# Usefull library library(ggplot2) library(scales) library(qpdf) library(gridExtra) library(gridtext) library(dplyr) library(grid) library(ggh4x) library(RColorBrewer) # Sourcing R file source('plotting/panel.R', encoding='latin1') panels_layout = function (df_data, df_meta, layout_matrix, figdir='', filedir_opt='', filename_opt='', variable='', df_trend=NULL, p_threshold=0.1, unit2day=365.25, type='', period=NULL, missRect=FALSE, time_header=NULL, info_header=TRUE, time_ratio=2, var_ratio=3) { if (all(class(df_data) != 'list')) { df_data = list(df_data) } nbp = length(df_data) if (all(class(df_trend) != 'list')) { df_trend = list(df_trend) if (length(df_trend) == 1) { df_trend = replicate(nbp, df_trend) }} if (all(class(p_threshold) != 'list')) { p_threshold = list(p_threshold) if (length(p_threshold) == 1) { p_threshold = replicate(nbp, p_threshold) }} if (all(class(unit2day) != 'list')) { unit2day = list(unit2day) if (length(unit2day) == 1) { unit2day = replicate(nbp, unit2day) }} if (all(class(type) != 'list')) { type = list(type) if (length(type) == 1) { type = replicate(nbp, type) }} if (all(class(missRect) != 'list')) { missRect = list(missRect) if (length(missRect) == 1) { missRect = replicate(nbp, missRect) }} list_df2plot = vector(mode='list', length=nbp) minTrend = c() maxTrend = c() for (i in 1:nbp) { df2plot = list(data=df_data[[i]], trend=df_trend[[i]], p_threshold=p_threshold[[i]], unit2day=unit2day[[i]], type=type[[i]], missRect=missRect[[i]]) okTrend = df_trend[[i]]$trend[df_trend[[i]]$p <= p_threshold[[i]]] minTrend[i] = min(okTrend, na.rm=TRUE) maxTrend[i] = max(okTrend, na.rm=TRUE) list_df2plot[[i]] = df2plot } outfile = "Panels" if (filename_opt != '') { outfile = paste(outfile, '_', filename_opt, sep='') } outfile = paste(outfile, '.pdf', sep='') # If there is not a dedicated figure directory it creats one outdir = file.path(figdir, filedir_opt, sep='') if (!(file.exists(outdir))) { dir.create(outdir) } outdirTmp = file.path(outdir, 'tmp') if (!(file.exists(outdirTmp))) { dir.create(outdirTmp) } # Get all different stations code Code = levels(factor(df_meta$code)) nCode = length(Code) for (code in Code) { # Print code of the station for the current plotting print(paste("Plotting for station :", code)) nbh = as.numeric(info_header) + as.numeric(!is.null(time_header)) nbg = nbp + nbh P = vector(mode='list', length=nbg) if (info_header) { Htext = text_panel(code, df_meta) P[[1]] = Htext } if (!is.null(time_header)) { time_header_code = time_header[time_header$code == code,] Htime = time_panel(time_header_code, df_trend_code=NULL, period=period, missRect=TRUE, unit2day=365.25, type='Q') P[[2]] = Htime } nbcol = ncol(as.matrix(layout_matrix)) for (i in 1:nbp) { df_data = list_df2plot[[i]]$data df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold unit2day = list_df2plot[[i]]$unit2day missRect = list_df2plot[[i]]$missRect type = list_df2plot[[i]]$type df_data_code = df_data[df_data$code == code,] df_trend_code = df_trend[df_trend$code == code,] if (df_trend_code$p <= p_threshold){ color_res = get_color(df_trend_code$trend, minTrend[i], maxTrend[i], palette_name='perso', reverse=FALSE) color = color_res$color palette = color_res$palette } else { color = NULL palette = NULL } p = time_panel(df_data_code, df_trend_code, type=type, p_threshold=p_threshold, missRect=missRect, unit2day=unit2day, last=(i > nbp-nbcol), color=color) P[[i+nbh]] = p } layout_matrix = as.matrix(layout_matrix) nel = nrow(layout_matrix)*ncol(layout_matrix) idNA = which(is.na(layout_matrix), arr.ind=TRUE) layout_matrix[idNA] = seq(max(layout_matrix, na.rm=TRUE) + 1, max(layout_matrix, na.rm=TRUE) + 1 + nel) layout_matrix_H = layout_matrix + nbh LM = c() LMcol = ncol(layout_matrix_H) LMrow = nrow(layout_matrix_H) for (i in 1:(LMrow+nbh)) { if (info_header & i == 1) { LM = rbind(LM, rep(i, times=LMcol)) } else if (!is.null(time_header) & i == 2) { LM = rbind(LM, matrix(rep(rep(i, times=LMcol), times=time_ratio), ncol=LMcol, byrow=TRUE)) # if (i <= nbh) { # LM = rbind(LM, rep(i, times=LMcol)) } else { LM = rbind(LM, matrix(rep(layout_matrix_H[i-nbh,], times=var_ratio), ncol=LMcol, byrow=TRUE)) }} plot = grid.arrange(grobs=P, layout_matrix=LM) # plot = grid.arrange(rbind(cbind(ggplotGrob(P[[2]]), ggplotGrob(P[[2]])), cbind(ggplotGrob(P[[3]]), ggplotGrob(P[[3]]))), heights=c(1/3, 2/3)) # Saving ggsave(plot=plot, path=outdirTmp, filename=paste(as.character(code), '.pdf', sep=''), width=21, height=29.7, units='cm', dpi=100) } # mat = matrice_panel(list_df2plot, df_meta) # # Saving matrix plot # ggsave(plot=mat, # path=outdirTmp, # filename=paste('matrix', '.pdf', sep=''), # width=21, height=29.7, units='cm', dpi=100) # PDF combine pdf_combine(input=file.path(outdirTmp, list.files(outdirTmp)), output=file.path(outdir, outfile)) unlink(outdirTmp, recursive=TRUE) }