# \\\ # Copyright 2021-2022 Louis H�raut*1 # # *1 INRAE, France # louis.heraut@inrae.fr # # This file is part of ash R toolbox. # # ash R toolbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or (at # your option) any later version. # # ash R toolbox is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ash R toolbox. If not, see <https://www.gnu.org/licenses/>. # /// # # # plotting/panel.R # # # Usefull library library(ggplot2) library(scales) library(qpdf) library(gridExtra) library(gridtext) library(dplyr) library(grid) library(ggh4x) library(RColorBrewer) library(rgdal) library(shadowtext) palette_perso = c('#0f3b57', '#1d7881', '#80c4a9', '#e2dac6', #mid '#fadfad', '#d08363', '#7e392f') display_type = function (type, bold=FALSE) { if (type == "QA") { if (bold) { disp = bquote(Q[A]) } else { disp = bquote(bold(Q[A])) } } else if (type == "QMNA") { if (bold) { disp = bquote(Q[MNA]) } else { disp = bquote(bold(Q[MNA])) } } else if (type == "VCN10") { if (bold) { disp = bquote(V[CN10]) } else { disp = bquote(bold(V[CN10])) } } return (disp) } # Personal theme theme_ash = theme( # White background panel.background=element_rect(fill='white'), # Font text=element_text(family='sans'), # Border of plot panel.border = element_rect(color="grey85", fill=NA, size=0.7), # Grid panel.grid.major.x=element_blank(), panel.grid.major.y=element_blank(), # Ticks marker axis.ticks.x=element_line(color='grey75', size=0.3), axis.ticks.y=element_line(color='grey75', size=0.3), # Ticks label axis.text.x=element_text(color='grey40'), axis.text.y=element_text(color='grey40'), # Ticks length axis.ticks.length=unit(1.5, 'mm'), # Ticks minor ggh4x.axis.ticks.length.minor=rel(0.5), # Title plot.title=element_text(size=9, vjust=-2, hjust=-1E-3, color='grey20'), # Axis title axis.title.x=element_blank(), axis.title.y=element_blank(), # Axis line axis.line.x=element_blank(), axis.line.y=element_blank(), ) time_panel = function (df_data_code, df_trend_code, type, p_threshold=0.1, missRect=FALSE, unit2day=365.25, trend_period=NULL, mean_period=NULL, axis_xlim=NULL, grid=TRUE, last=FALSE, first=FALSE, color=NULL) { # If 'type' is square root apply it to data if (type == 'sqrt(Q)') { df_data_code$Qm3s = sqrt(df_data_code$Qm3s) } # Compute max of flow maxQ = max(df_data_code$Qm3s, na.rm=TRUE) # Get the magnitude of the max of flow power = get_power(maxQ) # Normalize the max flow by it's magnitude maxQtmp = maxQ/10^power # Compute the spacing between y ticks if (maxQtmp >= 5) { dbrk = 1.0 } else if (maxQtmp < 5 & maxQtmp >= 3) { dbrk = 0.5 } else if (maxQtmp < 3 & maxQtmp >= 2) { dbrk = 0.4 } else if (maxQtmp < 2 & maxQtmp >= 1) { dbrk = 0.2 } else if (maxQtmp < 1) { dbrk = 0.1 } # Get the spacing in the right magnitude dbrk = dbrk * 10^power # Fix the accuracy for label accuracy = NULL # Time span in the unit of time dDate = as.numeric(df_data_code$Date[length(df_data_code$Date)] - df_data_code$Date[1]) / unit2day # Compute the spacing between x ticks if (dDate >= 100) { datebreak = 25 dateminbreak = 5 } else if (dDate < 100 & dDate >= 50) { datebreak = 10 dateminbreak = 1 } else if (dDate < 50) { datebreak = 5 dateminbreak = 1 } # Open new plot p = ggplot() + theme_ash # If it is the lats plot of the pages or not if (last) { if (first) { p = p + theme(plot.margin=margin(5, 5, 5, 5, unit="mm")) } else { p = p + theme(plot.margin=margin(0, 5, 5, 5, unit="mm")) } # If it is the first plot of the pages or not } else { if (first) { p = p + theme(plot.margin=margin(5, 5, 0, 5, unit="mm")) } else { p = p + theme(plot.margin=margin(0, 5, 0, 5, unit="mm")) } } ## Sub period background ## if (!is.null(trend_period)) { # trend_period = as.list(trend_period) # Imin = 10^99 # for (per in trend_period) { # I = interval(per[1], per[2]) # if (I < Imin) { # Imin = I # trend_period_min = as.Date(per) # } # } # p = p + # geom_rect(aes(xmin=min(df_data_code$Date), # ymin=0, # xmax=trend_period_min[1], # ymax= maxQ*1.1), # linetype=0, fill='grey97') + # geom_rect(aes(xmin=trend_period_min[2], # ymin=0, # xmax=max(df_data_code$Date), # ymax= maxQ*1.1), # linetype=0, fill='grey97') # Convert trend period to list if it is not trend_period = as.list(trend_period) # Fix a disproportionate minimum for period Imin = 10^99 # For all the sub period of analysis in 'trend_period' for (per in trend_period) { # Compute time interval of period I = interval(per[1], per[2]) # If it is the smallest interval if (I < Imin) { # Store it Imin = I # Fix min period of analysis trend_period_min = as.Date(per) } } # Search for the index of the closest existing date # to the start of the min period of analysis idMinPer = which.min(abs(df_data_code$Date - trend_period_min[1])) # Same for the end of the min period of analysis idMaxPer = which.min(abs(df_data_code$Date - trend_period_min[2])) # Get the start and end date associated minPer = df_data_code$Date[idMinPer] maxPer = df_data_code$Date[idMaxPer] # If it is not a flow or sqrt of flow time serie if (type != 'sqrt(Q)' & type != 'Q') { # If there is an 'axis_lim' if (!is.null(axis_xlim)) { # If the temporary start of period is smaller # than the fix start of x axis limit if (minPer < axis_xlim[1]) { # Set the start of the period to the start of # the x axis limit minPer = axis_xlim[1] } } } # If it is not a flow or sqrt of flow time serie if (type != 'sqrt(Q)' & type != 'Q') { # If there is an 'axis_lim' if (!is.null(axis_xlim)) { # If the temporary end of period plus one year # is smaller than the fix end of x axis limit if (maxPer + years(1) < axis_xlim[2]) { # Add one year the the temporary end of period maxPer = maxPer + years(1) } else { # Set the start of the period to the start of # the x axis limit maxPer = axis_xlim[2] } # Add one year the the temporary end of period # if there is no 'axis_lim' } else { maxPer = maxPer + years(1) } } # Draw rectangle to delimiting the sub period p = p + geom_rect(aes(xmin=minPer, ymin=0, xmax=maxPer, ymax= maxQ*1.1), linetype=0, fill='grey97') } ## Mean step ## # If there is a 'mean_period' if (!is.null(mean_period)) { # Convert 'mean_period' to list mean_period = as.list(mean_period) # Number of mean period nPeriod_mean = length(mean_period) # Blank tibble to store variable in order to plot # rectangle for mean period plot_mean = tibble() # Blank tibble to store variable in order to plot # upper limit of rectangle for mean period plot_line = tibble() # For all mean period for (j in 1:nPeriod_mean) { # Get the current start and end of the sub period Start_mean = mean_period[[j]][1] End_mean = mean_period[[j]][2] # Extract the data corresponding to this sub period df_data_code_per = df_data_code[df_data_code$Date >= Start_mean & df_data_code$Date <= End_mean,] # Min for the sub period xmin = min(df_data_code_per$Date) # If the min over the sub period is greater # than the min of the entier period and # it is not the first sub period if (xmin > min(df_data_code$Date) & j != 1) { # Substract 6 months to be in the middle of # the previous year xmin = xmin - months(6) } # If it is not a flow or sqrt of flow time serie and # it is the first period if (type != 'sqrt(Q)' & type != 'Q' & j == 1) { # If there is an x axis limit if (!is.null(axis_xlim)) { # If the min of the period is before the x axis min if (xmin < axis_xlim[1]) { # The min for the sub period is the x axis xmin = axis_xlim[1] } } } # Max for the sub period xmax = max(df_data_code_per$Date) # If the max over the sub period is smaller # than the max of the entier period and # it is not the last sub period if (xmax < max(df_data_code$Date) & j != nPeriod_mean) { # Add 6 months to be in the middle of # the following year xmax = xmax + months(6) } # If it is not a flow or sqrt of flow time serie and # it is the last period if (type != 'sqrt(Q)' & type != 'Q' & j == nPeriod_mean) { # If there is an x axis limit if (!is.null(axis_xlim)) { # If the max of the period plus 1 year # is smaller thant the max of the x axis limit if (xmax + years(1) < axis_xlim[2]) { # Add one year to the max to include # the entire last year graphically xmax = xmax + years(1) } else { # The max of this sub period is the max # of the x axis limit xmax = axis_xlim[2] } # If there is no axis limit } else { # Add one year to the max to include # the entire last year graphically xmax = xmax + years(1) } } # Mean of the flow over the sub period ymax = mean(df_data_code_per$Qm3s, na.rm=TRUE) # Create temporary tibble with variable # to create rectangle for mean step plot_meantmp = tibble(xmin=xmin, xmax=xmax, ymin=0, ymax=ymax, period=j) # Bind it to the main tibble to store it with other period plot_mean = bind_rows(plot_mean, plot_meantmp) # Create vector for the upper limit of the rectangle abs = c(xmin, xmax) ord = c(ymax, ymax) # Create temporary tibble with variable # to create upper limit for rectangle plot_linetmp = tibble(abs=abs, ord=ord, period=j) # Bind it to the main tibble to store it with other period plot_line = bind_rows(plot_line, plot_linetmp) } # Plot rectangles p = p + geom_rect(data=plot_mean, aes(xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax), linetype=0, fill='grey93') # Plot upper line for rectangle p = p + geom_line(data=plot_line, aes(x=abs, y=ord, group=period), color='grey85', size=0.15) # for all the sub periods except the last one for (i in 1:(nPeriod_mean-1)) { # The y limit of rectangle is the max of # the two neighboring mean step rectangle yLim = max(c(plot_mean$ymax[i], plot_mean$ymax[i+1])) # The x limit is the x max of the ith rectangle xLim = plot_mean$xmax[i] # Make a tibble to store data plot_lim = tibble(x=c(xLim, xLim), y=c(0, yLim)) # Plot the limit of rectangles p = p + geom_line(data=plot_lim, aes(x=x, y=y), linetype='dashed', size=0.15, color='grey85') } } ### Grid ### if (grid) { # If there is no axis limit if (is.null(axis_xlim)) { # The min and the max is set by # the min and the max of the date data xmin = min(df_data_code$Date) xmax = max(df_data_code$Date) } else { # Min and max is set with the limit axis parameter xmin = axis_xlim[1] xmax = axis_xlim[2] } # Create a vector for all the y grid position ygrid = seq(0, maxQ*10, dbrk) # Blank vector to store position ord = c() abs = c() # For all the grid element for (i in 1:length(ygrid)) { # Store grid position ord = c(ord, rep(ygrid[i], times=2)) abs = c(abs, xmin, xmax) } # Create a tibble to store all the position plot_grid = tibble(abs=as.Date(abs), ord=ord) # Plot the y grid p = p + geom_line(data=plot_grid, aes(x=abs, y=ord, group=ord), color='grey85', size=0.15) } ### Data ### # If it is a square root flow or flow if (type == 'sqrt(Q)' | type == 'Q') { # Plot the data as line p = p + geom_line(aes(x=df_data_code$Date, y=df_data_code$Qm3s), color='grey20', size=0.3, lineend="round") } else { # Plot the data as point p = p + geom_point(aes(x=df_data_code$Date, y=df_data_code$Qm3s), shape=21, color='grey50', fill='grey97', size=1) } ### Missing data ### # If the option is TRUE if (missRect) { # Remove NA data NAdate = df_data_code$Date[is.na(df_data_code$Qm3s)] # Get the difference between each point of date data without NA dNAdate = diff(NAdate) # If difference of day is not 1 then # it is TRUE for the beginning of each missing data period NAdate_Down = NAdate[append(Inf, dNAdate) != 1] # If difference of day is not 1 then # it is TRUE for the ending of each missing data period NAdate_Up = NAdate[append(dNAdate, Inf) != 1] # Plot the missing data period p = p + geom_rect(aes(xmin=NAdate_Down, ymin=0, xmax=NAdate_Up, ymax=maxQ*1.1), linetype=0, fill='Wheat', alpha=0.4) } ### Trend ### # If there is trends if (!is.null(df_trend_code)) { # Extract starting period of trends Start = df_trend_code$period_start # Get the name of the different period UStart = levels(factor(Start)) # Same for ending End = df_trend_code$period_end UEnd = levels(factor(End)) # Compute the max of different start and end # so the number of different period nPeriod_trend = max(length(UStart), length(UEnd)) # Blank tibble to store trend data and legend data plot_trend = tibble() leg_trend = tibble() # For all the different period for (i in 1:nPeriod_trend) { # Get the trend associated to the first period df_trend_code_per = df_trend_code[df_trend_code$period_start == Start[i] & df_trend_code$period_end == End[i],] # Number of trend selected Ntrend = nrow(df_trend_code_per) # If the number of trend is greater than a unique one if (Ntrend > 1) { # Extract only the first hence it is the same period df_trend_code_per = df_trend_code_per[1,] } # Search for the index of the closest existing date # to the start of the trend period of analysis iStart = which.min(abs(df_data_code$Date - Start[i])) # Same for the end iEnd = which.min(abs(df_data_code$Date - End[i])) # Get the start and end date associated xmin = df_data_code$Date[iStart] xmax = df_data_code$Date[iEnd] # If there is a x axis limit if (!is.null(axis_xlim)) { # If the min of the current period # is smaller than the min of the x axis limit if (xmin < axis_xlim[1]) { # The min of the period is the min # of the x axis limit xmin = axis_xlim[1] } # Same for end if (xmax > axis_xlim[2]) { xmax = axis_xlim[2] } } # Create vector to store x data abs = c(xmin, xmax) # Convert the number of day to the unit of the period abs_num = as.numeric(abs) / unit2day # Compute the y of the trend ord = abs_num * df_trend_code_per$trend + df_trend_code_per$intercept # Create temporary tibble with variable to plot trend # for each period plot_trendtmp = tibble(abs=abs, ord=ord, period=i) # Bind it to the main tibble to store it with other period plot_trend = bind_rows(plot_trend, plot_trendtmp) # If there is a x axis limit if (!is.null(axis_xlim)) { # The x axis limit is selected codeDate = axis_xlim } else { # The entire date data is selected codeDate = df_data_code$Date } # The flow data is extract codeQ = df_data_code$Qm3s # Position of the x beginning and end of the legend symbol x = gpct(2, codeDate, shift=TRUE) xend = x + gpct(3, codeDate) # Position of the