice) + 1
             # For all the pages
             for (iMat in 1:nMat) {
-                n_page = ifL + nfL*(itype-1)
-                N_page = nfL*2
+                n_loop = ifL + nfL*(itype-1) + (iMat-1)
+                # N_loop = nfL*nbType
                 
                 # Print the matrix name
                 print(paste('Matrix ', iMat, '/', nMat,
                             ' of ', type,
                             ' for region : ', fL,
                             "   (",
-                            round(n_page / N_page * 100,
+                            round(n_loop / N_loop * 100,
                                   0),
                             " %)", 
                             sep=''))
@@ -517,7 +544,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                 subVar_trend = Var_trend[CodefL_trend]
                 subType_trend = Type_trend[CodefL_trend]
                 subCode_trend = Code_trend[CodefL_trend]
-                subPthresold_trend = Pthresold_trend[CodefL_trend]
+                subAlpha_trend = Alpha_trend[CodefL_trend]
                 subTrendValue_trend = TrendValue_trend[CodefL_trend]
                 subDataMean_trend = DataMean_trend[CodefL_trend]
                 subFill_trend = Fill_trend[CodefL_trend]
@@ -599,8 +626,8 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         subType_trend[subNPeriod_trend == j]
                     Code_trend_per =
                         subCode_trend[subNPeriod_trend == j]
-                    Pthresold_trend_per =
-                        subPthresold_trend[subNPeriod_trend == j]
+                    Alpha_trend_per =
+                        subAlpha_trend[subNPeriod_trend == j]
                     TrendValue_trend_per =
                         subTrendValue_trend[subNPeriod_trend == j]
                     DataMean_trend_per =
@@ -696,7 +723,7 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                         }
                         
                         # If it is significative
-                        if (!is.na(Pthresold_trend_per[i])) {
+                        if (Alpha_trend_per[i]) {
                             # The text color is white
                             Tcolor = 'white'
                             # Otherwise
@@ -1113,22 +1140,43 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
                     dpi = 100
                 }
 
+                if (!is.null(df_page)) {
+                    section = paste('tableau récapitulatif de ',
+                                    type, sep='')
+                    subsection = title
+                    n_page = df_page$n[nrow(df_page)] + 1
+                    df_page = bind_rows(
+                        df_page,
+                        tibble(section=section,
+                               subsection=subsection,
+                               n=n_page))
+                }
+                
                 # If there is a foot note
                 if (foot_note) {
-                    foot = foot_panel('tableau récapitulatif',
-                                      n_page, N_page,
+                    footName = paste('tableau récapitulatif de ',
+                                     type, sep='')
+                    
+                    if (is.null(df_page)) {
+                        n_page = n_loop
+                    }
+                    
+                    foot = foot_panel(footName,
+                                      n_page,
                                       resources_path,
                                       AEAGlogo_file, INRAElogo_file,
                                       FRlogo_file, foot_height)
                     
-                    # Stores the map, the title and the colorbar in a list
+                    # Stores the map, the title and the colorbar
+                    # in a list
                     P = list(mat, foot)
                     LM = matrix(c(1,
                                   2),
                                 nrow=2, byrow=TRUE)
                 } else {
                     foot_height = 0
-                    # Stores the map, the title and the colorbar in a list
+                    # Stores the map, the title and the colorbar
+                    # in a list
                     P = list(mat)
                     LM = matrix(c(1),
                                 nrow=1, byrow=TRUE)
@@ -1177,4 +1225,5 @@ matrix_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice
             }
         }           
     }
+    return (df_page)
 }
diff --git a/processing/analyse.R b/processing/analyse.R
index 8bc6530a716b3358fb2109c3febbf6507f77d318..b0b841a7b6826cedd55d8a2822b0d22ffa72c5a9 100644
--- a/processing/analyse.R
+++ b/processing/analyse.R
@@ -97,7 +97,7 @@ get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
 ### 1.1. QA
 # Realise the trend analysis of the average annual flow (QA)
 # hydrological variable
-get_QAtrend = function (df_data, df_meta, period, p_thresold) {
+get_QAtrend = function (df_data, df_meta, period, alpha) {
 
