From e2f879c42400218abcee74fde40b807cbc3fd58d Mon Sep 17 00:00:00 2001 From: Benedetti Paola <paola.benedetti@irstea.fr> Date: Mon, 22 Jan 2018 17:23:25 +0100 Subject: [PATCH] moved --- Attention.py => SENEGAL/Attention.py | 0 B_LSTM.py => SENEGAL/B_LSTM.py | 0 CLF.py => SENEGAL/CLF.py | 0 CNN.py => SENEGAL/CNN.py | 0 GRU.py => SENEGAL/GRU.py | 0 LSTM.py => SENEGAL/LSTM.py | 0 ResNet18.py => SENEGAL/ResNet18.py | 0 restoreRnn.py => SENEGAL/RestoreRnn.py | 0 SaveRnn.py => SENEGAL/SaveRnn.py | 0 combo.py => SENEGAL/combo.py | 0 concatH.py => SENEGAL/concatH.py | 0 dualLSTM.py => SENEGAL/dualLSTM.py | 0 mapDS.py => SENEGAL/mapDS.py | 0 saveDS.py => SENEGAL/saveDS.py | 0 .../simpleDenseNet.py | 0 splitRandDino.py => SENEGAL/splitRandDino.py | 0 measuresC.py | 58 ----- measuresDUAL.py | 113 ---------- measuresLSTM.py | 101 --------- plot_measures.py | 210 ------------------ tables.py | 68 ------ tablexclassN1.py | 90 -------- tablexclassN2.py | 36 --- 23 files changed, 676 deletions(-) rename Attention.py => SENEGAL/Attention.py (100%) rename B_LSTM.py => SENEGAL/B_LSTM.py (100%) rename CLF.py => SENEGAL/CLF.py (100%) rename CNN.py => SENEGAL/CNN.py (100%) rename GRU.py => SENEGAL/GRU.py (100%) rename LSTM.py => SENEGAL/LSTM.py (100%) rename ResNet18.py => SENEGAL/ResNet18.py (100%) rename restoreRnn.py => SENEGAL/RestoreRnn.py (100%) rename SaveRnn.py => SENEGAL/SaveRnn.py (100%) rename combo.py => SENEGAL/combo.py (100%) rename concatH.py => SENEGAL/concatH.py (100%) rename dualLSTM.py => SENEGAL/dualLSTM.py (100%) rename mapDS.py => SENEGAL/mapDS.py (100%) rename saveDS.py => SENEGAL/saveDS.py (100%) rename simpleDenseNet.py => SENEGAL/simpleDenseNet.py (100%) rename splitRandDino.py => SENEGAL/splitRandDino.py (100%) delete mode 100644 measuresC.py delete mode 100644 measuresDUAL.py delete mode 100644 measuresLSTM.py delete mode 100644 plot_measures.py delete mode 100644 tables.py delete mode 100644 tablexclassN1.py delete mode 100644 tablexclassN2.py diff --git a/Attention.py b/SENEGAL/Attention.py similarity index 100% rename from Attention.py rename to SENEGAL/Attention.py diff --git a/B_LSTM.py b/SENEGAL/B_LSTM.py similarity index 100% rename from B_LSTM.py rename to SENEGAL/B_LSTM.py diff --git a/CLF.py b/SENEGAL/CLF.py similarity index 100% rename from CLF.py rename to SENEGAL/CLF.py diff --git a/CNN.py b/SENEGAL/CNN.py similarity index 100% rename from CNN.py rename to SENEGAL/CNN.py diff --git a/GRU.py b/SENEGAL/GRU.py similarity index 100% rename from GRU.py rename to SENEGAL/GRU.py diff --git a/LSTM.py b/SENEGAL/LSTM.py similarity index 100% rename from LSTM.py rename to SENEGAL/LSTM.py diff --git a/ResNet18.py b/SENEGAL/ResNet18.py similarity index 100% rename from ResNet18.py rename to SENEGAL/ResNet18.py diff --git a/restoreRnn.py b/SENEGAL/RestoreRnn.py similarity index 100% rename from restoreRnn.py rename to SENEGAL/RestoreRnn.py diff --git a/SaveRnn.py b/SENEGAL/SaveRnn.py similarity index 100% rename from SaveRnn.py rename to SENEGAL/SaveRnn.py diff --git a/combo.py b/SENEGAL/combo.py similarity index 100% rename from combo.py rename to SENEGAL/combo.py diff --git a/concatH.py b/SENEGAL/concatH.py similarity index 100% rename from concatH.py rename to SENEGAL/concatH.py diff --git a/dualLSTM.py b/SENEGAL/dualLSTM.py similarity index 100% rename from dualLSTM.py rename to SENEGAL/dualLSTM.py diff --git a/mapDS.py b/SENEGAL/mapDS.py similarity index 100% rename from mapDS.py rename to SENEGAL/mapDS.py diff --git a/saveDS.py b/SENEGAL/saveDS.py