# Usefull library library(dplyr) library(zoo) library(StatsAnalysisTrend) # Sourcing R file source('processing/format.R', encoding='latin1') # Compute the time gap by station get_lacune = function (df_data, df_info) { # Get all different stations code Code = levels(factor(df_info$code)) # Create new vector to stock results for cumulative time gap by station tLac = c() # Create new vector to stock results for mean time gap by station meanLac = c() # Get rows where there is no NA NoNA = complete.cases(df_data) # Get data where there is no NA df_data_NoNA = df_data[NoNA,] # For every station for (code in Code) { # Get only the data rows for the selected station df_data_code = df_data[df_data$code==code,] # Get date for the selected station Date = df_data_code$Date # Get time span for the selection station span = as.numeric(Date[length(Date)] - Date[1]) # Get only the data rows with no NA for the selected station df_data_NoNA_code = df_data_NoNA[df_data_NoNA$code==code,] # Get date for the selected station Date_NoNA = df_data_NoNA_code$Date # Compute the time gap lac = as.numeric(diff(Date_NoNA) - 1) # Compute the cumulative gap lac_sum = sum(lac) # Store the cumulative gap rate tLac = c(tLac, lac_sum/span) # Compute the mean gap lac_mean = mean(lac[lac != 0]) # Store the mean gap meanLac = c(meanLac, lac_mean) } # Compute the cumulative gap rate in pourcent tLac100 = tLac * 100 # Create a tibble df_lac = tibble(code=Code, tLac100=tLac100, meanLac=meanLac) return (df_lac) } get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) { intercept = c() # Group = levels(factor()) for (g in df_Xlist$info$group) { df_data_code = df_Xlist$data[df_Xlist$data$group == g,] trend = df_Xtrend$trend[df_Xtrend$group == g] mu_X = mean(df_data_code$Qm3s, na.rm=TRUE) mu_t = as.numeric(mean(df_data_code$Date, na.rm=TRUE))/unit2day b = mu_X - mu_t * trend intercept = append(intercept, b) } return (intercept) } get_QAtrend = function (df_data, period) { # AVERAGE ANNUAL FLOW : QA # period = as.list(period) Imax = 0 df_QAtrendB = tibble() for (per in period){ df_QAlist = prepare(df_data, colnamegroup=c('code')) df_QAEx = extract.Var(data.station=df_QAlist, funct=mean, timestep='year', period=per, pos.datetime=1, na.rm=TRUE) df_QAtrend = Estimate.stats(data.extract=df_QAEx) I = interval(per[1], per[2]) if (I > Imax) { Imax = I df_QAlistB = df_QAlist df_QAExB = df_QAEx } df_QAtrend = bind_cols(df_QAtrend, tibble(period_start=as.Date(per[1])), tibble(period_end=as.Date(per[2]))) df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend) } res_QAtrend = clean(df_QAtrendB, df_QAExB, df_QAlistB) return (res_QAtrend) } get_QMNAtrend = function (df_data, period) { # MONTHLY MINIMUM FLOW IN THE YEAR : QMNA # period = as.list(period) Imax = 0 df_QMNAtrendB = tibble() for (per in period) { df_QMNAlist = prepare(df_data, colnamegroup=c('code')) df_QMNAEx = extract.Var(data.station=df_QMNAlist, funct=mean, period=per, timestep='month', pos.datetime=1, na.rm=TRUE) df_QMNAlist = reprepare(df_QMNAEx, df_QMNAlist, colnamegroup=c('code')) df_QMNAEx = extract.Var(data.station=df_QMNAlist, funct=min, period=per, timestep='year', pos.datetime=1, na.rm=TRUE) df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx) I = interval(per[1], per[2]) if (I > Imax) { Imax = I df_QMNAlistB = df_QMNAlist df_QMNAExB = df_QMNAEx } df_QMNAtrend = bind_cols(df_QMNAtrend, tibble(period_start=as.Date(per[1])), tibble(period_end=as.Date(per[2]))) df_QMNAtrendB = bind_rows(df_QMNAtrendB, df_QMNAtrend) } res_QMNAtrend = clean(df_QMNAtrendB, df_QMNAExB, df_QMNAlistB) return (res_QMNAtrend) } get_VCN10trend = function (df_data, df_meta, period) { # MINIMUM 10 DAY AVERAGE FLOW OVER THE YEAR : VCN10 # # Get all different stations code Code = levels(factor(df_meta$code)) df_data_roll = tibble() for (c in Code) { df_data_code = df_data[df_data$code == c,] df_data_code = tibble(Date=rollmean(df_data_code$Date, 10, fill=NA), Qm3s=rollmean(df_data_code$Qm3s, 10, fill=NA), code=c) df_data_roll = bind_rows(df_data_roll, df_data_code) } period = as.list(period) Imax = 0 df_VCN10trendB = tibble() for (per in period) { df_VCN10list = prepare(df_data_roll, colnamegroup=c('code')) df_VCN10Ex = extract.Var(data.station=df_VCN10list, funct=min, period=per, timestep='year', pos.datetime=1, na.rm=TRUE) df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex) I = interval(per[1], per[2]) if (I > Imax) { Imax = I df_VCN10listB = df_VCN10list df_VCN10ExB = df_VCN10Ex } df_VCN10trend = bind_cols(df_VCN10trend, tibble(period_start=as.Date(per[1])), tibble(period_end=as.Date(per[2]))) df_VCN10trendB = bind_rows(df_VCN10trendB, df_VCN10trend) } res_VCN10trend = clean(df_VCN10trendB, df_VCN10ExB, df_VCN10listB) return (res_VCN10trend) }