     # Removes incomplete data from time series
     df_data = remove_incomplete_data(df_data, df_meta,
@@ -125,7 +125,7 @@ get_QAtrend = function (df_data, df_meta, period, p_thresold) {
                               na.rm=TRUE)
         # Compute the trend analysis
         df_QAtrend = Estimate.stats(data.extract=df_QAEx,
-                                      level=p_thresold)
+                                      level=alpha)
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -150,7 +150,7 @@ get_QAtrend = function (df_data, df_meta, period, p_thresold) {
 ### 1.2. QMNA
 # Realise the trend analysis of the monthly minimum flow in the
 # year (QMNA) hydrological variable
-get_QMNAtrend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
+get_QMNAtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
 
     # Removes incomplete data from time series
     df_data = remove_incomplete_data(df_data, df_meta,
@@ -192,7 +192,7 @@ get_QMNAtrend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
                                 na.rm=TRUE)
         # Compute the trend analysis        
         df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx,
-                                      level=p_thresold)
+                                      level=alpha)
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -219,7 +219,7 @@ get_QMNAtrend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
 ### 1.3. VCN10
 # Realises the trend analysis of the minimum 10 day average flow
 # over the year (VCN10) hydrological variable
-get_VCN10trend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
+get_VCN10trend = function (df_data, df_meta, period, alpha, sampleSpan) {
 
     # Removes incomplete data from time series
     df_data = remove_incomplete_data(df_data, df_meta,
@@ -268,7 +268,7 @@ get_VCN10trend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
                                  na.rm=TRUE)
         # Compute the trend analysis
         df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex,
-                                      level=p_thresold)
+                                      level=alpha)
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -327,7 +327,7 @@ which_underfirst = function (L, UpLim, select_longest=TRUE) {
     return (id)
 }
 
-get_DEBtrend = function (df_data, df_meta, period, p_thresold, sampleSpan, thresold_type='VCN10', select_longest=TRUE) {
+get_DEBtrend = function (df_data, df_meta, period, alpha, sampleSpan, thresold_type='VCN10', select_longest=TRUE) {
 
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -455,7 +455,7 @@ get_DEBtrend = function (df_data, df_meta, period, p_thresold, sampleSpan, thres
         
         # Compute the trend analysis
         df_DEBtrend = Estimate.stats(data.extract=df_DEBEx,
-                                      level=p_thresold)
+                                      level=alpha)
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -481,7 +481,7 @@ get_DEBtrend = function (df_data, df_meta, period, p_thresold, sampleSpan, thres
 ### 1.5. CEN date
 # Realises the trend analysis of the date of the minimum 10 day
 # average flow over the year (VCN10) hydrological variable
-get_CENtrend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
+get_CENtrend = function (df_data, df_meta, period, alpha, sampleSpan) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -533,7 +533,7 @@ get_CENtrend = function (df_data, df_meta, period, p_thresold, sampleSpan) {
         
         # Compute the trend analysis
         df_CENtrend = Estimate.stats(data.extract=df_CENEx,
-                                      level=p_thresold)
+                                      level=alpha)
 
         # Get the associated time interval
         I = interval(per[1], per[2])
@@ -690,7 +690,7 @@ get_hydrograph = function (df_data, period=NULL, df_meta=NULL) {
     
 ### 2.2. Break date
 # Compute the break date of the flow data by station 
-get_break = function (df_data, df_meta, p_thresold=0.05) {
+get_break = function (df_data, df_meta, alpha=0.05) {
     
     # Get all different stations code
     Code = levels(factor(df_meta$code))
@@ -719,7 +719,7 @@ get_break = function (df_data, df_meta, p_thresold=0.05) {
         ibreak = res_break$estimate
 