similarity index 100% rename from saveDS.py rename to SENEGAL/saveDS.py diff --git a/simpleDenseNet.py b/SENEGAL/simpleDenseNet.py similarity index 100% rename from simpleDenseNet.py rename to SENEGAL/simpleDenseNet.py diff --git a/splitRandDino.py b/SENEGAL/splitRandDino.py similarity index 100% rename from splitRandDino.py rename to SENEGAL/splitRandDino.py diff --git a/measuresC.py b/measuresC.py deleted file mode 100644 index c8577b8..0000000 --- a/measuresC.py +++ /dev/null @@ -1,58 +0,0 @@ -import numpy as np -import sys -from sklearn.metrics import accuracy_score -from sklearn.metrics import precision_recall_fscore_support -from sklearn.metrics import precision_score,accuracy_score,recall_score,f1_score - - - -p_split = 70 -n_split=10 - -#python meqsuresC.py RFC,GBC,SVC 1 -#python meqsuresC.py RFC,GBC,SVC 2 - -arr_C=sys.argv[1].split(',') -norm=int(sys.argv[2]) - -precision = np.zeros(3) -recall = np.zeros(3) -fscore = np.zeros(3) - -for class_ in arr_C: - for i in range(n_split): - - var_totpred = './dataset/N%d/%s_truthpred_%d%s%d%s'%(norm,class_,p_split,'p/totpred',i,'.npy') - var_gt='./dataset/N%d/%s_truthpred_%d%s%d%s'%(norm,class_,p_split,'p/gt',i,'.npy') - - C_pred = np.load(var_totpred) - test_y = np.load(var_gt) - - - var_prec,var_rec,var_fsc,_ = precision_recall_fscore_support(test_y, C_pred) - - #Summ P,R ans FS values for each class - precision = np.add(precision, np.array(var_prec)) - recall = np.add(precision, np.array(var_rec)) - fscore = np.add(precision, np.array(var_fsc)) - - #get the mean values of P,R,FS - precision = np.divide(precision,n_split) - recall = np.divide(recall,n_split) - fscore = np.divide(fscore,n_split) - - #get other measures - acc_score = accuracy_score(test_y, C_pred) - prec_score = precision_score(test_y, C_pred, average='weighted') - rec_score = recall_score(test_y, C_pred, average='weighted') - fsc_score = f1_score(test_y, C_pred, average='weighted') - - - - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/precision.npy'), precision) - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/recall.npy'), recall) - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/fscore.npy'), fscore) - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/accuracy_score.npy'), acc_score) - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/precision_score.npy'), prec_score) - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/recall_score.npy'), rec_score) - np.save('./dataset/N%d/%s_truthpred_%d%s'%(norm,class_,p_split,'p/fscore_score.npy'), fsc_score) diff --git a/measuresDUAL.py b/measuresDUAL.py deleted file mode 100644 index d6d557b..0000000 --- a/measuresDUAL.py +++ /dev/null @@ -1,113 +0,0 @@ -import numpy as np -import sys -from sklearn.metrics import accuracy_score -from sklearn.metrics import precision_recall_fscore_support -from sklearn.metrics import precision_score,accuracy_score,recall_score,f1_score,confusion_matrix - - -timesteps = 22 -ninput = 13 -p_split = 70 -n_split=10 - -# python meaasuresLSTM LSTM,B_LSTM 8 64 3 1 - -arrT=sys.argv[1].split(',') -batchsz=int(sys.argv[2]) -nunits=int(sys.argv[3]) -nlayer=int(sys.argv[4]) -norm=int(sys.argv[5]) -opH=sys.argv[6] - -precision = np.zeros(3) -recall = np.zeros(3) -fscore = np.zeros(3) - - - -for T_lstm in arrT: - for i in range(n_split): - - TP=[] - totalLayer=[] - totalClass=[] - - if opH=='+': - var_totpred= './dataset/N%d/%s%d%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/totpred',i,'.npy') - var_gt= './dataset/N%d/%s%d%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/gt',i,'.npy') - if