y beginning and end of the legend symbol dy = gpct(7, codeQ, ref=0) y = gpct(100, codeQ, ref=0) - (i-1)*dy yend = y # Position of x for the beginning of the associated text xt = xend + gpct(1, codeDate) # Position of the background rectangle of the legend xminR = x - gpct(1, codeDate) yminR = y - gpct(4, codeQ, ref=0) xmaxR = x + gpct(24, codeDate) ymaxR = y + gpct(5, codeQ, ref=0) # Get the tendance analyse trend = df_trend_code_per$trend # Compute the magnitude of the trend power = get_power(trend) # Convert it to character powerC = as.character(power) # Get the power of ten of magnitude brk = 10^power # Convert trend to character for sientific expression trendC = as.character(round(trend / brk, 2)) # Create temporary tibble with variable to plot legend leg_trendtmp = tibble(x=x, xend=xend, y=y, yend=yend, xt=xt, trendC=trendC, powerC=powerC, xminR=xminR, yminR=yminR, xmaxR=xmaxR, ymaxR=ymaxR, period=i) # Bind it to the main tibble to store it with other period leg_trend = bind_rows(leg_trend, leg_trendtmp) } # For all periods for (i in 1:nPeriod_trend) { # Extract the trend of the current sub period leg_trend_per = leg_trend[leg_trend$period == i,] # Plot the background for legend p = p + geom_rect(data=leg_trend_per, aes(xmin=xminR, ymin=yminR, xmax=xmaxR, ymax=ymaxR), linetype=0, fill='white', alpha=0.5) } # For all periods for (i in 1:nPeriod_trend) { # Extract the trend of the current sub period leg_trend_per = leg_trend[leg_trend$period == i,] # Get the character variable for naming the trend trendC = leg_trend_per$trendC powerC = leg_trend_per$powerC # Create the name of the trend label = bquote(bold(.(trendC)~'x'~'10'^{.(powerC)})~'['*m^{3}*'.'*s^{-1}*'.'*an^{-1}*']') # Plot the trend symbole and value of the legend p = p + annotate("segment", x=leg_trend_per$x, xend=leg_trend_per$xend, y=leg_trend_per$y, yend=leg_trend_per$yend, color=color[i], linetype='solid', lwd=1) + annotate("text", label=label, size=3, x=leg_trend_per$xt, y=leg_trend_per$y, hjust=0, vjust=0.4, color=color[i]) } # For all periods for (i in 1:nPeriod_trend) { # Extract the trend of the current sub period plot_trend_per = plot_trend[plot_trend$period == i,] # Plot the line of white background of each trend p = p + geom_line(data=plot_trend_per, aes(x=abs, y=ord), color='white', linetype='solid', size=1.5, lineend="round") } # For all periods for (i in 1:nPeriod_trend) { # Extract the trend of the current sub period plot_trend_per = plot_trend[plot_trend$period == i,] # Plot the line of trend p = p + geom_line(data=plot_trend_per, aes(x=abs, y=ord), color=color[i], linetype='solid', size=0.75, lineend="round") } } # Title p = p + ggtitle(bquote(bold(.(type))~~'['*m^{3}*'.'*s^{-1}*']')) # If the is no x axis limit if (is.null(axis_xlim)) { # Parameters of the x axis contain the limit of the date data p = p + scale_x_date(date_breaks=paste( as.character(datebreak), 'year', sep=' '), date_minor_breaks=paste( as.character(dateminbreak), 'year', sep=' '), guide='axis_minor', date_labels="%Y", limits=c(min(df_data_code$Date), max(df_data_code$Date)), expand=c(0, 0)) } else { # Parameters of the x axis contain the x axis limit p = p + scale_x_date(date_breaks=paste( as.character(datebreak), 'year', sep=' '), date_minor_breaks=paste( as.character(dateminbreak), 'year', sep=' '), guide='axis_minor', date_labels="%Y", limits=axis_xlim, expand=c(0, 0)) } # Parameters of the y axis p = p + scale_y_continuous(breaks=seq(0, maxQ*10, dbrk), limits=c(0, maxQ*1.1), expand=c(0, 0), labels=label_number(accuracy=accuracy)) return(p) } matrice_panel = function (list_df2plot, df_meta, trend_period, mean_period, slice=NULL, outdirTmp='', outnameTmp='matrix', title=NULL, A3=FALSE) { nbp = length(list_df2plot) # Get all different stations code Code = levels(factor(df_meta$code)) nCode = length(Code) # nbp = length(list_df2plot) # # Get all different stations code # Code = levels(factor(df_meta$code)) # nCode = length(Code) df_trend = list_df2plot[[1]]$trend # Convert 'trend_period' to list trend_period = as.list(trend_period) # Number of trend period nPeriod_trend = length(trend_period) nPeriod_max = 0 for (code in Code) { df_trend_code = df_trend[df_trend$code == code,] Start = df_trend_code$period_start UStart = levels(factor(Start)) End = df_trend_code$period_end UEnd = levels(factor(End)) nPeriod = max(length(UStart), length(UEnd)) if (nPeriod > nPeriod_max) { nPeriod_max = nPeriod } } # print(nPeriod_trend) # print(nPeriod_max) Start_code = vector(mode='list', length=nCode) End_code = vector(mode='list', length=nCode) Code_code = vector(mode='list', length=nCode) Periods_code = vector(mode='list', length=nCode) for (j in 1:nCode) { code = Code[j] df_trend_code = df_trend[df_trend$code == code,] Start = df_trend_code$period_start UStart = levels(factor(Start)) End = df_trend_code$period_end UEnd = levels(factor(End)) nPeriod = max(length(UStart), length(UEnd)) Periods = c() for (i in 1:nPeriod_trend) { Periods = append(Periods, paste(Start[i], End[i], sep=' / ')) } Start_code[[j]] = Start End_code[[j]] = End Code_code[[j]] = code Periods_code[[j]] = Periods } TrendMean_code = array(rep(1, nPeriod_trend*nbp*nCode), dim=c(nPeriod_trend, nbp, nCode)) for (j in 1:nPeriod_trend) { for (k in 1:nCode) { code = Code[k] for (i in 1:nbp) { df_data = list_df2plot[[i]]$data df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold df_data_code = df_data[df_data$code == code,] df_trend_code = df_trend[df_trend$code == code,] Start = Start_code[Code_code == code][[1]][j] End = End_code[Code_code == code][[1]][j] Periods = Periods_code[Code_code == code][[1]][j] df_data_code_per = df_data_code[df_data_code$Date >= Start & df_data_code$Date <= End,] df_trend_code_per = df_trend_code[df_trend_code$period_start == Start & df_trend_code$period_end == End,] Ntrend = nrow(df_trend_code_per) if (Ntrend > 1) { df_trend_code_per = df_trend_code_per[1,] } dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE) trendMean = df_trend_code_per$trend / dataMean if (df_trend_code_per$p <= p_threshold){ TrendMean_code[j, i, k] = trendMean } else { TrendMean_code[j, i, k] = NA } } } } minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE) maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE) Periods_trend = c() NPeriod_trend = c() Type_trend = list() Code_trend = c() Pthresold_trend = c() TrendMean_trend = c() DataMean_trend = c() Fill_trend = c() Color_trend = c() for (j in 1:nPeriod_trend) { for (code in Code) { for (i in 1:nbp) { df_data = list_df2plot[[i]]$data df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold type = list_df2plot[[i]]$type df_data_code = df_data[df_data$code == code,] df_trend_code = df_trend[df_trend$code == code,] Start = Start_code[Code_code == code][[1]][j] End = End_code[Code_code == code][[1]][j] Periods = Periods_code[Code_code == code][[1]][j] df_data_code_per = df_data_code[df_data_code$Date >= Start & df_data_code$Date <= End,] df_trend_code_per = df_trend_code[df_trend_code$period_start == Start & df_trend_code$period_end == End,] Ntrend = nrow(df_trend_code_per) if (Ntrend > 1) { df_trend_code_per = df_trend_code_per[1,] } dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE) trendMean = df_trend_code_per$trend / dataMean if (df_trend_code_per$p <= p_threshold){ color_res = get_color(trendMean, minTrendMean[j, i], maxTrendMean[j, i], palette_name='perso', reverse=TRUE) fill = color_res color = 'white' Pthresold = p_thresold } else { fill = 'white' color = 'grey85' Pthresold = NA } Periods_trend = append(Periods_trend, Periods) NPeriod_trend = append(NPeriod_trend, j) Type_trend = append(Type_trend, type) Code_trend = append(Code_trend, code) Pthresold_trend = append(Pthresold_trend, Pthresold) TrendMean_trend = append(TrendMean_trend, trendMean) DataMean_trend = append(DataMean_trend, dataMean) Fill_trend = append(Fill_trend, fill) Color_trend = append(Color_trend, color) } } } # If there is a 'mean_period' if (!is.null(mean_period)) { Periods_mean = c() NPeriod_mean = c() Type_mean = list() Code_mean = c() DataMean_mean = c() BreakMean_mean = c() # Convert 'mean_period' to list mean_period = as.list(mean_period) # Number of mean period nPeriod_mean = length(mean_period) BreakMean_code = array(rep(1, nPeriod_mean*nbp*nCode), dim=c(nPeriod_mean, nbp, nCode)) dataMeantmp = array(rep(NA, nbp*nCode), dim=c(nbp, nCode)) # For all mean period for (j in 1:nPeriod_mean) { for (k in 1:nCode) { code = Code[k] for (i in 1:nbp) { df_data = list_df2plot[[i]]$data type = list_df2plot[[i]]$type df_data_code = df_data[df_data$code == code,] # Get the current start and end of the sub period Start_mean = mean_period[[j]][1] End_mean = mean_period[[j]][2] # Extract the data corresponding to this sub period df_data_code_per = df_data_code[df_data_code$Date >= Start_mean & df_data_code$Date <= End_mean,] # Min for the sub period Datemin = min(df_data_code_per$Date) # Max for the sub period Datemax = max(df_data_code_per$Date) Periods = paste(Datemin, Datemax, sep=' / ') # Mean of the flow over the sub period dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE) if (j > 1) { Break = dataMean - dataMeantmp[i, k] } else { Break = NA } BreakMean = Break / dataMeantmp[i, k] BreakMean_code[j, i, k] = BreakMean dataMeantmp[i, k] = dataMean Periods_mean = append(Periods_mean, Periods) NPeriod_mean = append(NPeriod_mean, j) Type_mean = append(Type_mean, type) Code_mean = append(Code_mean, code) DataMean_mean = append(DataMean_mean, dataMean) BreakMean_mean = append(BreakMean_mean, BreakMean) } } } minBreakMean = apply(BreakMean_code, c(1, 2), min, na.rm=TRUE) maxBreakMean = apply(BreakMean_code, c(1, 2), max, na.rm=TRUE) Fill_mean = c() Color_mean = c() ii = 1 for (j in 1:nPeriod_mean) { for (k in 1:nCode) { code = Code[k] for (i in 1:nbp) { BreakMean = BreakMean_mean[ii] color_res = get_color(BreakMean, minBreakMean[j, i], maxBreakMean[j, i], palette_name='perso', reverse=TRUE) fill = color_res color = 'white' Fill_mean = append(Fill_mean, fill) Color_mean = append(Color_mean, color) ii = ii + 1 } } } } if (is.null(slice)) { slice = nCode } firstLetter = levels(factor(substr(Code, 1, 1))) for (fL in firstLetter) { print(paste('Matrix for region :', fL)) # Get only station code with the same first letter subCodefL = Code[substr(Code, 1, 1) == fL] nsubCodefL = length(subCodefL) nMat = as.integer(nsubCodefL/slice) + 1 # print(nsubCodefL) # print(nMat) for (imat in 1:nMat) { subCode = subCodefL[(slice*(imat-1)+1):(slice*imat)] subCode = subCode[!is.na(subCode)] nsubCode = length(subCode) CodefL_trend = Code_trend %in% subCode subPeriods_trend = Periods_trend[CodefL_trend] subNPeriod_trend = NPeriod_trend[CodefL_trend] subType_trend = Type_trend[CodefL_trend] subCode_trend = Code_trend[CodefL_trend] subPthresold_trend = Pthresold_trend[CodefL_trend] subTrendMean_trend = TrendMean_trend[CodefL_trend] subDataMean_trend = DataMean_trend[CodefL_trend] subFill_trend = Fill_trend[CodefL_trend] subColor_trend = Color_trend[CodefL_trend] CodefL_mean = Code_mean %in% subCode subPeriods_mean = Periods_mean[CodefL_mean] subNPeriod_mean = NPeriod_mean[CodefL_mean] subType_mean = Type_mean[CodefL_mean] subCode_mean = Code_mean[CodefL_mean] subDataMean_mean = DataMean_mean[CodefL_mean] subBreakMean_mean = BreakMean_mean[CodefL_mean] subFill_mean = Fill_mean[CodefL_mean] subColor_mean = Color_mean[CodefL_mean] title = df_meta[df_meta$code == subCode[1],]$region_hydro ### Plot ### height = nsubCode width = nbp * 2 * nPeriod_trend + nPeriod_trend + nPeriod_mean * nbp + nPeriod_mean + nbp options(repr.plot.width=width, repr.plot.height=height) mat = ggplot() + theme_ash + theme( panel.border=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank(), axis.ticks.x=element_blank(), axis.title.y=element_blank(), plot.margin=margin(t=5, r=5, b=5, l=5, unit="mm") ) xt = 1 - 6 yt = height + 2 Title = bquote(bold(.(title))) mat = mat + annotate("text", x=xt, y=yt, label=Title, hjust=0, vjust=1, size=6, color="#00A3A8") ### Trend ### for (j in 1:nPeriod_trend) { Type_trend_per = subType_trend[subNPeriod_trend == j] Code_trend_per = subCode_trend[subNPeriod_trend == j] Pthresold_trend_per = subPthresold_trend[subNPeriod_trend == j] TrendMean_trend_per = subTrendMean_trend[subNPeriod_trend == j] DataMean_trend_per = subDataMean_trend[subNPeriod_trend == j] Fill_trend_per = subFill_trend[subNPeriod_trend == j] Color_trend_per = subColor_trend[subNPeriod_trend == j] Xtmp = as.integer(factor(as.character(Type_trend_per))) Xc = j + (j - 1)*nbp*2 Xm = Xtmp + (j - 1)*nbp*2 + j X = Xtmp + (j - 1)*nbp*2 + nbp + j Y = as.integer(factor(Code_trend_per)) x = Xc - 0.4 xend = X[length(X)] + 0.25 y = height + 1 yend = height + 1 mat = mat + annotate("segment", x=x, xend=xend, y=y, yend=yend, color="grey40", size=0.35) yt = y + 0.15 Start = trend_period[[j]][1] End = trend_period[[j]][2] periodName = bquote(bold('P�riode')~bold(.(as.character(j)))) mat = mat + annotate("text", x=x, y=yt, label=periodName, hjust=0, vjust=0.5, size=3, color='grey40') for (i in 1:length(X)) { mat = mat + gg_circle(r=0.45, xc=X[i], yc=Y[i], fill=Fill_trend_per[i], color=Color_trend_per[i]) + gg_circle(r=0.45, xc=Xm[i], yc=Y[i], fill='white', color='grey40') + gg_circle(r=0.45, xc=Xc, yc=Y[i], fill='white', color='grey40') } for (i in 1:length(TrendMean_trend_per)) { trendMean = TrendMean_trend_per[i] trendC = signif(trendMean*100, 2) if (!is.na(Pthresold_trend_per[i])) { Tcolor = 'white' } else { Tcolor = 'grey85' } dataMean = signif(DataMean_trend_per[i], 2) mat = mat + annotate('text', x=X[i], y=Y[i], label=trendC, hjust=0.5, vjust=0.5, size=3, color=Tcolor) + annotate('text', x=Xm[i], y=Y[i], label=dataMean, hjust=0.5, vjust=0.5, size=3, color='grey40') } mat = mat + annotate('text', x=Xc, y=max(Y) + 0.85, label=bquote(bold('D�but')), hjust=0.5, vjust=0.5, size=3, color='grey20') + annotate('text', x=Xc, y=max(Y) + 0.6, label=bquote(bold('Fin')), hjust=0.5, vjust=0.5, size=3, color='grey20') for (i in 1:nbp) { type = list_df2plot[[i]]$type mat = mat + annotate('text', x=X[i], y=max(Y) + 0.82, label=bquote(.