         # If the p value results is under the thresold
-        if (p_value <= p_thresold) {
+        if (p_value <= alpha) {
             # Get the mean of the index break if there is several
             ibreak = round(mean(ibreak), 0)
             # Store the date break with its associated code
diff --git a/script.R b/script.R
index 99f6c6777004e9f8e9a236a3fd8dcc506bd831e3..f4550cdf600b9f2fa52f30ba3e8863af0e389d9a 100644
--- a/script.R
+++ b/script.R
@@ -55,19 +55,19 @@ filedir =
 # Name of the file that will be analysed from the BH directory
 # (if 'all', all the file of the directory will be chosen)
 filename =
-    ""
-    # c(
+    # ""
+    c(
         # "S2235610_HYDRO_QJM.txt",
         # "P1712910_HYDRO_QJM.txt",
         # "P0885010_HYDRO_QJM.txt",
         # "O5055010_HYDRO_QJM.txt",
         # "O0384010_HYDRO_QJM.txt",
         # "S4214010_HYDRO_QJM.txt",
-        # "Q7002910_HYDRO_QJM.txt"
+        "Q7002910_HYDRO_QJM.txt"
         # "O3035210_HYDRO_QJM.txt"
         # "O0554010_HYDRO_QJM.txt",
         # "O1584610_HYDRO_QJM.txt"
-    # )
+    )
 
 
 ## AGENCE EAU ADOUR GARONNE SELECTION
@@ -77,8 +77,8 @@ AGlistdir =
     ""
 
 AGlistname = 
-    # ""
-    "Liste-station_RRSE.docx" 
+    ""
+    # "Liste-station_RRSE.docx" 
 
 
 ## NIVALE SELECTION
@@ -236,37 +236,37 @@ df_meta = get_lacune(df_data, df_meta)
 df_meta = get_hydrograph(df_data, df_meta, period=mean_period[[1]])$meta
 
 ### 3.2. Trend analysis
-# # QA trend
-# res_QAtrend = get_QAtrend(df_data, df_meta,
-#                           period=trend_period,
-#                           alpha=alpha)
-
-# # QMNA tend
-# res_QMNAtrend = get_QMNAtrend(df_data, df_meta,
-#                               period=trend_period,
-#                               alpha=alpha,
-#                               sampleSpan=sampleSpan)
-
-# # VCN10 trend
-# res_VCN10trend = get_VCN10trend(df_data, df_meta,
-#                                 period=trend_period,
-#                                 alpha=alpha,
-#                                 sampleSpan=sampleSpan)
-
-# # Start date for low water trend
-# res_DEBtrend = get_DEBtrend(df_data, df_meta, 
-#                             period=trend_period,
-#                             alpha=alpha,
-#                             sampleSpan=sampleSpan,
-#                             thresold_type='VCN10',
-#                             select_longest=TRUE)
-# # res_DEBtrend = read_listofdf(resdir, 'res_DEBtrend')
-
-# # Center date for low water trend
-# res_CENtrend = get_CENtrend(df_data, df_meta, 
-#                             period=trend_period,
-#                             alpha=alpha,
-#                             sampleSpan=sampleSpan)
+# QA trend
+res_QAtrend = get_QAtrend(df_data, df_meta,
+                          period=trend_period,
+                          alpha=alpha)
+
+# QMNA tend
+res_QMNAtrend = get_QMNAtrend(df_data, df_meta,
+                              period=trend_period,
+                              alpha=alpha,
+                              sampleSpan=sampleSpan)
+
+# VCN10 trend
+res_VCN10trend = get_VCN10trend(df_data, df_meta,
+                                period=trend_period,
+                                alpha=alpha,
+                                sampleSpan=sampleSpan)
+
+# Start date for low water trend
+res_DEBtrend = get_DEBtrend(df_data, df_meta, 
+                            period=trend_period,
+                            alpha=alpha,
+                            sampleSpan=sampleSpan,
+                            thresold_type='VCN10',
+                            select_longest=TRUE)
+# res_DEBtrend = read_listofdf(resdir, 'res_DEBtrend')
+
+# Center date for low water trend
+res_CENtrend = get_CENtrend(df_data, df_meta, 
+                            period=trend_period,
+                            alpha=alpha,
+                            sampleSpan=sampleSpan)
 
 ### 3.3. Break analysis
 # df_break = get_break(res_QAtrend$data, df_meta)
@@ -286,7 +286,7 @@ df_shapefile = ini_shapefile(computer_data_path,
                              fr_shpdir, fr_shpname,
                              bs_shpdir, bs_shpname,
                              sbs_shpdir, sbs_shpname,
-                             rv_shpdir, rv_shpname, riv=TRUE)
+                             rv_shpdir, rv_shpname, riv=FALSE)
 
 ### 4.1. Simple time panel to criticize station data
 # Plot time panel of debit by stations