opH == 'c': - var_totpred= './dataset/N%d/%s%d%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/totpred',i,'.npy') - var_gt= './dataset/N%d/%s%d%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/gt',i,'.npy') - - LSTM_pred = np.load(var_totpred) - test_y = np.load(var_gt) - - #get confusion matrix - C = confusion_matrix(test_y, LSTM_pred) - - #get true positive values for each class - TP.append(C[0][0]) - TP.append(C[1][1]) - TP.append(C[2][2]) - - #get total number of retrieved instances - totalLayer.append(C[0][0]+C[0][1]+C[0][2]) - totalLayer.append(C[1][0]+C[1][1]+C[1][2]) - totalLayer.append(C[2][0]+C[2][1]+C[2][2]) - - #get total amount of relevant instances - totalClass.append(C[0][0]+C[1][0]+C[2][0]) - totalClass.append(C[0][1]+C[1][1]+C[2][1]) - totalClass.append(C[0][2]+C[1][2]+C[2][2]) - - # PRECISION = TP / RETRIEVED_INSTANCES - prec_temp=np.divide(TP,totalLayer,dtype="float32") - # RECALL = TP / RELEVANT INSTANCES - recall_temp=np.divide(TP,totalClass,dtype="float32") - # FSCORE = 2*( P*R / P+R ) - fscore_temp=2*(np.multiply(prec_temp,recall_temp,dtype="float32")/np.add(prec_temp,recall_temp,dtype="float32")) - - # sum values per class - for j in range(0,3): - - precision[j] = precision[j]+prec_temp[j] - recall[j] = recall[j]+recall_temp[j] - fscore[j] = fscore[j]+fscore_temp[j] - - - # get P,R and FS mean values per class - precision = np.divide(precision,n_split) - recall = np.divide(recall,n_split) - fscore = np.divide(fscore,n_split) - - # get other measures - acc_score = accuracy_score(test_y, LSTM_pred) - prec_score = precision_score(test_y, LSTM_pred, average='weighted') - rec_score = recall_score(test_y, LSTM_pred, average='weighted') - fsc_score = f1_score(test_y, LSTM_pred, average='weighted') - -#print 'precision',precision -#print 'recall',recall -#print 'fscore',fscore -#print 'acc_score',acc_score -#print 'prec_score',prec_score -#print 'rec_score',rec_score -#print 'fsc_score',fsc_score - -if opH=='+': - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/precision.npy'), precision) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/recall.npy'), recall) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/fscore.npy'), fscore) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/accuracy_score.npy'), acc_score) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/precision_score.npy'), prec_score) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/recall_score.npy'), rec_score) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'b+/fscore_score.npy'), fsc_score) - -if opH == 'c': - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/precision.npy'), precision) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/recall.npy'), recall) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/fscore.npy'), fscore) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/accuracy_score.npy'), acc_score) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/precision_score.npy'), prec_score) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/recall_score.npy'), rec_score) - np.save('./dataset/N%d/%s%d%s%d%s%d%s%d%s'%(norm,T_lstm,nlayer,'l_truthpred_',p_split,'p',nunits,'u',batchsz,'bc/fscore_score.npy'), fsc_score) diff --git a/measuresLSTM.py b/measuresLSTM.py deleted file mode 100644 index de20caa..0000000 --- a/measuresLSTM.py +++ /dev/null @@ -1,101 +0,0 @@ -import numpy as np -import sys -from sklearn.metrics import accuracy_score -from sklearn.metrics import