(type)), hjust=0.5, vjust=0.5, size=3.25, color='grey20') + annotate('text', x=X[i], y=max(Y) + 0.6, label=bquote('[%.'*ans^{-1}*']'), hjust=0.5, vjust=0.5, size=2, color='grey40') + annotate('text', x=Xm[i], y=max(Y) + 0.82, label=bquote('�'*.(type)), hjust=0.5, vjust=0.5, size=3.25, color='grey20') + annotate('text', x=Xm[i], y=max(Y) + 0.6, label=bquote('['*m^3*'.'*s^{-1}*']'), hjust=0.5, vjust=0.5, size=2, color='grey40') } for (k in 1:nsubCode) { code = subCode[k] label = Periods_trend[subNPeriod_trend == j & subCode_trend == code][1] periodStart = substr(label, 1, 4) periodEnd = substr(label, 14, 17) mat = mat + annotate('text', x=Xc, y=k + 0.13, label=bquote(bold(.(periodStart))), hjust=0.5, vjust=0.5, size=3, color='grey40') + annotate('text', x=Xc, y=k - 0.13, label=bquote(bold(.(periodEnd))), hjust=0.5, vjust=0.5, size=3, color='grey40') } } ### Mean ### for (j in 1:nPeriod_mean) { Type_mean_per = subType_mean[subNPeriod_mean == j] Code_mean_per = subCode_mean[subNPeriod_mean == j] DataMean_mean_per = subDataMean_mean[subNPeriod_mean == j] BreakMean_mean_per = subBreakMean_mean[subNPeriod_mean == j] Fill_mean_per = subFill_mean[subNPeriod_mean == j] Color_mean_per = subColor_mean[subNPeriod_mean == j] Xtmp_mean = as.integer(factor(as.character(Type_mean_per))) Xc_mean = j + (j - 1)*nbp + X[length(X)] Xm_mean = Xtmp_mean + (j - 1)*nbp + j + X[length(X)] Xr_mean = Xtmp_mean + (j - 1)*nbp*2 + j + X[length(X)] Y_mean = as.integer(factor(Code_mean_per)) x = Xc_mean - 0.4 xend = Xm_mean[length(Xm_mean)] + 0.25 y = height + 1 yend = height + 1 mat = mat + annotate("segment", x=x, xend=xend, y=y, yend=yend, color="grey40", size=0.35) yt = y + 0.15 Start = mean_period[[j]][1] End = mean_period[[j]][2] periodName = bquote(bold('P�riode')~bold(.(as.character(j+nPeriod_trend)))) mat = mat + annotate("text", x=x, y=yt, label=periodName, hjust=0, vjust=0.5, size=3, color='grey40') if (j > 1) { x = Xr_mean[1] - 0.4 xend = Xr_mean[length(Xr_mean)] + 0.25 mat = mat + annotate("segment", x=x, xend=xend, y=y, yend=yend, color="grey40", size=0.35) breakName = bquote(bold('�cart')~bold(.(as.character(j-1+nPeriod_trend)))*bold('-')*bold(.(as.character(j+nPeriod_trend)))) mat = mat + annotate("text", x=x, y=yt, label=breakName, hjust=0, vjust=0.5, size=3, color='grey40') } for (i in 1:length(Xm_mean)) { mat = mat + gg_circle(r=0.45, xc=Xm_mean[i], yc=Y[i], fill='white', color='grey40') + gg_circle(r=0.45, xc=Xc_mean, yc=Y[i], fill='white', color='grey40') if (j > 1) { mat = mat + gg_circle(r=0.45, xc=Xr_mean[i], yc=Y[i], fill=Fill_mean_per[i], color=Color_mean_per[i]) } } for (i in 1:length(DataMean_mean_per)) { dataMean = signif(DataMean_mean_per[i], 2) mat = mat + annotate('text', x=Xm_mean[i], y=Y[i], label=dataMean, hjust=0.5, vjust=0.5, size=3, color='grey40') if (j > 1) { BreakMean = BreakMean_mean_per[i] BreakC = signif(BreakMean*100, 2) mat = mat + annotate('text', x=Xr_mean[i], y=Y[i], label=BreakC, hjust=0.5, vjust=0.5, size=3, color='white') } } mat = mat + annotate('text', x=Xc_mean, y=max(Y) + 0.85, label=bquote(bold('D�but')), hjust=0.5, vjust=0.5, size=3, color='grey20') + annotate('text', x=Xc_mean, y=max(Y) + 0.6, label=bquote(bold('Fin')), hjust=0.5, vjust=0.5, size=3, color='grey20') for (i in 1:nbp) { type = list_df2plot[[i]]$type mat = mat + annotate('text', x=Xm_mean[i], y=max(Y) + 0.82, label=bquote('�'*.(type)), hjust=0.5, vjust=0.5, size=3.25, color='grey20') + annotate('text', x=Xm_mean[i], y=max(Y) + 0.6, label=bquote('['*m^3*'.'*s^{-1}*']'), hjust=0.5, vjust=0.5, size=2, color='grey40') if (j > 1) { mat = mat + annotate('text', x=Xr_mean[i], y=max(Y) + 0.82, label=bquote('d'*.(type)), hjust=0.5, vjust=0.5, size=3.25, color='grey20') + annotate('text', x=Xr_mean[i], y=max(Y) + 0.6, label=bquote('[%]'), hjust=0.5, vjust=0.5, size=2, color='grey40') } } for (k in 1:nsubCode) { code = subCode[k] label = Periods_mean[subNPeriod_mean == j & subCode_mean == code][1] periodStart = substr(label, 1, 4) periodEnd = substr(label, 14, 17) mat = mat + annotate('text', x=Xc_mean, y=k + 0.13, label=bquote(bold(.(periodStart))), hjust=0.5, vjust=0.5, size=3, color='grey40') + annotate('text', x=Xc_mean, y=k - 0.13, label=bquote(bold(.(periodEnd))), hjust=0.5, vjust=0.5, size=3, color='grey40') } } ### Code ### for (k in 1:nsubCode) { code = subCode[k] name = df_meta[df_meta$code == code,]$nom ncharMax = 38 if (nchar(name) > ncharMax) { name = paste(substr(name, 1, ncharMax), '...', sep='') } mat = mat + annotate('text', x=0.3, y=k + 0.14, label=bquote(bold(.(code))), hjust=1, vjust=0.5, size=3.5, color="#00A3A8") + annotate('text', x=0.3, y=k - 0.14, label=name, hjust=1, vjust=0.5, size=3.5, color="#00A3A8") } ### Environment ### mat = mat + coord_fixed() + scale_x_continuous(limits=c(1 - rel(6), width + rel(0.5)), expand=c(0, 0)) + scale_y_continuous(limits=c(1 - rel(0.5), height + rel(2)), expand=c(0, 0)) # Saving matrix plot if (A3) { width = 42 height = 29.7 dpi = 300 } else { width = 29.7 height = 21 dpi = 100 } # print('ggg') ggsave(plot=mat, path=outdirTmp, filename=paste(outnameTmp, '_', fL, imat, '.pdf', sep=''), width=width, height=height, units='cm', dpi=dpi) # print('hhh') } } } map_panel = function (list_df2plot, df_meta, df_shapefile, idPer=1, outdirTmp='', codeLight=NULL, margin=NULL, showSea=TRUE, verbose=TRUE) { df_france = df_shapefile$france df_bassin = df_shapefile$bassin df_river = df_shapefile$river # Number of type/variable nbp = length(list_df2plot) # Get all different stations code Code = levels(factor(df_meta$code)) nCode = length(Code) df_trend = list_df2plot[[1]]$trend nPeriod_max = 0 for (code in Code) { df_trend_code = df_trend[df_trend$code == code,] Start = df_trend_code$period_start UStart = levels(factor(Start)) End = df_trend_code$period_end UEnd = levels(factor(End)) nPeriod = max(length(UStart), length(UEnd)) if (nPeriod > nPeriod_max) { nPeriod_max = nPeriod } } Start_code = vector(mode='list', length=nCode) End_code = vector(mode='list', length=nCode) Code_code = vector(mode='list', length=nCode) Periods_code = vector(mode='list', length=nCode) for (j in 1:nCode) { code = Code[j] df_trend_code = df_trend[df_trend$code == code,] Start = df_trend_code$period_start UStart = levels(factor(Start)) End = df_trend_code$period_end UEnd = levels(factor(End)) nPeriod = max(length(UStart), length(UEnd)) Periods = c() for (i in 1:nPeriod_max) { Periods = append(Periods, paste(substr(Start[i], 1, 4), substr(End[i], 1, 4), sep=' / ')) } Start_code[[j]] = Start End_code[[j]] = End Code_code[[j]] = code Periods_code[[j]] = Periods } TrendMean_code = array(rep(1, nPeriod_max*nbp*nCode), dim=c(nPeriod_max, nbp, nCode)) for (j in 1:nPeriod_max) { for (k in 1:nCode) { code = Code[k] for (i in 1:nbp) { df_data = list_df2plot[[i]]$data df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold df_data_code = df_data[df_data$code == code,] df_trend_code = df_trend[df_trend$code == code,] Start = Start_code[Code_code == code][[1]][j] End = End_code[Code_code == code][[1]][j] Periods = Periods_code[Code_code == code][[1]][j] df_data_code_per = df_data_code[df_data_code$Date >= Start & df_data_code$Date <= End,] df_trend_code_per = df_trend_code[df_trend_code$period_start == Start & df_trend_code$period_end == End,] Ntrend = nrow(df_trend_code_per) if (Ntrend > 1) { df_trend_code_per = df_trend_code_per[1,] } dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE) trendMean = df_trend_code_per$trend / dataMean if (df_trend_code_per$p <= p_threshold){ TrendMean_code[j, i, k] = trendMean } else { TrendMean_code[j, i, k] = NA } } } } minTrendMean = apply(TrendMean_code, c(1, 2), min, na.rm=TRUE) maxTrendMean = apply(TrendMean_code, c(1, 2), max, na.rm=TRUE) ncolor = 256 nbTick = 10 for (i in 1:nbp) { if (i > 1 & !is.null(codeLight)) { break } type = list_df2plot[[i]]$type outname = paste('map_', type, sep='') if (verbose) { print(paste('Map for variable :', type)) } if (is.null(codeLight)) { sizefr = 0.45 sizebs = 0.4 sizerv = 0.3 } else { sizefr = 0.35 sizebs = 0.3 sizerv = 0.2 } map = ggplot() + theme_void() + # theme(plot.background=element_rect(fill=NA, # color="#EC4899")) + coord_fixed() + geom_polygon(data=df_france, aes(x=long, y=lat, group=group), color=NA, fill="grey97") if (!is.null(df_river)) { map = map + geom_path(data=df_river, aes(x=long, y=lat, group=group), color="grey85", size=sizerv) } map = map + geom_polygon(data=df_bassin, aes(x=long, y=lat, group=group), color="grey70", fill=NA, size=sizebs) + geom_polygon(data=df_france, aes(x=long, y=lat, group=group), color="grey40", fill=NA, size=sizefr) if (showSea) { xlim = c(280000, 790000) ylim = c(6110000, 6600000) } else { xlim = c(305000, 790000) ylim = c(6135000, 6600000) } if (is.null(codeLight)) { xmin = gpct(7, xlim, shift=TRUE) xint = c(0, 10*1E3, 50*1E3, 100*1E3) ymin = gpct(5, ylim, shift=TRUE) ymax = ymin + gpct(1, ylim) size = 3 sizekm = 2.5 } else { xmin = gpct(5, xlim, shift=TRUE) xint = c(0, 100*1E3) ymin = gpct(1, ylim, shift=TRUE) ymax = ymin + gpct(3, ylim) size = 2 sizekm = 1.5 } map = map + geom_line(aes(x=c(xmin, max(xint)+xmin), y=c(ymin, ymin)), color="grey40", size=0.2) + annotate("text", x=max(xint)+xmin+gpct(1, xlim), y=ymin, vjust=0, hjust=0, label="km", color="grey40", size=sizekm) for (x in xint) { map = map + annotate("segment", x=x+xmin, xend=x+xmin, y=ymin, yend=ymax, color="grey40", size=0.2) + annotate("text", x=x+xmin, y=ymax+gpct(0.5, ylim), vjust=0, hjust=0.5, label=x/1E3, color="grey40", size=size) } map = map + coord_sf(xlim=xlim, ylim=ylim, expand=FALSE) if (is.null(margin)) { map = map + theme(plot.margin=margin(t=0, r=0, b=0, l=0, unit="mm")) } else { map = map + theme(plot.margin=margin) } lon = c() lat = c() fill = c() shape = c() trend = c() p_threshold_Ok = c() for (code in Code) { df_data = list_df2plot[[i]]$data df_trend = list_df2plot[[i]]$trend p_threshold = list_df2plot[[i]]$p_threshold df_data_code = df_data[df_data$code == code,] df_trend_code = df_trend[df_trend$code == code,] Start = Start_code[Code_code == code][[1]][idPer] End = End_code[Code_code == code][[1]][idPer] df_data_code_per = df_data_code[df_data_code$Date >= Start & df_data_code$Date <= End,] df_trend_code_per = df_trend_code[df_trend_code$period_start == Start & df_trend_code$period_end == End,] Ntrend = nrow(df_trend_code_per) if (Ntrend > 1) { df_trend_code_per = df_trend_code_per[1,] } dataMean = mean(df_data_code_per$Qm3s, na.rm=TRUE) trendMean = df_trend_code_per$trend / dataMean color_res = get_color(trendMean, minTrendMean[idPer, i], maxTrendMean[idPer, i], palette_name='perso', reverse=TRUE, ncolor=ncolor) palette_res = get_palette(minTrendMean[idPer, i], maxTrendMean[idPer, i], palette_name='perso', reverse=TRUE, ncolor=ncolor, nbTick=nbTick) if (df_trend_code_per$p <= p_threshold){ filltmp = color_res if (trendMean >= 0) { shapetmp = 24 } else { shapetmp = 25 } } else { filltmp = 'grey97' shapetmp = 21 } lontmp = df_meta[df_meta$code == code,]$L93X_m_BH lattmp = df_meta[df_meta$code == code,]$L93Y_m_BH lon = c(lon, lontmp) lat = c(lat, lattmp) fill = c(fill, filltmp) shape = c(shape, shapetmp) trend = c(trend, trendMean) p_threshold_Ok = c(p_threshold_Ok, df_trend_code_per$p <= p_threshold) } plot_map = tibble(lon=lon, lat=lat, fill=fill, shape=shape, code=Code) if (is.null(codeLight)) { map = map + geom_point(data=plot_map, aes(x=lon, y=lat), shape=shape, size=5, stroke=1, color='grey50', fill=fill) } else { plot_map_codeNo = plot_map[plot_map$code != codeLight,] plot_map_code = plot_map[plot_map$code == codeLight,] map = map + geom_point(data=plot_map_codeNo, aes(x=lon, y=lat), shape=21, size=0.5, stroke=0.5, color='grey70', fill='grey70') + geom_point(data=plot_map_code, aes(x=lon, y=lat), shape=21, size=1.5, stroke=0.5, color='grey40', fill='grey40') } posTick = palette_res$posTick labTick = palette_res$labTick colTick = palette_res$colTick nbTickmod = length(posTick) valNorm = nbTickmod * 10 ytick = posTick / max(posTick) * valNorm labTick = as.character(round(labTick*100, 2)) xtick = rep(0, times=nbTickmod) plot_palette = tibble(xtick=xtick, ytick=ytick, colTick=colTick, labTick=labTick) title = ggplot() + theme_void() + geom_line(aes(x=c(-0.3, 3.3), y=c(0.05, 0.05)), size=0.6, color="#00A3A8") + geom_shadowtext(data=tibble(x=-0.3, y=0.2, label=type), aes(x=x, y=y, label=label), fontface="bold", color="#00A3A8", bg.colour="white", hjust=0, vjust=0, size=10) + scale_x_continuous(limits=c(-1, 1 + 3), expand=c(0, 0)) + scale_y_continuous(limits=c(0, 10), expand=c(0, 0)) + theme(plot.margin=margin(t=5, r=5, b=0, l=0, unit="mm")) pal = ggplot() + theme_void() + geom_point(data=plot_palette, aes(x=xtick, y=ytick), shape=21, size=5, stroke=1, color='white', fill=colTick) pal = pal + annotate('text', x=-0.3, y= valNorm + 23, label="Tendance", hjust=0, vjust=0.5, size=6, color='grey40') + annotate('text', x=-0.2, y= valNorm + 13, label=bquote(bold("% par an")), hjust=0, vjust=0.5, size=4, color='grey40') for (j in 1:nbTickmod) { pal = pal + annotate('text', x=xtick[j]+0.3, y=ytick[j], label=bquote(bold(.