precision_recall_fscore_support -from sklearn.metrics import precision_score,accuracy_score,recall_score,f1_score,confusion_matrix - - -timesteps = 22 -ninput = 13 -p_split = 70 -n_split=10 - -# python meaasuresLSTM LSTM,B_LSTM 8 64 3 1 - - -batchsz=int(sys.argv[2]) -nunits=int(sys.argv[3]) -nlayer=int(sys.argv[4]) -norm=int(sys.argv[5]) -Tlstm=sys.argv[6] - -precision = np.zeros(3) -recall = np.zeros(3) -fscore = np.zeros(3) - -g_path = './dataset/N%d/%s_%dl_truthpred_%dp%du%db/'%(norm,Tlstm,norm,p_split_nunits,batchsz) - -for i in range(n_split): - - TP=[] - totalClass=[] - totalLayer=[] - - - var_totpred= g_path+'totpred%d.npy'% i - var_gt= g_path+'gt%d.npy'% i - - LSTM_pred = np.load(var_totpred) - test_y = np.load(var_gt) - - #get confusion matrix - C = confusion_matrix(test_y, LSTM_pred) - - #get true positive values for each class - TP.append(C[0][0]) - TP.append(C[1][1]) - TP.append(C[2][2]) - - #get total number of retrieved instances - totalLayer.append(C[0][0]+C[0][1]+C[0][2]) - totalLayer.append(C[1][0]+C[1][1]+C[1][2]) - totalLayer.append(C[2][0]+C[2][1]+C[2][2]) - - #get total amount of relevant instances - totalClass.append(C[0][0]+C[1][0]+C[2][0]) - totalClass.append(C[0][1]+C[1][1]+C[2][1]) - totalClass.append(C[0][2]+C[1][2]+C[2][2]) - - - # PRECISION = TP / RETRIEVED_INSTANCES - prec_temp=np.divide(TP,totalLayer,dtype="float32") - # RECALL = TP / RELEVANT INSTANCES - recall_temp=np.divide(TP,totalClass,dtype="float32") - # FSCORE = 2*( P*R / P+R ) - fscore_temp=2*(np.multiply(prec_temp,recall_temp,dtype="float32")/np.add(prec_temp,recall_temp,dtype="float32")) - - # sum values per class - for j in range(0,3): - - precision[j] = precision[j]+prec_temp[j] - recall[j] = recall[j]+recall_temp[j] - fscore[j] = fscore[j]+fscore_temp[j] - - -# get P,R and FS mean values per class -precision = np.divide(precision,n_split,dtype="float32") -recall = np.divide(recall,n_split,dtype="float32") -fscore = np.divide(fscore,n_split,dtype="float32") - -# get other measures -acc_score = accuracy_score(test_y, LSTM_pred) -prec_score = precision_score(test_y, LSTM_pred, average='weighted') -rec_score = recall_score(test_y, LSTM_pred, average='weighted') -fsc_score = f1_score(test_y, LSTM_pred, average='weighted') - -#print 'precision',precision -#print 'recall',recall -#print 'fscore',fscore -#print 'acc_score',acc_score -#print 'prec_score',prec_score -#print 'rec_score',rec_score -#print 'fsc_score',fsc_score - - -np.save(g_path+'precision.npy'), precision) -np.save(g_path+'recall.npy'), recall) -np.save(g_path+'fscore.npy'), fscore) -np.save(g_path+'accuracy_score.npy'), acc_score) -np.save(g_path+'precision_score.npy'), prec_score) -np.save(g_path+'recall_score.npy'), rec_score) -np.save(g_path+'fscore_score.npy'), fsc_score) diff --git a/plot_measures.py b/plot_measures.py deleted file mode 100644 index 9e02b9b..0000000 --- a/plot_measures.py +++ /dev/null @@ -1,210 +0,0 @@ -import numpy as np -import pandas as pd - -''' -#FSCORE 64-128-256 HIDDEN UNITS N1 1LIV -var_1_64_8N1 = './dataset/N1/LSTM1l_truthpred_70p64u8b/fscore_score.npy' -var_1_128_8N1 = './dataset/N1/LSTM1l_truthpred_70p128u8b/fscore_score.npy' -var_1_256_8N1 = './dataset/N1/LSTM1l_truthpred_70p256u8b/fscore_score.npy' - -#FSCORE 64-128-256 HIDDEN UNITS N2 1LIV -var_1_64_8N2 = './dataset/N2/LSTM1l_truthpred_70p64u8b/fscore_score.npy' -var_1_128_8N2 = './dataset/N2/LSTM1l_truthpred_70p128u8b/fscore_score.npy' -var_1_256_8N2 = './dataset/N2/LSTM1l_truthpred_70p256u8b/fscore_score.npy' -var_N1 = './dataset/N1/RFC_truthpred_70p/fscore_score.npy' - -#FSCORE 64-128-256 HIDDEN UNITS N1 3LIV -var_3_64_8N1 = './dataset/N1/LSTM3l_truthpred_70p64u8b/fscore_score.npy' -var_3_128_8N1 = './dataset/N1/LSTM3l_truthpred_70p128u8b/fscore_score.npy' -var_3_256_8N1 = './dataset/N1/LSTM3l_truthpred_70p256u8b/fscore_score.npy' - -#FSCORE 64-128-256 HIDDEN UNITS N2 3LIV -var_3_64_8N2 = './dataset/N2/LSTM3l_truthpred_70p64u8b/fscore_score.npy' -var_3_128_8N2 = './dataset/N2/LSTM3l_truthpred_70p128u8b/fscore_score.npy' -var_3_256_8N2 = './dataset/N2/LSTM3l_truthpred_70p256u8b/fscore_score.npy' - -#FSCORE RFC -var_N2 = './dataset/N2/RFC_truthpred_70p/fscore_score.npy' - -#FSCORE 64-128 HIDDEN UNITS N1 1LIV -var_B_1_64_8N1 = './dataset/N1/B_LSTM1l_truthpred_70p64u8b/fscore_score.npy' -var_B_1_128_8N1 = './dataset/N1/B_LSTM1l_truthpred_70p128u8b/fscore_score.npy' - -#FSCORE 64-128 HIDDEN UNITS N1 3LIV -var_B_3_64_8N1 = './dataset/N1/B_LSTM3l_truthpred_70p64u8b/fscore_score.npy' -var_B_3_128_8N1 = './dataset/N1/B_LSTM3l_truthpred_70p128u8b/fscore_score.npy' - - - -#FSCOREs N1 -fsN1=[] -#LSTM N1 1LIV -fsN1.append(np.load(var_1_64_8N1)) -fsN1.append(np.load(var_1_128_8N1)) -fsN1.append(np.load(var_1_256_8N1)) -#LSTM N1 L3 -fsN1.append(np.load(var_3_64_8N1)) -fsN1.append(np.load(var_3_128_8N1)) -fsN1.append(np.load(var_3_256_8N1)) -#RFC -fsN1.append(np.load(var_N1)) -#BI LSTM -fsN1.append(np.load(var_B_1_64_8N1)) -fsN1.append(np.load(var_B_1_128_8N1)) -fsN1.append(np.load(var_B_3_64_8N1)) -fsN1.append(np.load(var_B_3_128_8N1)) - - - - - -#FSCORES N2 -fsN2=[] -#LSTM N2 1LIV -fsN2.append(np.load(var_1_64_8N2)) -fsN2.append(np.load(var_1_128_8N2)) -fsN2.append(np.load(var_1_256_8N2)) -#LSTM N2 L3 -fsN2.append(np.load(var_3_64_8N2)) -fsN2.append(np.load(var_3_128_8N2)) -fsN2.append(np.load(var_3_256_8N2)) -#RFC -fsN2.append(np.load(var_N2)) -fsN2.append('-') -fsN2.append('-') -fsN2.append('-') -fsN2.append('-') - - -print "Fscores" -print "N1:",np.array(fsN1) -print "N2:",np.array(fsN2) - -fsN1N2=np.vstack(( np.array(fsN1),np.array(fsN2) )) - -fsLSTM_rfc = pd.DataFrame(np.array(fsN1N2),columns = ['1_64_8','1_128_8','1_256_8','3_64_8','3_128_8','3_256_8','RFC','bi_1_64_8','bi_1_128_8','bi_3_64_8','bi_3_128_8']) -fsLSTM_rfc.to_csv("fscoreLSTM-RFC_N1N2.csv") - - -#SINGLE LAYER ACCURACY 64-128-256 HIDDEN UNITS N1 1LIV -a_1_64_8N1 = './dataset/N1/LSTM1l_truthpred_70p64u8b/accuracy_score.npy' -a_1_128_8N1 = './dataset/N1/LSTM1l_truthpred_70p128u8b/accuracy_score.npy' -a_1_256_8N1 = './dataset/N1/LSTM1l_truthpred_70p256u8b/accuracy_score.npy' - -#MUTLILAYER ACCURACY 64-128-256 HIDDEN UNITS N1 3LIV -a_3_64_8N1 = './dataset/N1/LSTM3l_truthpred_70p64u8b/accuracy_score.npy' -a_3_128_8N1 = './dataset/N1/LSTM3l_truthpred_70p128u8b/accuracy_score.npy' -a_3_256_8N1 = './dataset/N1/LSTM3l_truthpred_70p256u8b/accuracy_score.npy' - -#SINGLE LAYER ACCURACY 64-128-256 HIDDEN UNITS N2 1LIV -a_1_64_8N2 = './dataset/N2/LSTM1l_truthpred_70p64u8b/accuracy_score.npy' -a_1_128_8N2 = './dataset/N2/LSTM1l_truthpred_70p128u8b/accuracy_score.npy' -a_1_256_8N2 = './dataset/N2/LSTM1l_truthpred_70p256u8b/accuracy_score.npy' -a_N1 = './dataset/N1/RFC_truthpred_70p/accuracy_score.npy' - -#MUTLILAYER ACCURACY 64-128-256 HIDDEN UNITS N2 3LIV -a_3_64_8N2 = './dataset/N2/LSTM3l_truthpred_70p64u8b/accuracy_score.npy' -a_3_128_8N2 = './dataset/N2/LSTM3l_truthpred_70p128u8b/accuracy_score.npy' -a_3_256_8N2 = './dataset/N2/LSTM3l_truthpred_70p256u8b/accuracy_score.npy' -a_N2 = './dataset/N2/RFC_truthpred_70p/accuracy_score.npy' - -#BIDIRECTIONAL