(labTick[j]))), hjust=0, vjust=0.7, size=3, color='grey40') } pal = pal + geom_point(aes(x=0, y=-20), shape=24, size=4, stroke=1, color='grey50', fill='grey97') + annotate('text', x=0.3, y=-20, label=bquote(bold("Hausse significative � 10%")), hjust=0, vjust=0.5, size=3, color='grey40') pal = pal + geom_point(aes(x=0, y=-29), shape=21, size=4, stroke=1, color='grey50', fill='grey97') + annotate('text', x=0.3, y=-29, label=bquote(bold("Non significatif � 10%")), hjust=0, vjust=0.7, size=3, color='grey40') pal = pal + geom_point(aes(x=0, y=-40), shape=25, size=4, stroke=1, color='grey50', fill='grey97') + annotate('text', x=0.3, y=-40, label=bquote(bold("Baisse significative � 10%")), hjust=0, vjust=0.5, size=3, color='grey40') yTrend = (trend - minTrendMean[idPer, i]) / (maxTrendMean[idPer, i] - minTrendMean[idPer, i]) * valNorm yTrend = yTrend[p_threshold_Ok] ## Random distribution ## # xTrend = rnorm(length(yTrend), mean=1.75, sd=0.1) ## Histogram distribution ## res_hist = hist(yTrend, breaks=ytick, plot=FALSE) counts = res_hist$counts breaks = res_hist$breaks mids = res_hist$mids xTrend = c() yTrend = c() start_hist = 1.25 hist_sep = 0.15 for (ii in 1:length(mids)) { if (counts[ii] != 0) { xTrend = c(xTrend, seq(start_hist, start_hist+(counts[ii]-1)*hist_sep, by=hist_sep)) } yTrend = c(yTrend, rep(mids[ii], times=counts[ii])) } ## No touch distribution ## # start_hist = 1.25 # min_xsep = 0.15 # min_ysep = 4 # xTrend = rep(start_hist, times=length(yTrend)) # for (ii in 1:length(yTrend)) { # yTrendtmp = yTrend # yTrendtmp[ii] = 1E99 # isinf_ysep = abs(yTrendtmp - yTrend[ii]) < min_ysep # if (any(isinf_ysep) & !all(xTrend[which(isinf_ysep)] > start_hist)) { # xTrend[ii] = max(xTrend[which(isinf_ysep)]) + min_xsep # } # } plot_trend = tibble(xTrend=xTrend, yTrend=yTrend) pal = pal + geom_point(data=plot_trend, aes(x=xTrend, y=yTrend), # shape=21, size=1, # color="grey20", fill="grey20") alpha=0.4) pal = pal + geom_segment(aes(x=2.7, y=valNorm*0.75, xend=2.7, yend=valNorm*0.25), color='grey50', size=0.3, arrow=arrow(length=unit(2, "mm"))) + annotate('text', x=2.8, y=valNorm*0.5, label= "Plus s�v�re", angle=90, hjust=0.5, vjust=1, size=3, color='grey50') pal = pal + scale_x_continuous(limits=c(-1, 1 + 3), expand=c(0, 0)) + scale_y_continuous(limits=c(-60, valNorm + 35), expand=c(0, 0)) + theme(plot.margin=margin(t=0, r=5, b=5, l=0, unit="mm")) Map = list(map, title, pal) plot = grid.arrange(grobs=Map, layout_matrix= matrix(c(1, 1, 1, 2, 1, 1, 1, 3), nrow=2, byrow=TRUE)) if (is.null(codeLight)) { # Saving matrix plot ggsave(plot=plot, path=outdirTmp, filename=paste(outname, '.pdf', sep=''), width=29.7, height=21, units='cm', dpi=100) } } return (map) } hydrogramme = function (df_data_code, margin=NULL) { monthData = as.numeric(format(df_data_code$Date, "%m")) monthMean = c() for (i in 1:12) { data = df_data_code$Qm3s[monthData == i] monthMean[i] = mean(data, na.rm=TRUE) } monthNum = 1:12 monthName = c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D") # monthName = factor(monthName, levels=monthName) hyd = ggplot() + theme_ash + theme( # plot.background=element_rect(fill=NA, color="#EC4899"), panel.border=element_blank(), axis.text.x=element_text(margin=unit(c(0, 0, 0, 0), "mm"), vjust=1, hjust=0.5), axis.ticks.x=element_blank(), axis.line.y=element_line(color='grey85', size=0.3), plot.title=element_text(size=8, vjust=-1.5, hjust=-1E-3, color='grey40')) + ggtitle(bquote(bold('Q')~~'['*m^{3}*'.'*s^{-1}*']')) if (is.null(margin)) { hyd = hyd + theme(plot.margin=margin(t=0, r=0, b=0, l=0, unit="mm")) } else { hyd = hyd + theme(plot.margin=margin) } hyd = hyd + geom_bar(aes(x=monthNum, y=monthMean), stat='identity', fill="grey70", width=0.75, size=0.2) + scale_x_continuous(breaks=monthNum, labels=monthName, limits=c(0, max(monthNum)+0.5), expand=c(0, 0)) + scale_y_continuous(limits=c(0, max(monthMean)), expand=c(0, 0)) return (hyd) } info_panel = function(list_df2plot, df_meta, df_shapefile, codeLight, df_data_code=NULL) { if (!is.null(df_data_code)) { hyd = hydrogramme(df_data_code, margin=margin(t=3, r=0, b=0, l=5, unit="mm")) } else { hyd = void } # databin = list_df2plot[[1]]$data[list_df2plot[[1]]$data$code == codeLight,] # yearLast = format(databin$Date[nrow(databin)], "%Y") # yearFirst = format(databin$Date[1], "%Y") # Nyear = as.numeric(yearLast) - as.numeric(yearFirst) + 1 map = map_panel(list_df2plot, df_meta, df_shapefile=df_shapefile, codeLight=codeLight, margin=margin(t=5, r=2, b=0, l=0, unit="mm"), showSea=FALSE, verbose=FALSE) df_meta_code = df_meta[df_meta$code == codeLight,] nom = df_meta_code$nom nom = gsub("-", "- ", nom) duration = as.numeric(format(as.Date(df_meta_code$fin), "%Y")) - as.numeric(format(as.Date(df_meta_code$debut), "%Y")) debut = format(as.Date(df_meta_code$debut), "%d/%m/%Y") fin = format(as.Date(df_meta_code$fin), "%d/%m/%Y") text1 = paste( "<b>", codeLight, '</b> - ', nom, sep='') text2 = paste( "<b>", "Gestionnaire : ", df_meta_code$gestionnaire, "<br>", "R�gion hydro : ", df_meta_code$region_hydro, "</b>", sep='') text3 = paste( "<b>", "Superficie : ", df_meta_code$surface_km2_BH, " [km<sup>2</sup>] <br>", "Altitude : ", df_meta_code$altitude_m_BH, " [m]<br>", "X = ", df_meta_code$L93X_m_BH, " [m ; Lambert 93]<br>", "Y = ", df_meta_code$L93Y_m_BH, " [m ; Lambert 93]", "</b>", sep='') text4 = paste( "<b>", "Date de d�but : ", debut, "<br>", "Date de fin : ", fin, "<br>", "Nombre d'ann�es : ", duration, " [ans]", "<br>", "Taux de lacunes : ", signif(df_meta_code$tLac100, 2), " [%]", "</b>", sep='') gtext1 = richtext_grob(text1, x=0, y=1, margin=unit(c(t=5, r=5, b=10, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="#00A3A8", fontsize=14)) gtext2 = richtext_grob(text2, x=0, y=1, margin=unit(c(t=0, r=0, b=0, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=8)) gtext3 = richtext_grob(text3, x=0, y=1, margin=unit(c(t=0, r=0, b=0, l=5), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=9)) gtext4 = richtext_grob(text4, x=0, y=1, margin=unit(c(t=0, r=0, b=0, l=0), "mm"), hjust=0, vjust=1, gp=gpar(col="grey20", fontsize=9)) void = void + theme(plot.background=element_rect(fill=NA, color="#EC4899"), plot.margin=margin(t=0, r=0, b=0, l=0, unit="mm")) P = list(gtext1, gtext2, gtext3, gtext4, hyd, map) # P = list(void, void, void, void, void, void, void) LM = matrix(c(1, 1, 1, 6, # 7, 7, 7, 6, 2, 2, 5, 6, # 2, 2, 5, 6, 3, 4, 5, 6, 3, 4, 5, 6), nrow=4, byrow=TRUE) heights = rep(1, times=nrow(LM)) # heights[2] = 0.1 heights[2] = 0.8 plot = grid.arrange(grobs=P, layout_matrix=LM, heights=heights) return(plot) } histogram = function (data_bin, df_meta, figdir='', filedir_opt='') { # Get all different stations code Code = levels(factor(df_meta$code)) nCode = length(Code) # If there is not a dedicated figure directory it creats one outdir = file.path(figdir, filedir_opt, sep='') if (!(file.exists(outdir))) { dir.create(outdir) } datebreak = 10 dateminbreak = 1 res_hist = hist(data_bin, breaks='years', plot=FALSE) counts = res_hist$counts counts_pct = counts/nCode * 100 breaks = as.Date(res_hist$breaks) mids = as.Date(res_hist$mids) p = ggplot() + theme_ash + theme(panel.grid.major.y=element_line(color='grey85', size=0.15), axis.title.y=element_blank()) + geom_bar(aes(x=mids, y=counts_pct), stat='identity', fill="#00A3A8") + scale_x_date(date_breaks=paste(as.character(datebreak), 'year', sep=' '), date_minor_breaks=paste(as.character(dateminbreak), 'year', sep=' '), guide='axis_minor', date_labels="%Y", limits=c(min(data_bin)-years(0), max(data_bin)+years(0)), expand=c(0, 0)) + scale_y_continuous(limits=c(0, max(counts_pct)*1.1), expand=c(0, 0)) ggsave(plot=p, path=outdir, filename=paste('hist_break_date', '.pdf', sep=''), width=10, height=10, units='cm', dpi=100) } cumulative = function (data_bin, df_meta, dyear=10, figdir='', filedir_opt='') { # Get all different stations code Code = levels(factor(df_meta$code)) nCode = length(Code) # If there is not a dedicated figure directory it creats one outdir = file.path(figdir, filedir_opt, sep='') if (!