ACCURACY 64-128 HIDDEN UNITS N1 1LIV -a_B_1_64_8N1 = './dataset/N1/B_LSTM1l_truthpred_70p64u8b/accuracy_score.npy' -a_B_1_128_8N1 = './dataset/N1/B_LSTM1l_truthpred_70p128u8b/accuracy_score.npy' - -#BIDIRECTIONAL ACCURACY 64-128 HIDDEN UNITS N1 3LIV -a_B_3_64_8N1 = './dataset/N1/B_LSTM3l_truthpred_70p64u8b/accuracy_score.npy' -a_B_3_128_8N1 = './dataset/N1/B_LSTM3l_truthpred_70p128u8b/accuracy_score.npy' - -#ATTENTION ACCURACY 64-128 HU N1 1L -a_Attention_1_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/accuracy_score.npy' -a_Attention_1_128_8N1 = './dataset/N1/Attention1l_truthpred_70p128u8b/accuracy_score.npy' - -#ATTENTION ACCURACY 64-128 HU N1 3L -a_Attention_3_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/accuracy_score.npy' -a_Attention_3_128_8N1 = './dataset/N1/Attention1l_truthpred_70p128u8b/accuracy_score.npy' - - -#ACCURACY N1 -aN1=[] -#LSTM 1LIV -aN1.append(np.load(a_1_64_8N1)) -aN1.append(np.load(a_1_128_8N1)) -aN1.append(np.load(a_1_256_8N1)) -#LSTM 3LIV -aN1.append(np.load(a_3_64_8N1)) -aN1.append(np.load(a_3_128_8N1)) -aN1.append(np.load(a_3_256_8N1)) -#RFC -aN1.append(np.load(a_N1)) -#BI LSTM -aN1.append(np.load(a_B_1_64_8N1)) -aN1.append(np.load(a_B_1_128_8N1)) -aN1.append(np.load(a_B_3_64_8N1)) -aN1.append(np.load(a_B_3_128_8N1)) - -#ACCURACY N2 -aN2=[] -aN2.append(np.load(a_1_64_8N2)) -aN2.append(np.load(a_1_128_8N2)) -aN2.append(np.load(a_1_256_8N2)) - -aN2.append(np.load(a_3_64_8N2)) -aN2.append(np.load(a_3_128_8N2)) -aN2.append(np.load(a_3_256_8N2)) -aN2.append(np.load(a_N2)) - -aN2.append('-') -aN2.append('-') -aN2.append('-') -aN2.append('-') - - -print "Accuracy" -print "N1:",np.array(fsN1) -print "N2:",np.array(fsN2) - - - -aN1N2=np.vstack(( np.array(aN1),np.array(aN2) )) - -aLSTM_rfc = pd.DataFrame(np.array(aN1N2),columns = ['1_64_8','1_128_8','1_256_8','3_64_8','3_128_8','3_256_8','RFC','bi_1_64_8','bi_1_128_8','bi_3_64_8','bi_3_128_8']) -aLSTM_rfc.to_csv("accuracyLSTM-RFC_N1N2.csv") - - - - -#FSCORE ACCURACY 64-128 HU N1 1L -var_Attention_1_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/fscore_score.npy' -var_Attention_1_128_8N1 = './dataset/N1/Attention1l_truthpred_70p128u8b/fscore_score.npy' - -#FSCORE ACCURACY 64-128 HU N1 3L -var_Attention_3_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/fscore_score.npy' -var_Attention_3_128_8N1 = './dataset/N1/Attention1l_truthpred_70p128u8b/fscore_score.npy' - -#FSCORE ACCURACY 64-128 HU N1 1L -var_concatH_1_64_8N1 = './dataset/N1/concatH1l_truthpred_70p64u8b/fscore_score.npy' -var_concatH_1_128_8N1 = './dataset/N1/concatH1l_truthpred_70p128u8b/fscore_score.npy' - -#FSCORE ACCURACY 64-128 HU N1 3L -var_concatH_3_64_8N1 = './dataset/N1/concatH1l_truthpred_70p64u8b/fscore_score.npy' -var_concatH_3_128_8N1 = './dataset/N1/concatH1l_truthpred_70p128u8b/fscore_score.npy' - - -fsN1=[] -#LSTM 1LIV -fsN1.append(np.load(var_Attention_1_64_8N1)) -fsN1.append(np.load(var_Attention_1_128_8N1)) -fsN1.append(np.load(var_Attention_3_64_8N1)) -fsN1.append(np.load(var_Attention_3_128_8N1)) - -fsN1.append(np.load(var_concatH_1_64_8N1)) -fsN1.append(np.load(var_concatH_1_128_8N1)) -fsN1.append(np.load(var_concatH_3_64_8N1)) -fsN1.append(np.load(var_concatH_3_128_8N1)) - -fsAtt_concat = pd.DataFrame(np.array(fsN1),columns = ['A1_64_8','A1_128_8','A3_64_8','A3_128_8','conc_1_64_8','conc_1_128_8','conc_3_64_8','conc_3_128_8']) -fsAtt_concat.to_csv("fscoreAttentionConcat.csv") -''' - - diff --git a/tables.py b/tables.py deleted file mode 100644 index 