(file.exists(outdir))) { dir.create(outdir) } datebreak = 10 dateminbreak = 1 res_hist = hist(data_bin, breaks='years', plot=FALSE) counts = res_hist$counts cumul = cumsum(counts) cumul_pct = cumul/nCode * 100 breaks = as.Date(res_hist$breaks) mids = as.Date(res_hist$mids) mids = c(mids[1] - years(dyear), mids[1] - years(1), mids, mids[length(mids)] + years(dyear)) cumul_pct = c(0, 0, cumul_pct, cumul_pct[length(cumul_pct)]) mids = mids + months(6) breaks = breaks + 1 breaks = breaks[-length(breaks)] DB = c() for (i in 1:length(breaks)) { DB = c(DB, rep(breaks[i], times=counts[i])) } q50 = as.Date(quantile(DB, probs=0.5)) + years(1) print(paste('mediane :', q50)) p = ggplot() + theme_ash + theme(panel.grid.major.y=element_line(color='grey85', size=0.15), axis.title.y=element_blank()) + geom_line(aes(x=mids, y=cumul_pct), color="#00A3A8") + geom_line(aes(x=c(q50, q50), y=c(0, 100)), color="wheat", lty='dashed') + scale_x_date(date_breaks=paste(as.character(datebreak), 'year', sep=' '), date_minor_breaks=paste(as.character(dateminbreak), 'year', sep=' '), guide='axis_minor', date_labels="%Y", limits=c(min(mids)-years(0), max(mids)+years(0)), expand=c(0, 0)) + scale_y_continuous(limits=c(-1, 101), expand=c(0, 0)) ggsave(plot=p, path=outdir, filename=paste('cumul_break_date', '.pdf', sep=''), width=10, height=10, units='cm', dpi=100) } # get_color = function (value, min, max, ncolor=256, palette_name='perso', reverse=FALSE, nbTick=10) { # if (palette_name == 'perso') { # colorList = c('#0f3b57', # '#1d7881', # '#80c4a9', # '#e2dac6', #mid # '#fadfad', # '#d08363', # '#7e392f') # } else { # colorList = brewer.pal(11, palette_name) # } # nSample = length(colorList) # palette = colorRampPalette(colorList)(ncolor) # Sample_hot = 1:(as.integer(nSample/2)+1) # Sample_cold = (as.integer(nSample/2)+1):nSample # palette_hot = colorRampPalette(colorList[Sample_hot])(ncolor) # palette_cold = colorRampPalette(colorList[Sample_cold])(ncolor) # if (reverse) { # palette = rev(palette) # palette_hot = rev(palette_hot) # palette_cold = rev(palette_cold) # } # if (value < 0) { # idNorm = (value - min) / (0 - min) # id = round(idNorm*(ncolor - 1) + 1, 0) # color = palette_cold[id] # } else { # idNorm = (value - 0) / (max - 0) # id = round(idNorm*(ncolor - 1) + 1, 0) # color = palette_hot[id] # } # if (min < 0 & max < 0) { # paletteShow = palette_cold # idTick = c() # for (i in 1:nbTick) { # id = round((ncolor-1)/(nbTick-1)*(i-1)) + 1 # idTick = c(idTick, id) # } # labTick = seq(min, max, length.out=nbTick) # colTick = paletteShow[idTick] # } else if (min > 0 & max > 0) { # paletteShow = palette_hot # idTick = c() # for (i in 1:nbTick) { # id = round((ncolor-1)/(nbTick-1)*(i-1)) + 1 # idTick = c(idTick, id) # } # labTick = seq(min, max, length.out=nbTick) # colTick = paletteShow[idTick] # } else { # paletteShow = palette # nbSemiTick = round(nbTick/2) + 1 # idSemiTick = c() # for (i in 1:nbSemiTick) { # id = round((ncolor-1)/(nbSemiTick-1)*(i-1)) + 1 # idSemiTick = c(idSemiTick, id) # } # labTick_hot = seq(0, max, length.out=nbSemiTick) # labTick_cold = seq(min, 0, length.out=nbSemiTick) # colTick_hot = palette_hot[idSemiTick] # colTick_cold = palette_cold[idSemiTick] # idTick = as.integer(seq(1, ncolor, length.out=nbTick+1)) # labTick = c(labTick_cold, labTick_hot[-1]) # colTick = c(colTick_cold, colTick_hot[-1]) # } # return(list(color=color, palette=paletteShow, # idTick=idTick, labTick=labTick, colTick=colTick)) # } get_color = function (value, min, max, ncolor=256, palette_name='perso', reverse=FALSE) { if (palette_name == 'perso') { colorList = palette_perso } else { colorList = brewer.pal(11, palette_name) } nSample = length(colorList) palette = colorRampPalette(colorList)(ncolor) Sample_hot = 1:(as.integer(nSample/2)+1) Sample_cold = (as.integer(nSample/2)+1):nSample palette_hot = colorRampPalette(colorList[Sample_hot])(ncolor) palette_cold = colorRampPalette(colorList[Sample_cold])(ncolor) if (reverse) { palette = rev(palette) palette_hot = rev(palette_hot) palette_cold = rev(palette_cold) } if (is.na(value)) { return (NA) } maxAbs = max(abs(max), abs(min)) if (value < 0) { idNorm = (value + maxAbs) / maxAbs id = round(idNorm*(ncolor - 1) + 1, 0) color = palette_cold[id] } else { idNorm = value / maxAbs id = round(idNorm*(ncolor - 1) + 1, 0) color = palette_hot[id] } return(color) } get_palette = function (min, max, ncolor=256, palette_name='perso', reverse=FALSE, nbTick=10) { if (palette_name == 'perso') { colorList = palette_perso } else { colorList = brewer.pal(11, palette_name) } nSample = length(colorList) palette = colorRampPalette(colorList)(ncolor) Sample_hot = 1:(as.integer(nSample/2)+1) Sample_cold = (as.integer(nSample/2)+1):nSample palette_hot = colorRampPalette(colorList[Sample_hot])(ncolor) palette_cold = colorRampPalette(colorList[Sample_cold])(ncolor) if (reverse) { palette = rev(palette) palette_hot = rev(palette_hot) palette_cold = rev(palette_cold) } if (min < 0 & max < 0) { paletteShow = palette_cold } else if (min > 0 & max > 0) { paletteShow = palette_hot } else { paletteShow = palette } posTick = seq(0, 1, length.out=nbTick) labTick = c() colTick = c() for (i in 1:nbTick) { lab = (i-1)/(nbTick-1) * (max - min) + min labTick = c(labTick, lab) col = get_color(lab, min=min, max=max, ncolor=ncolor, palette_name=palette_name, reverse=reverse) colTick = c(colTick, col) } return(list(palette=paletteShow, posTick=posTick, labTick=labTick, colTick=colTick)) } void = ggplot() + geom_blank(aes(1,1)) + theme( plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), axis.line = element_blank() ) palette_tester = function (n=256) { X = 1:n Y = rep(0, times=n) palette = colorRampPalette(palette_perso)(n) p = ggplot() + theme( plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), axis.line = element_blank() ) + geom_line(aes(x=X, y=Y), color=palette[X], size=60) + scale_y_continuous(expand=c(0, 0)) ggsave(plot=p, filename=paste('palette_test', '.pdf', sep=''), width=10, height=10, units='cm', dpi=100) } # palette_tester() get_power = function (value) { if (value > 1) { power = nchar(as.character(as.integer(value))) - 1 } else { dec = gsub('0.', '', as.character(value), fixed=TRUE) ndec = nchar(dec) nnum = nchar(as.character(as.numeric(dec))) power = -(ndec - nnum + 1) } return(power) } gg_circle = function(r, xc, yc, color="black", fill=NA, ...) { x = xc + r*cos(seq(0, pi, length.out=100)) ymax = yc + r*sin(seq(0, pi, length.out=100)) ymin = yc + r*sin(seq(0, -pi, length.out=100)) annotate("ribbon", x=x, ymin=ymin, ymax=ymax, color=color, fill=fill, ...) } gpct = function (pct, L, ref=NULL, shift=FALSE) { if (is.null(ref)) { minL = min(L, na.rm=TRUE) } else { minL = ref } maxL = max(L, na.rm=TRUE) spanL = maxL - minL xL = pct/100 * as.numeric(spanL) if (shift) { xL = xL + minL } return (xL) }