264d48d..0000000 --- a/tables.py +++ /dev/null @@ -1,68 +0,0 @@ -import numpy as np -import pandas as pd - -#FSCORE 64-128 HU N1 1L -var_Attention_1_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/fscore_score.npy' -var_Attention_1_128_8N1 = './dataset/N1/Attention1l_truthpred_70p128u8b/fscore_score.npy' - -#FSCORE 64-128 HU N1 3L -var_Attention_3_64_8N1 = './dataset/N1/Attention3l_truthpred_70p64u8b/fscore_score.npy' -var_Attention_3_128_8N1 = './dataset/N1/Attention3l_truthpred_70p128u8b/fscore_score.npy' - -#FSCORE 64-128 HU N1 1L -var_concatH_1_64_8N1 = './dataset/N1/concatH1l_truthpred_70p64u8b/fscore_score.npy' - -#FSCORE 64-128 HU N1 3L -var_concatH_3_64_8N1 = './dataset/N1/concatH3l_truthpred_70p64u8b/fscore_score.npy' - - - -fsN1=[] -#LSTM 1LIV -fsN1.append(np.load(var_Attention_1_64_8N1)) -fsN1.append(np.load(var_Attention_1_128_8N1)) -fsN1.append(np.load(var_Attention_3_64_8N1)) -fsN1.append(np.load(var_Attention_3_128_8N1)) - -fsN1.append(np.load(var_concatH_1_64_8N1)) - -fsN1.append(np.load(var_concatH_3_64_8N1)) - - -fsAtt_concat = pd.DataFrame(np.array(fsN1)) -fsAtt_concat.to_csv("fscoreAttentionConcat.csv") - -# ACCURACY 64-128 HU N1 1L -a_Attention_1_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/accuracy_score.npy' -a_Attention_1_128_8N1 = './dataset/N1/Attention1l_truthpred_70p128u8b/accuracy_score.npy' - -# ACCURACY 64-128 HU N1 3L -a_Attention_3_64_8N1 = './dataset/N1/Attention3l_truthpred_70p64u8b/accuracy_score.npy' -a_Attention_3_128_8N1 = './dataset/N1/Attention3l_truthpred_70p128u8b/accuracy_score.npy' - -# ACCURACY 64-128 HU N1 1L -a_concatH_1_64_8N1 = './dataset/N1/concatH1l_truthpred_70p64u8b/accuracy_score.npy' - - -# ACCURACY 64-128 HU N1 3L -a_concatH_3_64_8N1 = './dataset/N1/concatH3l_truthpred_70p64u8b/accuracy_score.npy' - - - -aN1=[] -#LSTM 1LIV -aN1.append(np.load(a_Attention_1_64_8N1)) -aN1.append(np.load(a_Attention_1_128_8N1)) -aN1.append(np.load(a_Attention_3_64_8N1)) -aN1.append(np.load(a_Attention_3_128_8N1)) - -aN1.append(np.load(a_concatH_1_64_8N1)) - -aN1.append(np.load(a_concatH_3_64_8N1)) - - -aAtt_concat = pd.DataFrame(np.array(aN1)) -aAtt_concat.to_csv("accuracyAttentionConcat.csv") - - - diff --git a/tablexclassN1.py b/tablexclassN1.py deleted file mode 100644 index 371d903..0000000 --- a/tablexclassN1.py +++ /dev/null @@ -1,90 +0,0 @@ -import numpy as np -import pandas as pd - - - -#FSCORE 64-128-256 HIDDEN UNITS N1 1LIV -var_1_64_8N1 = './dataset/N1/LSTM1l_truthpred_70p64u8b/fscore.npy' -var_1_128_8N1 = './dataset/N1/LSTM1l_truthpred_70p128u8b/fscore.npy' -var_1_256_8N1 = './dataset/N1/LSTM1l_truthpred_70p256u8b/fscore.npy' - -#FSCORE 64-128-256 HIDDEN UNITS N1 3LIV -var_3_64_8N1 = './dataset/N1/LSTM3l_truthpred_70p64u8b/fscore.npy' -var_3_128_8N1 = './dataset/N1/LSTM3l_truthpred_70p128u8b/fscore.npy' -var_3_256_8N1 = './dataset/N1/LSTM3l_truthpred_70p256u8b/fscore.npy' - -#FSCORE RFC -var_N1 = './dataset/N1/RFC_truthpred_70p/fscore.npy' - -#FSCORE 64-128 HIDDEN UNITS N1 1LIV -var_B_1_64_8N1 = './dataset/N1/B_LSTM1l_truthpred_70p64u8b/fscore.npy' -var_B_1_128_8N1 = './dataset/N1/B_LSTM1l_truthpred_70p128u8b/fscore.npy' - -#FSCORE 64-128 HIDDEN UNITS N1 3LIV -var_B_3_64_8N1 = './dataset/N1/B_LSTM3l_truthpred_70p64u8b/fscore.npy' -var_B_3_128_8N1 = './dataset/N1/B_LSTM3l_truthpred_70p128u8b/fscore.npy' - -var_attention_1_64_8N1 = './dataset/N1/Attention1l_truthpred_70p64u8b/fscore.npy' -var_attention_1_128_8N1 ='./dataset/N1/Attention1l_truthpred_70p128u8b/fscore.npy' -var_attention_1_256_8N1 ='./dataset/N1/Attention1l_truthpred_70p256u8b/fscore.npy' - -var_attention_3_64_8N1 ='./dataset/N1/Attention3l_truthpred_70p64u8b/fscore.npy' -var_attention_3_128_8N1 ='./dataset/N1/Attention3l_truthpred_70p128u8b/fscore.npy' -var_attention_3_256_8N1 ='./dataset/N1/Attention3l_truthpred_70p256u8b/fscore.npy' - -#FSCORE CONCAT -var_concat_1_64_8N1 = './dataset/N1/concatH1l_truthpred_70p64u8b/fscore.npy' -var_concat_1_128_8N1 = './dataset/N1/concatH1l_truthpred_70p128u8b/fscore.npy' -var_concat_1_256_8N1 = './dataset/N1/concatH1l_truthpred_70p256u8b/fscore.npy' - -#FSCORE CONCAT -var_concat_3_64_8N1 = './dataset/N1/concatH3l_truthpred_70p64u8b/fscore.npy' -var_concat_3_128_8N1 = './dataset/N1/concatH3l_truthpred_70p128u8b/fscore.npy' -var_concat_3_256_8N1 = './dataset/N1/concatH3l_truthpred_70p256u8b/fscore.npy' - -#FSCORE DUAL -var_dual_3_32_8N1 = './dataset/N1/dualLSTM3l_truthpred_70p32u8b+/fscore.npy' -var_dual_3_64_8N1 = './dataset/N1/dualLSTM3l_truthpred_70p64u8b+/fscore.npy' - -#FSCOREs N1 -fsN1=[] -#LSTM N1 1LIV -fsN1.append(np.load(var_1_64_8N1)) -fsN1.append(np.load(var_1_128_8N1)) -fsN1.append(np.load(var_1_256_8N1)) -#LSTM N1 L3 -fsN1.append(np.load(var_3_64_8N1)) -fsN1.append(np.load(var_3_128_8N1)) -fsN1.append(np.load(var_3_256_8N1)) -#RFC -fsN1.append(np.load(var_N1)) -#BI LSTM -fsN1.append(np.load(var_B_1_64_8N1)) -fsN1.append(np.load(var_B_1_128_8N1)) -fsN1.append(np.load(var_B_3_64_8N1)) -fsN1.append(np.load(var_B_3_128_8N1)) -#concat N1 L3 -fsN1.append(np.load(var_attention_1_64_8N1)) -fsN1.append(np.load(var_attention_1_128_8N1)) -fsN1.append(np.load(var_attention_1_256_8N1)) -fsN1.append(np.load(var_attention_3_64_8N1)) -fsN1.append(np.load(var_attention_3_128_8N1)) -fsN1.append(np.load(var_attention_3_256_8N1)) - -fsN1.append(np.load(var_concat_1_64_8N1)) -fsN1.append(np.load(var_concat_1_128_8N1)) -fsN1.append(np.load(var_concat_1_256_8N1)) -#concat N1 L3 -fsN1.append(np.load(var_concat_3_64_8N1)) -fsN1.append(np.load(var_concat_3_128_8N1)) -fsN1.append(np.load(var_concat_3_256_8N1)) -#dual N1 L3 -fsN1.append(np.load(var_dual_3_32_8N1)) -fsN1.append(np.load(var_dual_3_64_8N1)) - - -print "fscore" -print "N1:",np.array(fsN1) - -fsLSTM_rfc = pd.DataFrame(np.array(fsN1)) -fsLSTM_rfc.to_csv("fscorexclasses.csv") diff --git a/tablexclassN2.py b/tablexclassN2.py deleted file mode 100644 index 08ab0d2..0000000 --- a/tablexclassN2.py +++ /dev/null @@ -1,36 +0,0 @@ -import numpy as np -import pandas as pd - - - -#FSCORE 64-128-256 HIDDEN UNITS N1 1LIV -var_1_64_8N2 = './dataset/N2/LSTM1l_truthpred_70p64u8b/precision.npy' -var_1_128_8N2 = './dataset/N2/LSTM1l_truthpred_70p128u8b/precision.npy' -var_1_256_8N2 = './dataset/N2/LSTM1l_truthpred_70p256u8b/precision.npy' - -#FSCORE 64-128-256 HIDDEN UNITS N1 3LIV -var_3_64_8N2 = './dataset/N2/LSTM3l_truthpred_70p64u8b/precision.npy' -var_3_128_8N2 = './dataset/N2/LSTM3l_truthpred_70p128u8b/precision.npy' -var_3_256_8N2 = './dataset/N2/LSTM3l_truthpred_70p256u8b/precision.npy' - -#FSCORE RFC -var_N2 = './dataset/N2/RFC_truthpred_70p/precision.npy' - -#FSCOREs N1 -fsN2=[] -#LSTM N1 1LIV -fsN2.append(np.load(var_1_64_8N2)) -fsN2.append(np.load(var_1_128_8N2)) -fsN2.append(np.load(var_1_256_8N2)) -#LSTM N1 L3 -fsN2.append(np.load(var_3_64_8N2)) -fsN2.append(np.load(var_3_128_8N2)) -fsN2.append(np.load(var_3_256_8N2)) -#RFC -fsN2.append(np.load(var_N2)) - -print "precision" -print "N2:",np.array(fsN2) - -fsLSTM_rfc = pd.DataFrame(np.array(fsN2)) -fsLSTM_rfc.to_csv("precisionxclassesN2.csv") -- GitLab